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Abstract

In this thesis, we provide a scheme for localization of a fleet of autonomous UAVs
(unmanned autonomous vehicles) within a Technological System-of-Systems archi-
tecture. Specifically, we aim for a fleet of autonomous UAVs to localize themselves
and to obtain a map of an unknown environment using a minimal set of sensors on
each UAV: A front monocular camera and an Inertial Measurement Unit. This is a
critically important problem for applications such as exploration of unknown areas,
or search and rescue missions. The choices for designing such a system are sup-
ported by an extensive study of the scientific literature on two broad fronts: First,
about the multi-robot systems performing localization, mapping, navigation and
exploration, and second, about the monocular, real-time and inertial-monocular
SLAM (Simultaneous Localization and Mapping) algorithms.

Processing monocular camera frames suffers the drawback of lacking the capa-
bility of providing metric estimates as the depth dimension is lost when the frames
are photographed by the camera. Although, it is usually not a critical problem for
single-robot systems, having accurate metric estimates is required for multi-robot
systems. This requirement becomes critical if the system is designed for control,
navigation and exploration purposes. In this thesis, we provide a novel approach to
make the outputs of monocular SLAM algorithms metric through a loosely-coupled
fusion scheme by using the inertial measurements.

This work also explores a design for a fleet of UAVs to localize each robot with
minimal requirements: No a priori knowledge about the environment, information
about neither the position nor the moment in time the UAV takes off and land is
required. Moreover, the system presented in the thesis handles aggressive UAV
trajectories having dramatic changes in speed and altitude.

In multi-robot systems, the question of the coordinate frames require more
attention than in single robot systems. In many studies, the coordinate frame
problem is simplified to the representation of the fleet and the expression of the
measurements in a global coordinate frame. However, this kind of hypothesis im-
plies either the use of additional sensors to be able to measure the transformations
to the global coordinate frame or additional experimental constraints, for example
about the starting position of the robots. Our system does not require absolute
measurements like GNSS positioning or knowledge about the coordinate frame of
each UAV. As each UAV of the fleet estimates its location and produces a map in
its own coordinate frame, relations between those coordinate frames are found by
our scheme. For that purpose, we extend the well known concept of loop-closures
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in single-robot SLAM approaches, to multi-robot systems. In this research work,
we also provide an overview of the new effects due to the extended definition of
loop-closures we provide in comparison with the loop-closures scheme that can be
found in single robot SLAM algorithms.

In addition to the coordinate frame problem, we provide experimental results
about the possibilities for improving the location estimate of a fleet by considering
the places visited by several UAVs. By searching for similar places using each UAV
imagery, using the 2-D information encapsulated in the images of the same scenery
from different view points, and the 3-D map locally estimated by each UAV, we
add new constraints to the SLAM problem that is the main scheme that can be
used to improve the UAV location estimates. We included experiments to assess
the accuracy of the inter-UAV location estimation. The system was tested using
datasets with measurements recorded on board UAVs in similar conditions as the
ones we target.
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CHAPTER ONE

INTRODUCTION

1.1 Context

1.1.1 Mobile robotics

Robotics is taking an important and central role in human life. Numerous robotic

applications and concepts are emerging to improve our society and our ways

of life. Within this increasing number of possibilities, mobile robotics is a great

research field because of the obvious economic and societal impacts that have and

the challenging complexity of the related research problems [18c].

Mobile robotics is a large research fields that include numerous platforms

including ground, aerial, marine and submarine robots. Each platform has its

own specificities that includes simultaneously overlapping research problems such

as localization and communication, and specific constraints, for example, small

quadrotor platforms, in comparison to large heavy ground robot, have limited

computational power and payload, and a particular dynamic in the trajectories.

1.1.2 Unmanned Aerial Vehicles (UAVs)

Lately, improved availability of robots has drastically increased the enthusiasm for

UAVs (Unmanned Aerial Vehicles) mostly for their capability to fly, and therefore,

the fewer limitations they have to move in a lot of different environments. UAVs are

an interesting platform as they benefit from their small size, high maneuverability
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and ability to fly in challenging environments [Fra+12] for being able to cope with a

wide variety of missions. Nowadays, numerous UAVs can be found on the market

and a trade-off must be made between the price and capabilities. This trade-off is a

critical question since it directly constraints the choice of sensors which dramatically

affect the design of the embedded algorithms. In other words, a small, low-cost

UAV offers a very limited choice for sensors, and the measurements are likely to be

noisier than in expensive systems; specifically for quadrotors whose small payload

capacity and limited battery life prevent the use of heavy and powerful sensors.

Nevertheless, small quadrotors are exciting platforms to work with because the

sensor constraints require more robust and general algorithms.

A significant number of research fields are directly linked with the UAV plat-

forms. A non-exhaustive list of some of those research problems is:

• Study of the computational requirements for the embedded algorithms in

order to be suitable with the platform and running either in real-time or fast

enough,

• Low level control for the UAV stabilization in various environments including

windy environments,

• Design of new platforms to allow additional payload and sensors,

• Conception of specific algorithms to match with the sensors placed on board

the UAVs,

• Robustness of the algorithms with regards to the platform, such as controlling

UAVs with one or several broken rotors or making robust the tracking and

localization schemes to aggressive maneuvers.

This thesis work aimed to design localization algorithms and approaches suit-

able for small and low-cost UAVs. A particular focus was dedicated to the available

sensors in order to make the algorithms suitable for most of the currently available

UAVs. We motivated the choice of the platform, which implies several constraints,
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particularly regarding the sensors, by grouping the UAVs in a fleet to overcome

some of the individual drawbacks. Section 1.2 provides the description of the

research work, including its structure and work hypothesis. Section 1.3 gives an

overview of the encapsulating project and explain some of the design choices that

was made in this work in order to ensure the continuity with regard to the DIVINA

challenge team, a project that include the work of several researchers and research

axis.

1.2 The M-SLAM research work: A decentralized multi-

UAV SLAM system

1.2.1 Objective

In this research work, we aimed to design a system that is able to provide the

localization of a fleet of autonomous UAVs for exploration of unknown areas.

For the readability, this work is named M-SLAM, an acronym for Multi-UAV

SLAM. Several scientific underlying sub-problems have been identified and solved

throughout the M-SLAM research work, for example, Chapter 3 explains the

design of the experimentation schemes that is required for being able to perform

experimentations in similar environments as the ones we target, and Chapter 4

discuss the problem of metric estimates that we needed as an input for the M-SLAM

system.

1.2.2 Scientific challenges and hypothesis

In Chapters 5, 6 and 7, we discuss the M-SLAM framework as a Technological

System-of-Systems: A decentralized inertial-monocular multi-UAV SLAM system.

The goal of this system is to provide for each UAV of the fleet:

1. The localization of the UAV under consideration,
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2. The localization of the other UAVs of the fleet with respect to the UAV coordi-

nate frame under consideration,

3. Improving the localization estimates of the UAV under consideration using

localization and map information of the other UAVs.

In this system, we use the minimal set of sensors available in every modern low-

cost quadrotor: A single front monocular camera and an Inertial Measurement

Unit composed of three gyroscopes and three accelerometers. Some of the scientific

challenges lie in the fact that the M-SLAM system does not use any absolute or

external measurements such as GPS or motion capture systems, nor inter-robot

measurements (that could be provided by a recognition system, using visual tags

or laser measurements), nor a-priori knowledge about the location, the map or the

coordinate frames of any UAVs. When the system starts, there is no knowledge

about the localization of the UAVs of the fleet or the moment they take off or land.

In addition, with regard to the applications we target, the system must also be able

to

• Process measurements generated on-board by the front monocular camera

and the IMU,

• Deal with static 3-D environments for both the map and the localization,

• Be robust enough to withstand aggressive trajectories typical of small UAVs

as well as significant changes in altitude and speed of the UAVs,

• Cope with noisy measurements (because of the low-cost IMU and possibly

blurred images from the camera),

• Provide metric estimates for further exploration, navigation and control

strategies.

We consider the M-SLAM system as a decentralized system based on the follow-

ing definition. We define as a decentralized system, a system where the decisions
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Figure 1.1: Visual representation of the differences between centralized, decentral-
ized and distributed systems.

are not made in a single point; in mobile robotics, a point is often seen as one of

the robot of the fleet. In a decentralized system, each robot makes its own decision,

the overall behavior of the system is obtained by the aggregation of each robot

response. In opposition to decentralized systems, in centralized systems, one of the

robot (or a ground station) make the decisions for each robot of the fleet. Finally,

in distributed systems, the processing is done across several robots. Distributed

systems can be used to lower the computational load for one robot and can be

particularly interesting for heavy processing tasks such as solving an optimization

problem. Figure 1.1 provides a visual representation of a centralized, a decentral-

ized and a distributed system. A particular attention is required to the definitions

of centralized, decentralized and distributed systems as each scientific community

provide slightly different definitions and categorizations. The definition we chose

fits with the one given generally by the computer science community.

The decentralized aspect of the M-SLAM system lies in the fact that each UAV

measures its location and map with regards to its own coordinate frame and

estimate the location of the other UAVs of the fleet also with regard to its own

coordinate frame. The M-SLAM system is robust to the absence of communication

(direct or indirect) between two (or more) UAVs of fleet, in this case, the information
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is simply not considered and each UAV use only the information available from

the other communicating UAVs. This approach allow each UAV to have enough

information to compute target points for autonomous exploration by itself, without

the need of a central brain that would send exploration command to each UAV.

1.2.3 The M-SLAM work structure

The structure of the M-SLAM work was split into the following four stages:

1. Identify the most suitable monocular SLAM algorithm to be run on each UAV,

2. Design an inertial-monocular fusion scheme,

3. Find satisfactory datasets to perform the experiments and assess the system,

and

4. Design and implement the M-SLAM algorithm.

When this thesis begun, there were few monocular SLAM algorithms capable of

being run on-board UAVs [MMT15], and none of them were capable of performing

a tightly-coupled inertial-monocular fusion. Monocular vision has the inherent

drawback of not being metric [HZ03]: The leading monocular SLAM algorithms

provide an internally consistent map and localization but the unit of distance is

arbitrary [MMT15] [ESC14]. As metric estimates is one of the requirements of

this research work, we designed a fusion scheme for inertial and monocular mea-

surements. The first part of the M-SLAM work was, therefore, devoted to the

identification of a suitable monocular SLAM algorithm robust enough to the UAV’s

fast and aggressive trajectories. The second part of the thesis work was spent creat-

ing a new loosely-coupled fusion algorithm to make the SLAM estimates metric.

In order to assess this fusion scheme, we reviewed the published benchmarks and

datasets in order to find one that would be a faithful representation of the type

of environments described in the requirements. Furthermore, we were already

searching for datasets that could be used to emulate a fleet of UAVs. After we
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designed the loosely-coupled fusion scheme for inertial measurements and monoc-

ular camera frames, the first tightly-coupled inertial-monocular SLAM algorithm

with an open-source programming code was released [QLS17], meaning that we

could use either the loosely-coupled scheme we created or the tightly-coupled

SLAM as an input to the M-SLAM system. The fourth, and last, part was devoted

to the design of the M-SLAM algorithm and then, its implementation.

The M-SLAM research work is encapsulated in a bigger project that is described

in Section 1.3.2. The presentation of the encapsulating project is important as it

defines constraints for the work hypothesis, inputs and outputs required by the

M-SLAM system.

1.3 Fleet of UAVs for large scale exploration

1.3.1 Underlying research problems

Fleet of UAVs are very promising platforms for exploration of unknown or par-

tially known areas. The high maneuverability, the capacity to fly in almost any

environment and the possible low prices of UAVs make it a suitable platform to

explore many places. The applications of such a system are wide: Search and rescue

missions, bringing critical information for disaster management, or exploration

of dangerous places. Lately, international scientific teams have been working to

design autonomous fleet of UAVs, however, due to the numerous complex underly-

ing research problems to solve, no one has succeeded in creating a fully satisfactory

solution yet.

The underlying problems can be classified in three main research axis being

control (dealing with the robot movements), communication (dealing with the

data exchanged between the robots) and perception (dealing with the processing

of measurements from the sensors). A finer classification would be to separate

the environment representation (also known as mapping), the localization (where

each robot is), the communication (how the robot exchange data, how to maintain
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communication in between the robots when required and strategies to deal with loss

of data), the navigation or path-planning (how each robot travels from a location

A to a location B) and exploration (how one, or several robots of the fleet, define

collaboratively and autonomously the next area to be visited by which robots of

the fleet). The DIVINA challenge team presented in Section 1.3.2, that encapsulate

the M-SLAM work, aims to create solutions to these research problems.

1.3.2 Overview of the DIVINA challenge team

The study presented in this thesis report is part of a bigger project at the Heudiasyc

laboratory called the DIVINA challenge team [18a] and funded by the Labex MS2T

(Laboratory of Excellence on Technological System-of-Systems) center [18b]. The

goal of the DIVINA challenge team is to design a system that is capable of efficient

exploration of large unknown areas using a heterogeneous fleet of autonomous

UAVs relying mainly on vision-based sensing capabilities. The Technological

System-of-Systems (TSoS) theme is inherent to the fleet of autonomous UAVs. In

fact, a fleet of UAVs possesses all the TSoS properties:

• It can be scalable (removing or adding a drone does not modify the fleet

behavior),

• Each subsystem (each drone) can be independent from the others,

• If the fleet is considered as a whole, it enables new, expanded missions that

are not achievable using a single UAV systems.

The new possibilities offered by the fleet can be seen as the emergent behavior

of the TSoS. The applications of the DIVINA research work are wide, some ex-

amples are search and rescue missions, surveillance, and mapping of challenging

environments.
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1.3.3 Structure of the encapsulating project

The DIVINA challenge team space possesses several research sub-problems that

must be solved. An overview of the state-of-the-art regarding each of those sub-

problems is provided in Section 2.2. The project structure that has been chosen to

achieve the DIVINA challenge can be seen through the three main overlapping

following sub-projects:

• Control and communication: Cooperative packet-loss management and ro-

bust network using fleets of UAVs,

• Perception and communication: Robust multi-robot visual SLAM with a

heterogeneous mobile camera network, and

• Perception and control: Efficient exploration using active-SLAM strategies.

In this thesis, we present the work on the M-SLAM system described in Section

1.2 that is included in the perception and control sub-project. The M-SLAM system

explores the possibilities for improving the accuracy of the localization of each

UAV by using the information gathered from the other members of the fleet. It also

provides a decentralized system to enable the every member of the fleet to know

the location of the other UAVs. Those mechanisms are critical in order to design an

effective control part that will handle the macro-management of the fleet in order

to have an efficient exploration as well as the design of satisfactory active-SLAM

algorithms.

1.4 Contributions

In order to achieve the scientific challenges underlined in Section 1.2.2, we:

• Created a new loosely-coupled monocular-inertial fusion scheme for metric

SLAM estimates published in [Spa+17],

9



• Designed a decentralized system such that each UAV can estimate the location

(3-D poses) of the rest of the fleet without any initial a-priori knowledge,

• Demonstrate the effect on each UAV’s location by using the information

provided by the other UAVs of the fleet, and

• Generalized the loop-closure mechanism [SK08] of a single-robot system to a

multi-robot system.

1.5 Overview of the thesis report

This chapter introduced the scientific challenges and contributions of the M-SLAM

work, and provided an overview of the encapsulating project DIVINA as well as the

context and the possible applications. Chapter 2 is devoted to the literature review

related to the two main topics explored through the thesis work: mobile robot

Technological System-of-Systems for exploration of unknown areas that is the main

application targeted by the M-SLAM system outputs, and single robot monocular

and monocular-inertial SLAM algorithms that are the starting point of the M-SLAM

work. In Chapter 3, the challenges related to the experimental part are discussed,

an extensive review of the available datasets and benchmarks is provided and

the coordinate frame problem is described. In Chapter 4, the description of our

loosely-coupled fusion scheme for metric estimates in inertial-monocular SLAM is

presented. Chapter 5 is devoted to the front-end of the M-SLAM system, the inputs

and their processing is described. Chapter 6 details the back-end of the M-SLAM

system, including the management of loop-closures in multi-UAV systems and

the correction of the estimates using the pieces of information brought by the fleet.

Chapter 7 is devoted to the M-SLAM experimental results. Finally, Chapter 8

concludes the work done throughout the M-SLAM research work and provides an

overview of possible improvements and further research.
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CHAPTER TWO

FLEETS OF AUTONOMOUS MOBILE

ROBOTS AND SINGLE ROBOT

SIMULTANEOUS LOCALIZATION AND

MAPPING: A SURVEY

2.1 Structure of the literature review

In this literature review chapter we aim to achieve two main objectives:

1. Provide an extensive literature review about mobile robotics for autonomous

fleets, and

2. Single-robot SLAM with a specific focus on monocular and inertial-monocular

measurements.

The M-SLAM research work (Section 1.2) and its applications, as we defined it,

include concepts inherent to Technological System-of-Systems (TSoS) and is based

on the studies done in the field of autonomous fleets in mobile robotics. As we use

single-robot SLAM as an input to our M-SLAM work, an extensive review of the

SLAM algorithms was required.

11



2.2 An overview of mobile multi-robot systems

2.2.1 Scientific challenges of mobile robot systems

In mobile robotics, Technological Systems-of-Systems (TSoS) have a great potential

to fulfill more complex missions than single robot systems can achieve, they can

also improve the possibilities of single robot systems. Search and rescue [Kas+16],

surveillance [Sas+16], mapping [Guo+16] or weight-carrying [Mel+13] tasks are

typical cases for which TSoS can outperform single robot solutions. However, to

work as a TSoS, the following closely linked problems need to be tackled:

1. First, whatever the goal is, the robot localization needs to be addressed;

2. Second, for most missions (or to solve the localization part), a mapping

process is often required. For example, exploration and navigation are the

tasks for which a representation of the environment is needed. In order to

address both the localization and mapping, Simultaneous Localization And

Mapping (SLAM) algorithms were invented. SLAM algorithms provide a

map and the robot localization [SK08];

3. Third, the control of the fleet requires an appropriate design. Three levels of

control can be distinguished: The low-level control is used to stabilize every

mobile robot, an intermediate level manages collision avoidance and local

path planning, and the macro level deals with the global organization of the

fleet to fulfill the mission in the most efficient way;

4. Finally, network constraints have to be considered. TSoS is based on collabo-

rative work, therefore, communication between the agents is necessary. The

network constraints affect two parts: The path planning to insure the network

topology and the load of the links, i.e., the quantity of exchanged data, which

directly affect the representation of the localization and map estimates.
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2.2.2 Research topics related to fleet of autonomous mobile robots

Mobile fleet of autonomous robots related research topics can be categorized in

broad terms as follows:

1. Localization of robots;

2. If required, mapping of the environment to fulfill the mission;

3. Robot stabilization, collision-free navigation and inter-robot coordination;

and

4. Networking infrastructure for inter-robot communications.

To our knowledge currently, there is no system that solves all these aspects in

a satisfactory scheme. Most of the solutions deal with only one or some of the

problems mentioned above. In the following sections, we provide an overview of

the current approaches to design collaborative mobile multi-robot systems. Table

2.1 summarizes the problems addressed in this literature review chapter.

In the following sections, we present the literature offering multi-robot solutions

to each of the following problems: Localization, mapping, path planning and

navigation, and exploration. We also provide an insight to advanced methods that

combined one or several problems such as active SLAM approaches or methods

combining localization, mapping and path planning components. This literature

review focuses mainly on the approaches, therefore it includes experiments done

using simulations, ground robots or UAVs, with different set of sensors such as

lidars, monocular or stereo cameras, IMUs, or RGB-D sensors. We considered both

centralized and decentralized methods in order to have an overall vision about the

work done in the robotic community.

2.2.3 Localization and mapping in mobile multi-robot systems

The localization of robots is the first problem to address. The approach can be

decentralized through relative estimation with respect to the other robots coor-
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Publication Localization Mapping SLAM Path
planning,
naviga-
tion

Exploration Network

[Loi+16] x x x
[Ach+12] x x
[Liu+16] x x x
[Sas+16] x x
[Qur+16] x x
[Nes+16] x x
[LTK15] x
[For+13] x
[RB02] x
[Kas+16] x
[Cog+12] x
[Ram+16] x
[Guo+16] x
[Sch+15] x
[CMM15] x
[Alo+15] x
[Fra+07] x
[Fra+09] x
[Sch+18] x x
[ZT13] x
[SC18] x x

Table 2.1: Literature reference per problem solved as a TSoS.

dinate frames or centralized into a global reference coordinate frame. A Kalman

Filter based solution using each robot motion is offered in [RB02]. The poses are

updated using robot detection and relative localization. This method can be de-

centralized by transforming the Kalman Filter into small communicating filters.

The experiments were done using ground robots. In [Cog+12], a decentralized 3D

quadrotor localization solution is proposed. It uses inertial and visual information

to reconstruct anonymous bearing measurements (the robot ID is not required). The

relative robot poses and velocities are estimated through a probabilistic multiple

registration algorithm (for the relative pose) and a particle filter (for the relative

distance recovery).

In visual systems, localization and mapping are often paired. In [Kas+16], the

localization task is supported by the mapping process. A drone creates a dense map
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using the REMODE algorithm [PFS14], which performs a monocular dense depth

estimation for a set of keyframes. The ground robot fleet is localized with respect

to elevation maps built based on the dense aerial environment representation

provided by the drone. In [Guo+16], the trajectories are estimated only to fulfill

the mapping goal. The authors offer a Batch Least Square solution to build a

collaborative 3D map using visual-inertial data obtained from multiple overlapping

points of view taken from unknown poses.

Recently, in 2018, an interesting framework for map merging in multi-robot sys-

tems has been published [Sch+18]. The framework Maplab offers a visual-inertial

odometry scheme named ROVIOLI and a modular back-end for experimentation

in the field of map merging. Maplab targets to be a useful tool for research in

multi-robot systems by making possible to exchange the front-end or back-end

algorithms for prototyping new approaches. It is a promising tool for the design of

new algorithms for multi-robot localization, mapping and SLAM systems.

2.2.4 SLAM in mobile multi-robot systems

Another way to tackle both localization and mapping problems is to use SLAM al-

gorithms (Simultaneous Localization And Mapping) like in the multi-robot SLAM

systems proposed in [LTK15], [For+13], [Sch+15], [CMM15]. Every robot of the

swarm1 runs a SLAM algorithm to know its localization into a local map. Then,

all the local maps are merged into a global map, and the fleet is localized with

respect to this global frame. Though the method can theoretically be decentralized,

the map merging process usually demands a lot of computational power and the

transmission of the local maps between the agents can quickly overload the net-

work. For those reasons, research teams often use a ground station to manage the

map merging [CMM15], [LTK15] (and also the mapping in [For+13]). In [Sch+15],

there is no need for a ground station because the experiments were done on ground

1Swarm robotic systems are entities built of several individual robots and hold three properties
(Robustness, Flexibility, and Scalability), which are ensured through decentralization, redundancy
and local interaction.
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robots which offer more computational power than UAVs. Note that the choice

of sensors is of great importance regarding the SLAM algorithm. For example, in

[LTK15] the monocular multi-map visual odometry algorithm PTAMM [CKM08] is

fused with depth measurements from a RGB-D sensor to provide a metric visual

SLAM algorithm which outputs a dense map reconstruction and metric robot pose

estimates; in [For+13], the authors solve the localization problem using a monoc-

ular visual odometry approach [KCS11] and build the map using a collaborative

structure from motion system on a ground station; in [Sch+15], a fusion between

the data of a stereo camera, inertial measurements from an IMU and marker-based

robot detections is performed into local reference filters; the approach presented in

[CMM15] relies solely on monocular camera.

One of the most significant and oldest collaborative visual SLAM is the CoSLAM

algorithm [ZT13]. CoSLAM provides a solution to deal with dynamic environments

using a fleet of cameras only. The poses of the camera are estimated relatively to

the other cameras using mainly static points in the environments, the dynamic

points are also considered to refine the estimates. The algorithm, that is a feature-

based approach, includes an important stage of point classification (dynamic versus

static points) and an approach to merge the overlapping local maps created by

the cameras. The optimization is done running a Bundle Adjustment algorithm

regularly.

Using some of the concepts brought by CoSLAM, the CCM-SLAM algorithm

is a centralized collaborative SLAM [SC18] that has been published in 2018. The

focus is set on the merging of the local maps of a fleet of UAVs (three UAVs

in the experimental part) on server and on the robustness of the approach to

networking failure and bandwidth of the communication infrastructure. The UAVs

are equipped with a front monocular camera, a communication device and a small

processing board. The algorithm is designed such that each UAV can keep its

autonomy with regard to the fleet which makes the system scalable. Each UAV

performs a visual odometry similar to the front-end of the ORB-SLAM algorithm
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and reconstruct a local map. Those data are sent to the server that merge the map

and runs a full Bundle Adjustment for the optimization part. The computation

is done using relative coordinates in order not to create additional drift if new

data is received by the server during an optimization stage. There is no global

fixed coordinate frame, however when the fusion takes place, the transformation

between the local coordinate frames of each UAV involved in the process must

be known. For doing so, a Sim(3) transformation is estimated using the UAV

keyframes.

Localization, mapping, and thus SLAM algorithms are usually parts of the per-

ception process. They benefit from the sensor measurements to estimate the agent

state, i.e., its localization and a representation of the surrounding environment. To

design an autonomous mobile fleet of robots, the localization of the agents is a

requirement but is not sufficient to make the system autonomous. An autonomous

system must be able to make decisions and take actions using its knowledge about

itself and the environment. The perception component brings the knowledge the

agent need then to take actions, and therefore to become autonomous. For example,

a typical kind of decision an autonomous mobile robot must be able to take, is

where to move, and for doing so, first, the agent needs to know where it is. Particu-

larly in mobile robotics, the path planning and the autonomous navigation tasks

require the design of suitable algorithms.

2.2.5 Navigation and path planning in mobile multi-robot sys-

tems

In [Ach+12], the research team presents a European project which goal is to create a

multi UAV vision-based system for collaborative localization, mapping of unknown

areas and optimal positioning for surveillance. It is a typical example of research

work that uses embedded sensors only for localization, mapping and path planning

for the autonomous navigation of the fleets of UAVs. The deployment of a UAV

swarm for surveillance purposes is also tackled in [Sas+16]. The UAV localization
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is relative and is based on vision processing through visual black and white tags.

This solution offers to find a robot distribution that covers all the required areas and

plan feasible trajectories to organize the UAVs accordingly. The trajectories may not

be optimal, however they consider the UAVs motion constraints, the environment

constraints and prevent any drone collisions. Another approach in local path

planning for collision avoidance in autonomous swarm of UAVs is proposed in

[Alo+15]. The team distinguishes the set of collision-free trajectories from the

other feasible trajectories. Thus, the proposed system ensures motion continuity

and collision free trajectories for multi agent2 swarms. [Ram+16] addresses the

problem of robot navigation with another method. The focus is on topological map

construction, which is a sparse representation of the environment. The benefits of

topological maps are their usability for fast navigation purposes. The solution relies

on the construction of Voronoi graphs which partition the area into discretized

regions. 2D bearing measurements and robot detection and identification are used

to build the map. However, all the processing is centralized on a server and the

method is not suitable for flying agents as measurements are in 2-D.

2.2.6 Exploration in mobile multi-robot systems

A further step to improve path planning is to increase the efficiency of the system.

In addition to collision-free and feasible trajectories, we want a fast and effective

exploration for example in term of time, energy or cost. In [Liu+16], a system is

proposed for collaborative exploration and mapping with a fleet of quadrotors

using IMU and laser scanner measurements. [Fra+07] is a multi-robot extension

of [Fra+09] and offers a cooperative exploration algorithm based on incremental

generation of sensor-based random trees. The trees are data structures which

contain the road map of a previously explored area. Along the road map, local safe

regions are detected and recorded, they represent local free space. The exploration

phase is built according to the local frontiers of the local free spaces. If several

2Agent: An autonomous robot.
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robots are engaged in the same area, a local coordination process plans feasible

and collision-free trajectories for every agent. When robots have finished their

exploration phase, they support the rest of the swarm. The experiments were done

using ground robots equipped with laser range finders. This approach is limited

to 2-D cases, but an important benefit is that it is completely decentralized and

therefore, suitable for large robot swarms.

In [Nes+16], exploration and network process are simultaneously tackled

through a solution to maintain a connected network topology while exploring

a cluttered area with a robot swarm. The exploration task is managed with target

points which are provided by a target generator, a black box which contains the

implementation of one of the several existing solutions for effective exploration.

The algorithm distributes dynamic roles to the robots of the fleet: connectors help

to create the network topology, anchors stay in the neighborhood of their target

point, a unique prime traveler is elected to lead the exploration and the rest of team

are secondary travelers, they help the leader to achieve its mission and participate

in the exploration task.

Navigation, and therefore, exploration, require communication between the

robots to avoid collisions, and to plan an effective coverage of the area to explore.

As we discussed previously, even the perception part can require communication in

some systems in order to benefit from the measurements taken by the fleet instead

of processing only the measurements taken by a single robot. Maintaining the

communication between the robots is a complex research problem by itself.

2.2.7 Network in mobile multi-robot systems

The role of network should not be underestimated in TSoS because the agents have

to communicate data somehow. The main problems to solve are threefold: how

not to overload the network (for example, in a multi robot mapping process, a

clever data representation of the map has to be found), how to build and maintain

the network topology, and how to handle loss of connection cases. The topology

19



construction is addressed in [Ste+16] which proposes an architecture to maintain an

ad-hoc network through mobile robot self-organization. The system is composed

of two main loops. On the outer loop, a centralized planner provides way points

which represent long term feasible trajectories to each robot. The priority is set to

the feasibility of the trajectory rather than on the network links. On the inner loop,

the local controller guides the robot toward the next way point while ensuring

collision avoidance and network routing. In [Qur+16], the loss of connection issue

is discussed. The authors describe a collaborative mapping architecture robust to

agent departure due to network or sensor failures. The approach is decentralized

and builds a collaborative global map. Each active robot of the fleet participates

in the global map improvement. The algorithm is robust enough to handle lost

of connectivity or sensor failures, a consensus is always guaranteed between the

active robots. The framework can be integrated into Google Maps API [19a].

In the previous sections, we focused on approaches dealing either on the per-

ception, the control or the network parts. However, a few published algorithms

provide a solution to two of those parts simultaneously, and are therefore particu-

larly interesting for the applications we target in this thesis work. Those algorithms

are discussed in the following section.

2.2.8 Advanced algorithms in mobile multi-robot systems

Advanced algorithms for autonomous exploration

In the following paragraphs, we present the recent work about advanced algorithms

for autonomous exploration by a fleet of heterogeneous robot, that is the main

objective of the DIVINA challenge team. Most of the work hypothesis made in

the M-SLAM research work are constrained by the applications targeted, therefore,

those algorithms provide important directions towards which the M-SLAM system

must be able to fit. First, we present the concept of active SLAM, a design of great

interest to combine control, navigation and localization within a SLAM framework.

Second, we present some of the most advanced algorithms to solve the challenge of
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autonomous navigation using only an IMU and camera placed on board the UAVs.

Finally, we open this survey with a study on the use of the fleet heterogeneity.

Active SLAM

In autonomous mobile robotics, research teams usually start to design the per-

ception components as it is always required. Once a satisfactory solution for the

perception part has been found, the autonomous aspects of the system are designed.

As discussed previously, the next stage after solving the localization and mapping

problems, is the design of a component for autonomous navigation. Similarly,

SLAM algorithms open another road for navigation: Active SLAM algorithms.

Active SLAM algorithms gather methods which provide path planning based

on SLAM estimates. The main difference to usual navigation algorithms is the

attention given to the uncertainty of the estimates. A trade-off is done between the

rapidity of the exploration - or more generally, the energy used for the exploration

- and the quantity of uncertainty on the SLAM estimates. This trade-off comes

from the inherent concept of loop-closures that exist in SLAM algorithms. The

loop-closures are the main process to lower the uncertainty on the SLAM estimates

(i. e., the localization and the map), but to trigger loop-closures, the robot has to

re-visit an already known place. The most effective exploration consists in visiting

only once each part of the area, in this case, no loop-closures can be triggered

because the robot never re-visited a place. Consequently, the uncertainty of the

SLAM estimates keep increasing. A typical example of an active-SLAM algorithm

would be to force the robot to re-visit some places in order to bound the increase in

uncertainty while keeping a satisfactory exploration of the area. The study [KTT13]

describes a multi-robot active SLAM system. The goal of multi-robot active SLAM

algorithms is to deliberately trigger inter- and intra-robot loop closures to bound

the increasing uncertainty. Therefore, the optimization problem to solve can be

described as follow: How to explore an area as fast as possible (regarding the

time or the number of steps) with multiple robots using SLAM estimates while
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minimizing the uncertainty of the SLAM estimates.

Combined localization, mapping and path planning

We would like to underline that none of the previously cited studies provide a sat-

isfactory solution that deal simultaneously with localization, mapping (or SLAM),

navigation, exploration and network for a fleet of UAVs using only an embedded

monocular camera and an IMU. However, the work described in [Ach+12] seems

very promising to design an effective solution to combine SLAM and navigation.

Localization, mapping and path planning are also the focus of [Loi+16] which

describes a system composed of a swarm of flying agents (smartphones embedded

on quadrotors). All the sensors are placed on the flying platform and are limited to

an IMU and a monocular camera. The localization in space is done through two

separate filters: a EKF (Extended Kalman Filter) [Sim06] and a UKF (Unscented

Kalman Filter) [JU04]. The main novelty lies in the path planning algorithm to pre-

vent drone collisions. The robots also participate in the collaborative feature-based

sparse map construction. The target assignment, map merging and loop closure

detection are performed on a ground station. However, the trajectory planner is on

board each quadrotor. This approach uses the map to correct the drift in localization

estimation (the path planning is badly affected by an inaccurate localization) which

is a similar approach to SLAM. The method is theoretically scalable, however the

computational requirements practically limit the size of the swarm.

Heterogeneity in the TSoS

An interesting prospective in mobile autonomous TSOS and a further step for

collaborative mobile multi-robot systems is the incorporation of heterogeneity

in the fleet in order to increase the possible missions. In [PHK16], a solution is

offered to deal with the additional complexity of heterogeneous TSoS. The study

demonstrates the impact of diversity in robot swarms. The authors propose a

model to allocate the robots to tasks regarding the robot capabilities (traits) and a
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set of tasks which require various specific traits to be achieved.

2.2.9 Conclusion to the survey of approaches for mobile fleet of

robot systems

In this first part of the literature survey chapter, we have presented the existing

methods to solve the underlying scientific problems to the DIVINA challenge team

as well as the overall context in which the M-SLAM work takes place. We discussed

approaches that bring answer to the perception problem for fleets of autonomous

robots (localization, mapping and SLAM), the medium level control (path planning

and collision avoidance) and the high level of control parts of the fleets (exploration

and area coverage), and the network parts to ensure communication within the

fleet of robots in order to make the ro bot capable of collaboration.

In the second part of this literature survey, we focus on single robot SLAM

approaches: The main input of the M-SLAM system. We provide a definition of the

SLAM problem, and the different approaches to solve it, then we focus on visual

monocular SLAM concepts. We also introduce the mechanism of loop-closure that

is critical in the M-SLAM work. In addition, we explain in detail some of the latest

and most promising monocular and inertial-monocular SLAM algorithms.

2.3 Single robot Simultaneous Localization and Map-

ping (SLAM)

2.3.1 Simultaneous localization and mapping: problem definition

Simultaneous Localization and Mapping (SLAM) is a well known problem in

robotics defined in the 90s [SK08]. By definition, SLAM is an optimization problem.

The goal is to find the optimal configuration of the map m and the robot pose

estimates xt to minimize the robot motion Ut and the sensor measurements Zt as
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a) Observation is landmark
b) Robot motion from       to 
c) Several steps later

Figure 2.1: Graphical model of the SLAM problem, shaded nodes are observable
values and white nodes are the unknown variables the SLAM algorithm should
recover from [SK08].

illustrated in Figure 2.1

argmax
xt,m

ppxt, m|Zt, Utq (2.1)

SLAM algorithms can be complex and highly dependent on the sensors involved.

Lately, we have seen great improvements in visual SLAM solutions which are

now able to be embedded on robots. However, these solutions suffer from many

drawbacks such as lack of robustness to specific movements, the low output rate

or the insufficient accuracy of the estimates [SMD10] [WSS11]. For those reasons,

several research teams continue to work on the visual SLAM to offer new algorithms

and better performance. We cover a number of representative examples in the

following paragraphs.

To solve the SLAM problem, three main paradigms can be used [SK08]: Ex-

tended Kalman Filter (EKF) [Sim06], particle filters and graph-based optimization
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methods [KK16].

Chronologically, EKF was one of the first method used to solve the SLAM

problem. It estimates the robot state composed of the robot pose and the features

associated with the map landmarks. The state vector that represents the problem is

composed of two parts: The first part is used to store the robot pose and remains

constant in size, the second part is used to store the features of the map and

keeps increasing in size as long as new areas of the environment are discovered

and processed. By definition, EKF provides the uncertainty of the map and pose

estimates, and take into account the correlations between the robot pose and the

features. The state and the covariance matrix, which represents the uncertainty of

the system, are updated at every incoming measurement. When a new feature is

measured, the robot state is increased as well as the covariance matrix. In contrast

to older robot pose estimates which are not recorded (only the most recent pose

is used), features are stored because they may be observed again from future

locations.

Measuring the same features several times is critical in SLAM because it triggers

loop-closures. Loop-closures bring additional information to the system and allow,

through an optimization or a data-fusion process to decrease the uncertainty of

some of the estimates and therefore, to refine the map and pose estimation. Conse-

quently, loop-closures participate in increasing the global accuracy of the estimates.

When the SLAM algorithm is embedded in a robot and no absolute measurements

are available, the map and pose estimates drift continuously. This phenomenon

can be seen through the increasing uncertainty along the robot path. In such case,

the only solution to bound the uncertainty is to detect loop-closures. However,

loop-closure detection requires to solve a data association problem. Because of the

drift, it can be hard to decide whether a feature is a new one or a known one. The

most usual method to solve the data association problem is to used Mahalanobis

distance. Mahalanobis distance provides a metric based on the proximity (how far

the two landmarks are from each other) and the uncertainty (how inaccurate the
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measurements are). Obviously, other methods can be paired with the Mahalanobis

distance such as descriptors in visual SLAM approaches which can qualitatively

describe the feature in order to match it later. Note that data association is also

required for measurement triangulation to create the 3-D map in visual SLAM

algorithms.

The main problem with EKF-based methods for SLAM is the quadratic augmen-

tation in the covariance matrix size which limits the system to consider only few

features. A large covariance matrix requires memory space and, more importantly,

more computational time to be updated. In other words, the global size of the map

is seriously limited. One of the most promising approach to overcome the size

limitation is to split the global map into local submaps to keep a reasonable size for

the covariance matrix.

The second SLAM paradigm is particle filter. Particle filters use representative

samples to compute the posterior distribution. A sample is composed of particles,

which represent a realist guess about a possible value of the state, i.e., the robot

pose and the landmark locations. However, the number of required particles can

quickly become a critical problem. This number grows exponentially with the

state space dimension, and, in SLAM, the state space dimension depends on the

number of observed features. Consequently, a map composed of multiple features,

e.g., hundreds or thousands features, is way too large to be handled by a particle

filter. A solution to overcome this problem is to break down the maps into low-

dimension sequences to maintain a controllable number of particles [Mon+02].

Particle filter solutions for SLAM have several benefits: They can be used for on

line SLAM, similarly to EKF they use only the most recent robot pose estimate

and data association is straightforward. Another non negligible benefit is the ease

implementation of the method. However, the required number of particles remains

a major drawback.

The third SLAM paradigm is graph-based optimization methods. In this cate-

gory of methods, the SLAM is modeled with a graph, the nodes are the unknown
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Figure 2.2: Illustration of the graph and the matrix construction from [SK08].

variables that have to be estimated (the robot pose and the landmarks of the map),

and the edges represent soft constraints of the odometry and sensor measurements.

A sparse matrix of constraints can be filled with the edge information. The ma-

trix is sparse because odometry measurements are available only between two

consecutive robot poses and the features can be observed only from a limited

number of locations. Figure 2.2 shows how the graph is built and why the related

matrix is sparse. Several effective algorithms can be found in the literature to solve

this kind of optimization problem such as gradient descent, Gauss-Newton or

Levenberg-Marquardt algorithms.

The loop-closures are added to the problem as new graph constraints, and the

data association problem is usually solved using a RANSAC method [FB87]. The

main benefit of graph-based optimization approaches is the ability to model large

map and long robot paths. The memory space grows linearly and the computational

time to update the graph is constant (node and edge insertion). However, the

solution of the optimization problem itself can be very demanding in resource

and computational power, particularly for long paths. This is the reason why

27



graph-based optimization methods were first used to solve full SLAM in post-

processing or off line computation (in contrast to on line SLAM which computes

map and pose estimates with the measurement taken on the go). However, the

circumstances have changed lately with the introduction of incremental solutions

for sparse nonlinear graph-based optimization problems which can compute real-

time estimates [KRD08] [Kae+12]. Among the three SLAM paradigms, graph-

based optimization methods are the most effective for large-scale localization and

mapping.

In conclusion, most of the current SLAM solutions are constrained to static

environments of limited size though active research is done to extend the SLAM

algorithms to large-scale or dynamic environments. Multi-robot SLAM systems

have attracted increasing attention lately and significant advances in graph-based

optimization methods have stimulated research for real-time large-scale visual

SLAM solutions.

2.3.2 Loop-closures in single-robot SLAM

As introduced in Section 2.3, loop-closures are an important part in SLAM. They

are critical when there are no absolute measurements as being the only process

to bound the accumulating drift. The loop-closure detection problem is defined

as the recognition by the system of locations the robots has visited at least two

no-consecutive times.

When the robot re-visit the same place, this piece of information can be used to

improve the location estimates and the map as shown in Figure 2.3. However, the

process is not straightforward. First, a detection system must be designed to find

good candidates for closing loops. Usually, this is done by searching for similar

features such as comparing descriptor in visual SLAM approaches. Once a loop

candidate has been detected, it is included in the optimization problem. There are

numerous ways for including the loop-closures such as filters or graphs, Section

2.3 provides a detailed overview of the main approaches.
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Figure 2.3: Using loop-closures in the SLAM problem from [Ang+08].

Figure 2.4: Example of the loop-closure detection process.

There are many way to handle loop-closures, working mainly on the map, the

location or both and regarding the kind of sensors used to measure the localiza-

tion and environment. For example, some visual SLAM approaches use bundle

adjustment to benefit from the loop-closures, the re-projection error of the map is

minimized to improve both the map points and the location estimates.

Figure 2.4 provides an example of a loop-closure detection, Figure 2.5 represents
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3-D scenary
Frame 7 Frame 1Reconstructed 3-D maps

Figure 2.5: Example of the map re-construction for loop-closure processing.

Frame 7 Frame 1Projecting map 1Minimizing reprojection error
3-D scenary

Figure 2.6: Example of the re-projection minimization for loop-closure processing.
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the re-construction of the map from each frame done by the SLAM algorithm using

the features, and Figure 2.6 is an example of the minimization of the re-projection

error. For example, using a bundle adjustment framework and minimizing in term

of least-square, the difference between the purple squares and the green squares

on Figure 2.6 are minimized by moving either the 3-D map points and/or the

transformation
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2.4 Visual monocular SLAM concepts, approaches and

algorithms

2.4.1 Visual SLAM introduction

In this Section, we focus on SLAM approaches with a specific focus on monocular

SLAM, real-time visual SLAM and inertial-monocular SLAM. We provide defi-

nitions, concepts and typical vocabulary in this field of research. Through this

review, we aim to provide solid knowledge about the similarities and differences

of representative algorithms.

To introduce the visual SLAM problem, Figure 2.7 provides a block diagram

that is suitable for most of the approaches. In the visual SLAM approaches, we

usually distinguish the front-end and the back-end as shown in Figure 2.8. The

front-end is in charge of estimating the odometry of the robot therefore it is often is

charge of the tracking and the location estimation while the back-end is used to

solve the optimization problem which can include estimating or refining the map,

and the pose estimates.

For refining the estimates, new constraints are considered in addition to the

relative motion estimated for the robot. Those constraints are referred as loop-

closures (Section 2.3.2). A loop-closure consists in observing the same scenery or

landmarks in non-consecutive frames. By revisiting the same place, additional
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Figure 2.7: Block diagram of a) visual odometry systems and b) filter based visual
SLAM systems from [YBH15].

Figure 2.8: Illustration of the front-end and the back-end in a SLAM system from
[Cad+16].

constraints can be added to the trajectory and can be used to bound the drift that

is accumulating throughout the trajectory because of the aggregation of relative

motion estimation from the visual tracking. In the traditional SLAM structure,

loop-closures are handled in the back-end as they are an important part of the

optimization process.

2.4.2 Problem definition of the visual SLAM

In monocular SLAM algorithms, the goal is to find x, the camera pose, and m, the

position of the map points, by measuring either image features or pixel intensities z.

There are a couple of related scientific challenges. First, image processing is a time

and computational consuming task. In order to embed vision-based algorithms on

small UAVs, a particular attention must be given to the performance and resource

consumption of the considered algorithm. Second, monocular systems suffer from

the inherent scale ambiguity. The world scale cannot be observed, nevertheless,
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a consistent map has to be estimated along the UAV trajectory. The map is built

by chunks using the incoming frames (at maximum one chunk per frame). By

definition, each chunk of map can have a different scale. Therefore, a unifying scale

factor needs to be estimated in order to bring consistency to the map, i.e., bigger

objects in real world have also to be bigger in the map representation even if they

were reconstructed using different frames.

Lately, most monocular SLAM solutions use pose graph optimization methods

rather than filters (this point is discussed in the Section 2.4.3). In graph-based

monocular SLAM approaches similarities can be observed. Almost all recent

monocular SLAM [MMT15] [ESC14] [CC15] are composed of two or three threads:

Tracking, mapping, and sometimes loop-closing threads. The tracking thread

provides a first estimate for the camera pose. Then, the mapping thread benefits

from this pose estimate to update the 3-D map. Finally, loop-closure constraints

are researched and, when appropriate, added to the graph and the constraint is

propagated to refine the pose and map estimates. The pose graph is usually opti-

mized by minimizing either the re-projection error (in feature-based approaches)

or the photometric error (in direct approaches). Re-projection and photometric

errors are based on a similar concept that is illustrated in Figure 2.9. The tracking

part estimates the relative camera pose between two consecutive frames. In both

re-projection and photometric errors, paired pixels are compared. Let us consider a

pixel pFi
in the frame Fi. A map point mFi

is associated to the pixel pFi
. The map

point mFi
can be projected into the frame Fj using the relative camera pose between

the frames Fi and Fj. Thus, we can pair the pixels pFi
and pFj

because they should

represent the same 3-D map point. In direct methods, the photometric error is the

subtraction of the pixel intensities pFi
and pFj

. If pFi
and pFj

do represent the same

map point, they should have similar intensities and the photometric error should

be nearly zero. The camera pose is refined by minimizing the photometric error,

i.e., find what is the relative camera pose which minimizes every photometric error

of the pixels in the frames
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where I the pixel intensity, pk,Fi
the kth pixel in frame Fi, mk,Fi

the 3-D map points

associated with pk,Fi
, ω the warping function which projects pixels pk,Fi

in the

frame Fj using the relative camera pose TFi,Fj
.

In feature-based methods, the keypoints are paired by matching their descrip-

tors. The re-projection error is the distance between the projection of the kth map

point mk,Fi
into the frame Fj and the pixel pk,Fj

. The camera pose is refined by

minimizing the re-projection error

min
TFi ,Fj
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´ πpTFi,Fj

, mk,Fi
q
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(2.3)

where pk,Fj
the kth keypoint in frame Fj, mk,Fi

the 3-D map points associated with

pk,Fj
, the keypoints of frame Fi, π the projection function which projects keypoints

pFi
in the frame Fj using the relative camera pose TFi,Fj

.

Note that the extraction of features is not perfect though, which introduces noise

and may cause a non zero re-projection error while the camera pose is perfectly

estimated, similarly, two pixels from different frames which represent the same

map point can have slightly different intensities.

2.4.3 Filter and graph-based optimization solutions for visual SLAM

algorithms

Two main approaches are used to solve the SLAM problem: Filters using Extended

Kalman Filter (EKF) or particle filters and optimization methods like Bundle Ad-

justment (BA). In [SMD10], the pros and cons for each approach are discussed.

In Kalman filtering methods, the computation of the current state (map and pose

estimates) is based on the previous state estimate and the current measurements.

The history of the pose estimates is not recorded, but each new pose considered

causes all the previously linked features to inter-connect. For example, in Figure
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Figure 2.9: Re-projection error schema between two consecutive frames k and k ´ 1.
The red circle is a detailed view around one of the features. Tk,k´1 is the relative
robot pose between the two frames, red squares are the extracted features, green
lines represent the feature tracking and matching, pi are the 3-D map points and
purple lines represent the projection of the map points into the frame k. From [19d]
and [19c].

Figure 2.10: Inference progression in a filter (a) and in keyframe-based optimization
(b), x are the robot pose and y the map features from [SMD10].

2.10, when the pose x1 is estimated, the edges between the features ty1, y2, y3, y4u

and the pose x0, from which they were observed, are removed (because the pose x0

no longer exists); then, the features ty1, y2, y3, y4u are connected with the features

ty1, y2, y4, y5u observed from the current pose x1. In contrast to poses, the features

have to be recorded because they can be measured again in the future. In BA

optimization methods, both the features and the poses are recorded. Therefore,

there are no inter-connection between the features. An edge between a feature and

a pose is established if the feature can be observed from the according camera pose.

Computational power and memory are limited, therefore, two aspects are
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studied, the size of the robot state (map and pose) and the required computation

to update the state using incoming measurements. As previously discussed in

2.3, EKF has the major drawback of quadratic increase in the addition of new

features. It is an effective method if the amount of features remains small. Graph

optimization methods have not this drawback. Nevertheless, the inclusion of the

multiple previous robot poses increase the size of the graph that has to be optimized.

The solution used to control the graph size is to consider only poses associated

with keyframes, a subset of frames. In addition to this solution, the graph can also

be partially optimized by considering only a subset of nodes and edges.

In [SMD10], the authors demonstrate that the accuracy of the monocular SLAM

is better improved by increasing the number of features rather than the number of

frames. This conclusion supports graph-based optimization with regard to filtering

methods.

2.4.4 Factor graph methods

Factor graphs [KFL01] are a novel approach to solve the SLAM problem based on

graph optimization [Gri+10]. The focus is set on the use of a different architecture:

Consequently, the three usual threads, tracking, mapping and loop-closing are

not used. A main benefit of factor graphs is the visual representation which is

quite easy to understand. Moreover, different type of measurements can elegantly

be integrated. Firstly, the method was used only to solve full SLAM in post-

processing. However, the implementation of incremental solver like iSam [KRD08]

[Kae+12] have made the approach suitable for real-time estimation. The GTSam

framework is available to implement factor graph based solutions [Del12]. Figure

2.12 shown the visual output that can be obtained using the GTSam framework

[19b] on a simple SLAM example. Factor graphs are bipartite graphs composed

of factor nodes and variables nodes as displayed in Figure 2.11. The variable

nodes represent the unknown variable one wants to estimate. The variable nodes

are linked through factor nodes. A factor node is probabilistic information about
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Figure 2.11: Factor graph for landmark-based SLAM from [Del12].

. . .
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Figure 2.12: The optimized result along with covariance ellipses for both poses (in
green) and land- marks (in blue). Also shown are the trajectory (red) and landmark
sightings (cyan) from [Del12].

one, or several, variable nodes computed from measurements or prior knowledge.

For example, a factor node can represent the error between an estimate current

value and prediction. The prediction is calculated using the measurements, the

previous state estimates and theoretical models, e.g., the differential equations

which describe the system.

2.4.5 Visual SLAM architectures and algorithms

In monocular SLAM, two approaches for the visual processing are mainly used:

Direct methods and feature-based methods. The main difference lies in the method

to track pixels (in direct methods) or features (in feature-based methods), Figure 2.13

provides an overview of the differences between direct and feature-based methods.

A third architecture can be designed through factor graph models (Section 2.4.4).
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Figure 2.13: Overview of feature-based and direct SLAM methods from [ESC14].

2.4.6 Direct methods

Direct methods use pixel intensities. They benefit from all the information con-

tained in the image rather than constraining the choice of features to a subset of

landmarks. Direct methods outperform feature-based methods in poorly textured

environments and are not dependent of the choice for the feature descriptor. They

also allow dense mapping more easily (a depth value can be estimated for most pix-

els of every frame). However, dense mapping is computationally very demanding

and, currently, there is no suitable methods for real-time dense mapping embedded

on highly constrained platform in term of resource and computational power. A

reference work in dense monocular parallel tracking and mapping is the DTAM

algorithm [NLD11]. DTAM is one of the first real-time monocular system which

creates a dense 3D surface model and, more importantly, uses it for the camera

tracking, and thus does not rely on feature extraction and benefit from whole image

information. Despite the claim of real-time performance, a GPU is required to

handle the heavy computational load. Therefore, lately, most direct methods offer

semi-dense mapping to soften the resource constraints for real-time applications.

The DPPTAM [CC15] can be seen as an improvement of DPTAM. DPPTAM offers
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Figure 2.14: Running the LSD-SLAM.

a dense reconstruction of the environment while tracking the camera pose. The

computational requirements are lowered by using keyframes and superpixels for

planar untextured surfaces. Three threads run in parallel: The tracking, semi-dense

mapping and dense mapping threads. The tracking thread estimates the camera

pose. The semi-dense mapping thread estimates a partial map using high-gradient

pixels and feeds in the tracking thread for the photometric error computation. The

dense mapping threads benefit from superpixel approaches to provide a dense

map at reasonable computational cost.

2.4.7 LSD-SLAM algorithm

Overview and architecture

One of the latest most promising real-time monocular direct SLAM solution is

the LSD-SLAM algorithm [ESC14] (and, then, its improved version called DSO

[EKC18]), an illustration of the LSD-SLAM algorithm running is provided in Figure

2.14. The LSD-SLAM is a real-time direct monocular SLAM algorithm which allows

to build large-scale maps. The LSD-SLAM algorithm is composed of the usual
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Figure 2.15: Overview of the LSD-SLAM algorithm from [ESC14].

three SLAM modules:

• The tracking module tracks the camera movement using direct monocular

visual odometry and outputs an estimate of the camera pose.

• The depth map estimation module (which takes as input the camera pose)

estimates an inverse depth value (and its uncertainty) for the most relevant

pixels of the image (high-gradient pixels).

• The map optimization module searches for graph constraints, i.e., loop-

closures or scale constraints, and optimizes the SLAM pose graph.

Figure 2.15 provides an overview of the structure of the LSD-SLAM algorithm.

Tracking

The frames (coming from the camera video stream) are the main information used

to track the camera poses. Some of the frames are promoted to keyframes in the

depth map estimation component. These keyframes construct the skeleton of the

SLAM (they are used as vertices in the SLAM graph and for the depth map esti-

mation). A frame is promoted into a new keyframe when the camera movement

becomes sufficiently wide with regard to the last keyframe. The tracking compo-

nent continuously tracks the camera pose with respect to the current keyframe, it

computes the 3-D translation and rotation of the camera.
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Let us take an example considering two images, a keyframe KF and a frame

F, the tracking component computes the 3-D transformation rR|ts (rotation and

translation) between KF and F. The images are composed with gray-scale pixels

(each pixel intensity is a value between 0 and 255). The pixels from KF are associated

with the pixels from F and the intensity difference is computed. If equivalent pixels

were picked (pixels representing the same 3-D point in both images), the intensity

difference should be near to zero. The data association is done using a warping

function, a 3-D projective function that maps KF pixels with F pixels. The warping

function depends on the pixels, the depth value of the KF pixels and the rR|ts

transformation. The depth value is known (it is computed by the depth map

estimation component) but the rR|ts transformation remains unknown (we are

looking for it), though a first guess is calculated using a motion model.

The goal of the tracking thread is to find the value of rR|ts for which the intensity

difference between the mapped pixels is minimum. The optimization problem

is solved using the Gauss-Newton algorithm [BF95]. It allows to find the value

for the parameters R and t such that the observations fit the best (in our case, the

pixel intensity residuals). Outliers due to occlusions, reflections and limited size of

the frames are taken into account, thus to make the optimization more robust, a

weight matrix is also computed to down-weight large residuals, i.e., large intensity

differences.

There is another point that has to be taken into account, the depth noise can

differ significantly for each pixels (because of the use of a monocular direct method

for estimating the depth). The depth variance depends on how long the pixels can

be observed in consecutive frames and the type of camera motions, e.g., translation

movements affect the depth variance of pixels in specific directions). Therefore, the

residuals are normalized with the variance of the photometric error. This variance

is computed using standard propagation of uncertainty. The way the depth noise

is incorporated into the tracking is one of the major novelty proposed by the LSD-

SLAM algorithm. Finally, a Huber norm }.}δ is used to lower the sensitivity to
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outliers [Hub64]
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where Ep, the function to minimize, rp the photometric residuals and σ the standard

deviation. p represents the normalized pixel coordinates, ξ the camera pose, I the

image intensity, ω the warping function, D the inverse depth map and V the map

of inverse depth variance.

Depth map estimation

The second component is the depth map estimation module. Its first task is to

promote the current frame to keyframe if the requirements are completed, i.e.,

the relative robot pose exceed a threshold which combines relative distances and

angles. The second task is to create and refine the depth maps (a map that assigns

a depth value to each 2-D pixel). A depth map is not created for each frame, only

the keyframes have one. When a new keyframe is created, the associated depth

map is initialized by projecting the points of the previous keyframe (the very first

keyframe is initialized with a random depth map and large variance, which allows

the algorithm to converge after a few of keyframes, finding a better initialization

remains for further work). Then, all the frames that are not promoted to keyframes

are used to refine the depth map with small baseline stereo comparison. The depth

error can be very different according to the considered pixel because it depends

of the neighborhood of the pixel and the movement of the camera. Therefore, the

depth error is never considered as constant, property which is specific to monocular

approaches (in contrast to RGB-D approaches). An important remark is that the
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depth map created by the LSD-SLAM is semi-dense, all pixels do not have a depth.

This choice allows to dramatically speed-up the algorithm. The pixels chosen to

have a depth are representative of the scenery (they provide an intelligible map).

In monocular SLAM, the absolute scale of the world is not observable, a scale

ambiguity remains. Thus, the depth map is scaled to have a mean inverse depth

equals to one and the reconstruction scale factor has to be estimated in order to have

a consistent map. It means that all distances are defined up to a scale factor that

has to be determined in order to have an internally consistent map. The similarity

transformation

»

—

–

sR t

O1x3 1

fi

ffi

fl
(scale, rotation and translation) between keyframes is

computed in the map optimization component.

Map optimization

The map optimization module performs three main tasks: Find similarity and

loop-closure constraints, computes the

»
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–

sR t

O1x3 1

fi

ffi

fl
(scale, rotation and translation)

transformations for keyframe alignment and optimizes the SLAM pose-graph. In

the LSD-SLAM algorithm, a novel method is proposed to perform a direct, scale-

drift aware image alignment. The scale factor problem is an important question as

the accumulated scale-drifts over trajectories constitutes the main source of error.

The solution method is almost the same as the one used in the tracking component,

it consists of using Gauss-Newton optimization on variance-normalized residuals.

The difference lies in adding a depth residual that penalizes depth deviations.

Considering a pixel p in the first keyframe, an equivalent pixel p0 can be found

in the second keyframe using the warping function (the same function as in the

tracking component). The depth residual is the difference between the depth of the

p0 pixel (information given by the warping function) and the value of the depth

map for the p0 pixel. Using both residuals (photometric and depth), the

»

—

–

sR t

O1x3 1

fi

ffi

fl
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transformation between two keyframes can be found
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Here E, the function to minimize, rd the depth residual, rp the photometric residual

and σ the standard deviation. p represents the normalized pixel coordinates, ξ the

camera pose, I the image intensity, ω the warp function, D the inverse depth map

and V the map of inverse depth variance.

In addition to similarity constraints, loop-closure constraints are also added to

the graph. In order to find the possible loop-closures, every time a new keyframe is

added to the SLAM graph, the geographically ten closest keyframes are determined

(using the pose of each keyframe). Then, these keyframes are sent to an appearance-

based mapping algorithm, FAB-MAP [CN08]. The FAB-MAP algorithm determines

if two keyframes represent the same scene; then, by tracking the camera pose of each

matched keyframe, they can be added to the SLAM graph as loop-closure constraint.

Unfortunately, FAB-MAP is a feature-based approach, therefore the use of FAB-

MAP in a direct methods such as LSD-SLAM alter some of the benefits provided by

the absence of features, such as, avoiding corner detection and descriptor extraction.

The use of FAB-MAP in the loop-closure detection process shows the difficulty

to detect similar visual places without using features and the difficulty to find a
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satisfactory solution to the data association problem in direct methods. Finally, the

SLAM graph is optimized using a pose graph optimization method. The graph is

composed of keyframes as vertices and constraints as edges (the computed rsR|ts

transformation and the loop-closures).

2.4.8 Feature-based methods

Feature-base approaches are the most usual way to solve the monocular SLAM

problem. Features are particular pixels and their neighborhood that are detected,

described and saved in data structures called descriptors. When a new frame is fed

in, an extractor detects the image features. The descriptor describes each keypoint

(pixel) neighborhood such that it can be uniquely identified. When required, a

matching process can compare two feature descriptors to determine whether the

features represent the same 3-D object. Being able to match image features make

the camera pose tracking easier to compute and more instinctive.

In feature-based monocular SLAM research, the PTAM algorithm must be

presented. PTAM stands for parallel tracking and mapping. This algorithm demon-

strated the benefits of keyframe based approaches and the decoupling possibilities

between the tracking and mapping threads. Moreover, PTAM showed real-time

performance while using Bundle Adjustment optimizations, a standard structure-

from-motion optimization approach usually used in off line post-processing be-

cause of the heavy computational requirements. PTAM was published in 2008,

several outperforming SLAM algorithms have been released since. However, the

PTAM skeleton can still be identified in most of these current monocular SLAM

algorithms.
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Figure 2.16: Running the ORB-SLAM. The map is in red, the camera pose estimates
in blue and the covisibility graph in green.

2.4.9 ORB-SLAM algorithm

Overview and architecture

ORB-SLAM is a feature-based method, an illustration of the ORB-SLAM algorithm

running is provided in Figure 2.16. The pose and map estimates are refined using

the Bundle Adjustment method to optimize the SLAM graph. Actually, there

are three graphs built to fill different purposes. The covisibility graph represents

the links between the keyframe poses and the map points. Each node stores a

keyframe, edges are set if two keyframes share sufficient observations of the same

features. Edges are weighted regarding the number of shared observation of the

features. Despite the obvious usefulness of the covisibility graph, the high edge

density can be hard to handle for some computation steps. A spanning tree is also

constructed. The spanning tree is the minimal connected subgraph of the covisibilty

graph, the edges of higher weight are kept. The third graph is the essential graph

which is used for loop-closure process. The essential graph is intermediate between

the covisibility graph and the spanning tree. It is a subgraph of the covisibility

graph but only the edges of high weight are kept. The main benefit is to limit the

computation load when loop-closure are propagated. In ORB-SLAM, like most

other monocular SLAM algorithms, three threads run in parallel: Tracking, local
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Figure 2.17: The structure of the ORB-SLAM algorithm from [MMT15].

mapping and loop closing. Figure 2.17 provides an overview of the structure of the

ORB-SLAM algorithm.

Tracking

The tracking is performed over every incoming frame. Features are detected and

recorded using 256 bits ORB descriptors. ORB are oriented multi-scale FAST corners

[Rub+11] which outperform the commonly used SIFT [Low04a], SURF [BTV06]

or A-KAZE features [ANB11] regarding the extraction time. A first pose estimate

is computed using the previous frame pose and a motion model. Then, the pose

estimate is improved by matching the features to determine the relative camera

motion. The current map is used to search additional features. The final step of the

tracking component is the possible election of the current frame into a keyframe.

A lot of frames can be elected into keyframe because the algorithm provides a

mechanism to discard inefficient keyframes. The keyframe election is based on two

main criteria, the new keyframe must be sufficiently different from the previous

one and track enough feature to ensure continuity of the tracking. Note that if
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the tracking is lost, a re-localization system is called to recover the camera pose

if known places are recognized again. After a successful re-localization stage, the

tracking can continue as usual.

Local mapping

When a new keyframe is elected, the local mapping thread processes it to update

the map estimate. A very restrictive policy is used to prevent any map point

outliers including the use of epipolar constraints, map projection into the frames

and ORB descriptors matching. Only very good quality features are used to create

the sparse map. The depth of keypoints is computed by triangulation (at this stage

the keypoint positions and the relative camera motion are known). A system based

on bags of words [GT12] which uses the ORB descriptors helps to solve the data

association problem required for the pixel triangulation, the re-localization function

and the loop-closure detection. A local Bundle Adjustment is performed to optimize

the map and pose estimates in the neighborhood of the current keyframe. The

neighborhood is determined using the covisibility graph, i.e., the keyframes that

observe the same features as the considered keyframe. Local Bundle Adjustment is

performed over a subset of keyframe and map points to limit the computational

requirement for the optimization. The last step of the local mapping thread is the

keyframe culling, which removes insufficiently informative keyframes.

Loop-closure detection and processing

The third thread detects, and when it is possible, performs loop-closures. The

candidates are searched based on visual similarity. A recognition database stores

the visual words associated with the detected features, and the keyframes they

were observed from. This data structure allows fast queries to get a visual similarity

metric between the keyframes. Thus, the most similar keyframe that is not directly

connected (regarding the covisibility graph) to the current keyframe can be found.

Then, by using a similar method as in the tracking thread, the 3-D map points
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of the involved keyframes are paired. A similarity transformation is computed

using a standard method, RANSAC is used to search candidates and the method

of Horn [Hor87] calculate the similarity transformation. If the number of inlier is

satisfactory, the loop is closed. An edge is added in the covisibility graph between

the two keyframes, the paired map points are corrected to fit and the local keyframe

poses are also corrected accordingly. This step makes both loop edge to fit. Finally,

the loop closure error is propagated along the whole trajectory. Basically, the poses

are optimized through similarity transformations in the essential graph and the

map points are corrected accordingly.

2.4.10 Monocular SLAM with regard to the M-SLAM research

work

In the M-SLAM system, we assume each drone to be equipped with a monocular

camera and an IMU. Every robot of the fleet runs a real-time monocular SLAM

algorithm to represent a part of the environment and to localize itself. At the

moment we started the M-SLAM work, there were two leading real-time monocular

SLAM algorithms which were freely available: LSD-SLAM [ESC14] and ORB-

SLAM [MMT15]. LSD-SLAM is a direct method that uses pixel intensities to

estimate the map and the robot pose. On the other hand, ORB-SLAM is a feature-

based method. We performed a series of tests to estimate the robustness of both

methods to UAV movements. ORB-SLAM outperforms LSD-SLAM in term of

tracking robustness which is a crucial point because when the tracking is lost, map

and robot poses cannot be computed or updated. For this reason, we decided to

focus on feature-based approaches for our experiments. Note that both ORB-SLAM

and LSD-SLAM programming code are designed for the middleware ROS (Robot

Operating System) and they use a multi-thread architecture.
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2.4.11 A tightly-coupled monocular-inertial SLAM: VINS-Mono

Context

In 2018, and to our knowledge at that time, the first open-source inertial-monocular

real-time SLAM algorithm robust enough to be run on board UAVs was published.

This publication created a dramatic improvement in the M-SLAM work progress

as the metric scale of the SLAM estimates was not a problem to solve anymore.

The algorithm described in [Lin+18] called VINS-Mono provides a robust monoc-

ular visual-inertial state estimator that match the inputs we were looking for to

design our multi-UAV system. We managed to replicate the results claimed in

the publication and compared them with our loosely-coupled approach to esti-

mate metric distances (the approach is detailed in Chapter 4). VINS-Mono is a

promising approach for our research topic, therefore, we decided to use it in our

experimentation.

System overview

VINS-Mono [Lin+18] offers a robust tightly-coupled monocular-inertial SLAM. The

approach can be divided into the following points:

• The initialization stage that allows to robustly bootstrap the system,

• A tightly-coupled fusion between monocular vision and inertial measure-

ments to estimate the 3-D pose and map of the system,

• Loop-closure detection to bound the inherent drift of the odometry due to

the absence of absolute measurements,

• Pose-graph optimization for handling large-scale trajectories and to ensure

consistency.

Figure 2.18 provides an overview of the structure of the VINS-Mono algorithm.

Thanks to the use of inertial measurements, the pose and map estimates are metric.
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Figure 2.18: The block diagram of VINS-Mono from [Lin+18].

Initialization for bootstrapping the system

The initialization stage is an important part in SLAM. The quality of the initial-

ization ensure the convergence of the system. The goal of the initialization is to

provide initial values for the pose, scale, velocity, gravity vector and IMU biases.

A loosely-coupled fusion is done between between the output of a vision-only

Structure-from-Motion method and the inertial pre-integrated measurements. For

the visual part, features are extracted and tracked in two consecutive frames. By

using the Five-point algorithm [Nis04], the motion between the two frames is

estimated up to scale. If the result is good enough, other consecutive frames are

added to the graph. Their poses is estimated through a PnP algorithm [LMF09]

using the result given by the two initial frames. The scale is set arbitrarily, the final

value of the scale is computed by fusing the inertial measurements. In order to

minimize the re-projection error, a bundle adjustment is run. For the inertial part,

the inertial measurements are pre-integrated following an extended version of the

methods proposed in [LS12] and [SMK15] that provides a first estimate of the pose

and velocity between two instant of time. The IMU pre-integration is linearized

and transformed into a measurement model. The alignment between the inertial

and visual measurements is done by solving a least-square problem as illustrated

in Figure 2.19.
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Figure 2.19: Illustration of the visual-inertial alignment for the initialization from
[Lin+18].

Monocular-inertial fusion for state estimation

The core of VINS-Mono is the sliding-window monocular-inertial estimator. Figure

2.20 illustrates how the measurements are fused within the sliding window. The

state vector is composed of three main parts per keyframe in the window: the states

related to IMU (3-D pose, velocity and bias), the states related to the pose estimation

by the monocular vision (3-D pose up to scale) and the states that represent the

map (each point in a keyframe is represented in the state vector by its reconstructed

inverse depth). Because the size of the window is constant (e.g. ten keyframes),

the size of the state vector is bounded (it does not increase with the length of

the trajectory like in some other SLAM approaches). The monocular and inertial

measurements are fused through a bundle adjustment scheme. Technically, the

sum of the prior, visual and inertial pre-integrated residuals is minimized using the

nonlinear solver Ceres [AM12]. The IMU pre-integration residuals are computed

similarly to the initialization. The visual residuals are calculated by re-projected the

features in the other keyframes. The features are tracked using the sparse optical

flow algorithm KLT [LK81]. A Shi-Tomashi corner detector guarantees that between

100 and 300 corners are available in the images and are uniformly distributed. In

order to limit the computational need, a subset of images is elected as keyframes

based on the following criteria: The average parallax with the previous keyframe

and the tracking quality. The prior residual comes from a marginalization step

52



Figure 2.20: An illustration of the sliding window monocular VIO from [Lin+18].

that transform some IMU states and features into a prior in order to limit the

computational complexity. Bundle adjustment can be heavy from a computational

point view, therefore, VINS-Mono use a lightweight motion-only optimization that

allows to be roughly ten times faster than usual state-of-art bundle adjustment

based approaches.

Loop-closure detection and closing

VINS-Mono offers a mechanism to detect and close loop-closure in order to bound

the drift of the system (that would be an open-loop system drifting freely otherwise).

The detection of loop-closure relies on features. The bags-of-Word approach [GT12]

is used to represent efficiently the descriptors of the features of each keyframe.

Thanks to the Bags-of-Word representation, a similarity score is computed between

the keyframes, if the score is above a threshold, a loop-closure candidate is detected.

Then, the two keyframes are processed. The feature descriptors are paired (i. e.

BRIEF descriptors). This pairing result in numerous outliers that must be filtered.

The pairs of keypoints and descriptors are processed first with 2D-2D fundamental

matrix RANSAC algorithm and second with a 3D-2D PnP RANSAC scheme. If

there are enough inlier at the end of the processing, the loop-closure candidate

is considered as a loop-closure. Once a loop-closure is detected, the pose of the

new keyframe (the one that triggered the loop-closure) and the other keyframes

are estimated similarly to the method used in the VIO estimator, except that a

new residual term is added to the minimization problem which represents the

loop-closure constraint.
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Pose-graph optimization

Pose graph optimization is used to ensure the global consistency of the pose and

map estimates. After a loop-closure occurs, the current keyframes are shifted,

therefore the global consistency is decreased. The pose graph is composed of

keyframes as vertex connected by edges. The edges represent either the relative

transformation between two consecutive keyframes or a loop-closure constraint

between two non-consecutive keyframes. A residual function is attached to each

edge. The graph optimization consists in minimizing those residuals. The size of the

graph grows with the length of the trajectory, though some nodes (keyframes) are

regularly discarded in order to keep the size of the graph as small as possible. The

criteria to discard nodes is based on the relevancy of the keyframe (the keyframe is

discarded if it is close to a loop-closure or if it has a similar pose to a consecutive

keyframe).

Experimentation

We performed experimentation to check the usability of VINS-Mono and to attempt

to replicate the results claimed in the publication. The source code of VINS-Mono

is open-source [19e]. The easiest way to run the system is to use the middleware

ROS (Robot Operating System) [18c]. VINS-Mono performed well on the EuRoC

dataset [Bur+16] and provided the most accurate results we have seen so far in our

experimentations. The tracking is robust and loop closures are detected throughout

the trajectory and bound the drift. We computed the RMSE between the trajectory

estimated by VINS-Mono and the ground truth given by Vicon motion capture

system and compared it with our approach discussed in Section 4.

2.4.12 The OKVis algorithm

Another algorithm offering to fuse visual measurements with inertial measure-

ments for single-robot SLAM is described in [Leu+15]. This approach, named
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OKVis, was initially designed for stereo vision, though it was later extended to

monocular vision. It performs a tightly-coupled fusion using a nonlinear optimiza-

tion process to solve the SLAM problem. In order to keep a satisfactory processing

time, the keyframes are marginalized and a sliding-window bound the number of

keyframes and landmark considered for the optimization process. The experiments

were conducted in various outdoor environments using a rigid platform that em-

bedded an IMU and either a stereo camera or a monocular camera. The system was

not tested on robots or UAVs and does not describe a loop-closure scheme. In the

M-SLAM system we describe in this thesis, using OKVis as an input would be an

interesting experiment to compare with VINS-Mono and remain for further work.

A recent comparison (2018) between the existing visual-inertial odometry ap-

proaches is provided in [DS18]. The authors compare the accuracy of the position

estimates and the resource usage of the main algorithms running on datasets

recorded on board UAVs. The experimental results of this study shows a better

accuracy in the position estimates for the algorithm VINS-Mono in comparison

with OKVis.

2.4.13 Conclusion to single robot SLAM systems

Simultaneous localization and mapping (SLAM) is a problem defined by the robotic

community decades ago. SLAM consists in a optimization problem to find the best

map and robot pose with regard to the measurements.

Numerous approaches provide solutions to the SLAM problem regarding the

sensors and the platform involved. These solutions can be classified in: Filter-

based solution (mostly Kalman filter type solutions and particle filters) and graph

optimization solutions.

Visual SLAM is a particular category of SLAM problem as the main measure-

ments are brought by visual sensors such as monocular or stereo cameras. Research

for satisfactory solution for real-time visual SLAM keep being done to fit with

difficult constraints such as the computation power available on the platform, the
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processing time, the accuracy of the estimates, or the estimation of the uncertainty.

During the M-SLAM research work, we focused mainly on two algorithms for

our experimental part: The ORB-SLAM algorithm and the VINS-Mono algorithm

due to their good performance processing measurements taken on board the UAVs.

2.5 Conclusion

The M-SLAM research work crosses several scientific fields and use concepts

related to them. In this chapter, we covered all the fields that we used to design

the M-SLAM system: the SLAM as defined in robotics with a particular emphasize

to monocular and real-time SLAM algorithms, inertial-monocular measurements

fusion with application to localization and 3-D reconstruction. We also covered

the work done in mobile robotic TSoS for the multi-UAV part of the M-SLAM

algorithm. The literature review of TSoS was also of great benefit to define what

was required with regard to the applications targeted by the M-SLAM system and

to fit with the specifications of the DIVINA challenge team.

We provided a detailed description of three recent and promising algorithms:

The LSD-SLAM, the ORB-SLAM and the VINS-Mono algorithms. After testing the

algorithms on a UAV datasets, we discarded direct methods such as LSD-SLAM

because of the lack in the tracking robustness. Both ORB-SLAM and VINS-Mono

suit well the M-SLAM system inputs. The main difference lies in the fact that the

ORB-SLAM algorithm must be coupled with a fusion scheme for making metric

the map and pose estimates, while VINS-Mono include a tightly-coupled scheme

that makes the pose and map output metric. We designed a loosely-coupled fusion

scheme experimented with the ORB-SLAM algorithm (as VINS-Mono was not

available at that moment) as described in Chapter 4, and then compared it with

the results given by the newly published VINS-Mono algorithm. As VINS-Mono

provides more accurate estimate than our loosely-coupled fusion, we decided

to use VINS-Mono in priority to experiment the M-SLAM system. A thorough
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comparison between both input systems remains fur future research.
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CHAPTER THREE

DATASETS AND EXPERIMENT

DESIGN

3.1 Problem definition and review of the available datasets

Perception algorithms can be run using dataset inputs because the datasets can

emulate sensor data. However, in order to obtain satisfactory results, the datasets

must represent a similar environment as the one we target our system to be run in.

At first, we used the KITTI vision benchmark [Gei+13], but it was recorded on a car

which dynamics is very different to a UAV’s and the IMU measurements were way

much accurate than the ones we get from our quadrotors. We also used the TUM

vision benchmark [Stu+12], which can be used for monocular SLAM benchmarking.

However, the inertial measurements are not provided and the camera is not placed

on the UAV, once again, the fast rotations and aggressive maneuvers of UAVs

cannot be observed on this dataset. We would like to underline the importance of

having an imagery recorded on board a UAV, for example, the LSD-SLAM performs

well with the TUM vision benchmark (not recorded from a UAV) but loses the

tracking very quickly when used with datasets recorded on board a UAV. The next

datasets we used came from one of the ETH Zurich research laboratories [Lee+10]

and had the benefits of providing monocular imagery, inertial measurements

recorded on board UAVs and ground truth measurements from a motion capture

system. Unfortunately, the frame rate was very unsteady and too low which made
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it impossible to use for our purposes. However, this work served as a preliminary

study to allow, a few years later, the ETH Zurich to publish a new UAV dataset

called EuRoC [Bur+16]. The EuRoC datasets provide several sequences recorded

from sensors embedded on a UAV. The data is composed of the imagery from the

front camera, the inertial measurements from the IMU and a ground truth provided

either by a motion capture system (Vicon) or laser measurements (Leica). Finally, a

novel dataset was published in April 2017, the Zurich Urban Micro Aerial Vehicle

Dataset [MTS17] which is an interesting UAV dataset for further experiments in

outdoor environments.

3.2 Emulation of a fleet of UAVs

We designed a localization scheme for a fleet of quadrotors as a Technological

System-of-Systems (TSoS). In order to be able to perform experiments, we had

to emulate a multi-UAV system. As introduced previously, the EuRoC datasets

[Bur+16] provide eleven sequences recorded on board a remotely controlled UAV.

The sensor data from the front monocular camera and the IMU are available and

synchronized with a fast and accurate motion capture system (Vicon) that we can

use as the ground truth for evaluation purposes. The eleven sequences are grouped

into three sets, each set was recorded in the same environment. In our experiments,

we use one set to represent one fleet of UAV, each UAV of the fleet is represented

by one sequence of the considered set. By using this process, we can emulate

two experiments that involve three UAVs and one experiment with a fleet of five

UAVs. Figures 3.1, 3.2 and 3.3 provide an overview of each UAV’s trajectory for a

three-UAV experiment using the V01 sequences.
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Figure 3.1: V1 01 se-
quence: trajectory.
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Figure 3.2: V1 02 se-
quence: trajectory.
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Figure 3.3: V1 03 se-
quence: trajectory.

3.3 Robotics and vision processing challenges with re-

gards to the M-SLAM system

We want our system to be quite robust to diverse environments. Using the EuRoC

datasets, we made our system robust to several points that are usually challenging

either in robotics or in perception. The challenging imagery that can be processed

by the M-SLAM system is emphasized in the lists below and in Figures 3.4,3.5, 3.6,

3.7, 3.8 and 3.9.

Challenges with regard to Computer Vision

• Blurred images such as in Figure 3.4,

• Abrupt changes in luminosity such as in Figure 3.5,

• Big occlusions and wide change in view point such as in Figures 3.6 and 3.7,

• Challenging textures such as in Figure 3.7, and

• Distinguish the different places that look similar such as in Figures 3.8 and

3.9.

Challenges with regard to robotics and UAVs

• Significant change in speed and altitude in the UAV trajectories, and

• Fast trajectories and aggressive maneuvers.
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Figure 3.4: An example of blurred images in the EuRoC dataset.

Figure 3.5: An example of dramatic change in luminosity in the EuRoC dataset.

Figure 3.6: An example of occlusion in the EuRoC dataset.

Figure 3.7: Illustration of a big change in view point and the difficulty to process
the non-unique texture provided in the EuRoC dataset.
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Figure 3.8: An illustration of two different places that look similar, one of the
Computer Vision challenge in the EuRoC dataset.

Figure 3.9: Another illustration of two different places that look similar in the
EuRoC dataset.

In the EuRoC sequences, there are peaks in instant velocity above 2 m/s with

a global average speed of 0.75 m/s. For example, the sequences V1 01, V1 02

and V1 03 that are used to emulate a fleet of three UAVs have the characteristics

described in Table 3.1 that can be challenging from a control and robotic point of

view. An overview of the fleet trajectory is provided in Figure 3.10, and the changes

in velocity (constant velocity is an usual assumption in robotics) are outlined in

Figure 3.11.
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Figure 3.10: The UAV trajectories superimposed to represent the fleet trajectory.

Sequence Length Duration
Average

velocity

Average angu-

lar velocity

V1 01: UAV 1 58.6 m 144 s 0.41 m/s 0.28 rad/s

V1 02: UAV 2 75.9 m 83.5 s 0.91 m/s 0.56 rad/s

V1 03: UAV 3 79 m 105 s 0.75 m/s 0.62 rad/s

Table 3.1: Characteristics of the V1 sequences from [Bur+16].

3.4 About the coordinate frames

3.4.1 Introduction

The coordinate frame part requires particular attention because our work can be

included both in the computer vision and in the robotics research communities

that use different notations. In addition, throughout this thesis we considered
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Figure 3.11: Plot of the dramatic change in velocity during the flight.

both single-UAV systems and multi-UAV systems as well as the single sensor

case (monocular camera) and the two-sensor case (IMU and camera). As shown

in Chapters 1 and 2, we studied monocular single-robot SLAM algorithms, then

inertial-monocular single-UAV SLAM algorithms, and finally designed an inertial-

monocular multi-UAV SLAM system.

3.4.2 Case 1: Single UAV system using only monocular vision

In single-UAV systems performing monocular SLAM, three coordinate frames

must be defined: the camera coordinate frame tCAMu, the UAV coordinate frame

tUAVu and the ground truth coordinate frame tGTu that is required for evaluation

purposes. From a robotics point of view, the camera coordinate frame can be seen

as the body coordinate frame and the ground truth coordinate frame can be seen as

the world coordinate frame. Figure 3.12 illustrates the coordinates frames.

If we consider the ground truth coordinate frame as the reference, the UAV

coordinate frame is set somewhere after the SLAM initialization and then, remains
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static, while the camera coordinate that is attached to the body of the UAV moves

when the UAV is flying and can be used to represent the trajectory.

GTTUAVa “ M

with T, a 4-by-4 homogeneous transformation matrix that contains both the 3-D

rotation and the translation vector and M a 4-by-4 constant matrix throughout one

experiment. The trajectory represented by the UAV poses that are computed by the

SLAM algorithm are given by UAVTc
j . The outputs given by the SLAM algorithm

can be assessed by comparing, for example, the difference in position given by the

ground truth measurements and the SLAM algorithm,

eposition “
N

ÿ

j“0

}pGTtc
j ´GT t̂c

j q}2
2

with t a 4-by-1 translation vector in homogeneous coordinates and N the number

of poses computed by the SLAM algorithm for the UAV, and }.}2 the L2 norm of a

vector. GTtc
j is the measurement of the jth position of the camera coordinate frame

measured by the ground truth system (for example, a motion capture system like

Vicon) in the ground truth coordinate frame, GT t̂c
j is the estimate of the jth position

of the camera by the SLAM algorithm in the ground truth coordinate frame.

GT t̂c
j “GT TUAV

UAV t̂c
j

with GTTUAV computed using the measurement timestamps after the SLAM initial-

ization.

3.4.3 Case 2: Single UAV system using two sensors

In single UAV systems fusing inertial and monocular measurements, another

coordinate frame is added in relation to the case 1 in Section 3.4.2. Figure 3.13

illustrates the coordinates frames. The additional coordinate frame, that is the
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Figure 3.12: Illustration of the coordinate frames involved in a experiment using a
single UAV and a single sensor.

inertial coordinate frame tIMUu, is attached to the IMU and is fixed on the UAV

frame. Therefore, the coordinate frame representing the body frame could be either

the camera coordinate frame or the inertial coordinate frame. We have decided

to choose the inertial coordinate frame tIMUu as the body coordinate frame as it

is usually done in the robotics community. The transformation cTi between the

inertial and camera coordinate frames is known and constant because our system

is calibrated and both sensors are attached to the same rigid body: The UAV frame.

Therefore, we can express measurements UAVTc
j given in the camera coordinate

frame with regard to the inertial coordinate frame, and reciprocally, we can express

measurements UAVTi
j given with regard to the inertial coordinate frame in the

camera coordinate frame,

UAVTi
j “UAV Tc

j
cTi

Similarly, any measurement cp (3-D point in homogeneous coordinate) expressed

in the camera coordinate frame tCAMu can be expressed in the inertial coordinate

frame tIMUu using the calibration matrix iTc that describes the transformation

between the camera and the inertial coordinate frame

ip “i Tc
cp (3.1)
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Figure 3.13: Illustration of the coordinate frames involved in a experiment using a
single UAV and two sensors.

Figure 3.14: The coordinate frames
fixed on the UAV from the EuRoC
datasets [Bur+16].

Figure 3.15: Schema of the coordi-
nate frames from the EuRoC datasets
[Bur+16].

Figures 3.14 and 3.15 provide an overview of the coordinate frames defined in

the EuRoC datasets that we used to perform our experiments. In single UAV sys-

tems, the UAV coordinate frame is often superimposed with the world coordinate

frame.

3.4.4 Case 3: Multi-UAV system using only monocular vision

The multi-UAV case differs from the previous cases by the addition of as many coor-

dinate frames as the number of UAV of the fleet tUAVau. Figure 3.16 illustrates the

coordinates frames. The relation between each UAV coordinate frame is unknown.
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Figure 3.16: Illustration of the coordinate frames involved in a experiment using
two UAVs and a single sensor per UAV.

For example, in a three-UAV experiment, there are three UAV coordinate tUAV1u,

tUAV2u and tUAV3u. The transformations UAV1TUAV2
, UAV2TUAV3

and UAV3TUAV1

are unknown because there is no a-priori knowledge about the starting position of

each UAV and no inter-UAV detection system. The coordinate frames of each UAV

are set somewhere in the space after the UAV SLAM initializations.

3.4.5 Case 4: Multi-UAV system using two sensors

The multi-UAV case with multiple sensors is similar to the case 3 in Section 3.4.4

except that we must decide on the sensor that will be the reference. Figure 3.17

illustrates the coordinates frames. Following the same reasoning as for the case

2 3.4.3, we have decided to use the inertial coordinate frame of the considered

UAV to be the reference (or body coordinate frame). The transformation between

the measurements taken in the camera coordinate frame and the inertial frame

is done using the calibration matrix iTUAVa
c . As we built our experiment using

several sequences of the EuRoC datasets recorded on board the same UAV, in our

experiments, the calibration matrices iTUAVa
c are the same for each UAV,

iT
UAV1
c “i TUAV2

c “i TUAV3
c “i Tc

Figure 3.17 represents the coordinate frames at an arbitrary time t in a two UAV
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Figure 3.17: Illustration of the coordinate frames involved in a experiment using
two UAVs and two sensors.

experiment. After the initialization, the tUAV1u and tUAV2u are set somewhere

and, then remain static with regard to the ground truth coordinate frame tGTu.

Each UAV is represented by the inertial coordinate frame that is attached to its body.

The SLAM algorithm that is running on board the UAVa outputs map points and

pose estimates with regard to tUAVau, in other words, the SLAM algorithm outputs

either UAVa Ti
j (inertial-monocular) or UAVa Tc

j (pure monocular vision) regarding the

sensors involved.
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CHAPTER FOUR

INERTIAL-MONOCULAR FUSION FOR

METRIC ESTIMATION

4.1 Introduction

In this thesis chapter, we present the loosely-coupled fusion scheme we designed

to have metric estimates using a monocular SLAM algorithm and inertial measure-

ments. This approach is used to estimate the scaling coefficient that transforms

non-metric outputs such as the map and the poses estimated by the SLAM al-

gorithm into metric estimates. We used the ORB-SLAM algorithm [MMT15] as

the monocular SLAM algorithm and the EuRoC datasets [Bur+16] to perform the

experiments. This work was published on the IEEE International Conference on

Multi-Sensor Fusion and Integration for Intelligent Systems (MFI) [Spa+17].

4.2 A visual-inertial approach

Monocular vision has an inherent drawback, the scale of the world cannot be

observed. It means that the 3D reconstruction of the environment is done up to a

scale factor. Two scales have to be distinguished for the sake of comprehension:

the reconstruction scale and the scaling coefficient. The reconstruction scale is

estimated by the SLAM algorithm and makes the map consistent, i.e., big objects

in real world are also bigger in the map built even if they were observed from
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different camera poses. This scale is estimated by the SLAM algorithm, therefore a

drift usually appear. However, the experiments we did using the EuRoC datasets

showed that this drift is negligible in the ORB-SLAM system. The scaling coefficient

is used to resize the map to have metric distances. In other words, the reconstruction

scale provide estimates in arbitrary unit of distances while the scaling coefficient

can be used to provide estimates in meters. It is impossible to compute a scaling

coefficient in a monocular camera system [HZ03], at least another sensor has to be

added. The second sensor is required to measure distances. Several sensors can

meet the requirements such as lidars, ultrasounds or IMUs. The use of IMUs is

often favored because of their small size, low cost and availability in every modern

UAVs. However, the IMU does not measure distances directly but acceleration and

angular velocities in the inertial frame. Obviously, the positions can be recovered

by integrating the acceleration measurements but, consequently, the estimates drift

very quickly with the error accumulation which prevent any long-term integration.

By basing our approach on distances, in contrast to map-based approaches, we

can benefit from the research in inertial-visual odometry because the map is not

required.

4.3 Overview of the approach and context

4.3.1 Our method for scale estimation

The scale ambiguity can be seen as a distance problem. The representation of

distances outputted by the visual algorithm and distances in the real world, i.e.,

metric distances, are different. If world distances can be expressed in meters, the

arbitrary distances computed by the monocular algorithm have no units. Neverthe-

less, monocular algorithm provide consistent measurements. Therefore, the scaling

coefficient λ we are looking for is a scalar,

dw “ λdm (4.1)
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with dw, the distances in the world (in meter) and dm the distances from the

monocular SLAM algorithm (arbitrary units of distance).

The distances can be represented by the L2 norm of translation vectors }.}2.

Therefore, our reasoning is based on L2 norms of translation vectors. We want to

find the scaling coefficient λ such that

}tw}2 “ λ}tm}2 (4.2)

with tw the metric translation vector (in meter) and tm the non-metric translation

vector from the monocular SLAM algorithm.

4.3.2 Related works

Two main approaches for monocular visual-inertial fusion can be distinguished in

the literature: Loosely-coupled filtering [WS11] [HC14] [Sa+13] and tightly-coupled

systems [MT17] [Con+16].

In tightly-coupled approaches, the fusion is done at a low level of the system.

Therefore, this requires a deep understanding of the involved algorithms and

specific design for the system.

The method described in [Con+16] is the inertial extension of the DPPTAM

[CC15], a direct SLAM algorithm. The tracking thread is modified to include

the IMU measurements. The Gauss-Newton optimization is used to minimize

the intensity and IMU residuals. The state vector is composed of the position,

orientation and velocity of the robot and the IMU biases. The IMU measurements

are integrated between two consecutive keyframes. The IMU residuals are the

error of the inertial integration between two keyframe with regard to the state

value at the corresponding time. The intensity residuals are the photometric error

between two keyframes. They are calculated by reprojecting the map points in the

keyframes using the estimate of the relative camera pose. The optimization of both

residuals provide the final pose estimate of the current keyframe with regard to the
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world coordinate frame.

The method described in [MT17] is the inertial extension of ORB-SLAM [MMT15].

In ORB-SLAM, no functionality is provided to calculate the uncertainty of pose

estimates. Therefore, the implemented method needs to avoid the direct use of the

uncertainty of the camera pose. To represent information about uncertainty, the

authors use information matrices computed either from the preintegration of the

IMU measurements or from the feature extraction. The reprojection error and iner-

tial error are minimized using the Gauss-Newton optimization. The reprojection

error comes from the reprojection of map points in the current keyframe while the

IMU error is derived from the preintegration equations described in [For+15].

argmin
θ

ÿ

k

´

Eprojpk, jq ` EIMUpi, jq
¯

(4.3)

where θ the state vector which contains the position, orientation, velocity of the

IMU at frame j in the world coordinate frame and the IMU biases, k a given match

between a pair of features, i the last keyframe and j the current frame.

Eprojpjq “ ρ
´

px ´ ßpXcqqT
Σxpx ´ ßpXcqq

¯

(4.4)

where x is the tracked keypoint, ß the projection function from the camera model,

Xc, the map point associated with the keypoint x in the camera coordinate frame. ρ

is the Huber robust cost function.

EIMUpi, jq “ ρp

„

eT
R eT

v eT
p



ΣI

„

eT
R eT

v eT
p

T

q ` ρpeT
b ΣRebq (4.5)

where eR, ev, ep comes from the IMU preintegration equations, they represent the

IMU position, orientation and velocity errors computed from the integration of the

IMU measurements. eb is the bias error computed from the IMU bias estimation.

The Σ variables are information matrices. The value of Σx comes from the feature

extraction, ΣI is given by the calculation of the preintegration equations and ΣR
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Figure 4.1: Architecture of a visual-inertial fusion using EKF.

represent the variance of the bias random walk. If the map is not updated, a prior

knowledge term is added to the minimization. Note that IMU measurements are

also used for the local mapping because the velocity and bias states are included into

the Local Bundle Adjustment optimization of the local mapping thread. [MT17] also

provides a novel technique for IMU initialization (scale, gravity vector, velocity and

IMU biases) using the first ORB-SLAM estimates. The code of this approach is not

available and the complexity of the ORB-SLAM processing code makes a personal

implementation hardly conceivable. Moreover, the value of Σx is questionable.

The matrix should be the inverse of the Hessian matrix (second derivative of the

projection error). However, here the projection error is not derived, instead the

variance associated to the feature extraction compose the value of the matrix Σx.

In contrast to tightly-coupled approaches, in loosely-coupled approaches, the

vision part is considered as a black box, only the output of the box is used. In most

loosely-coupled algorithms such as [WS11] [HC14] [Sa+13], the filter, which fuses

the measurements, is derived from Kalman Filtering, e.g., Extended Kalman Filter

or Multi-State Constraints Kalman Filter as illustrated in Figure 4.1. The state is, at

least, composed of the position, orientation, velocity and biases of the IMU. The

differential equations, which govern the system and the IMU measurements, are

used to predict the state. The incorporation of monocular visual measurements is

done through the measurement model when the Kalman gain needs to be computed

(the visual measurements update the state when the innovation is calculated).

In [WS11], the state vector additionally includes the calibration states (the con-

stant relative position and orientation between the IMU coordinate frame and the
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Figure 4.2: Schema of sonar measurements on UAVs from [Mor78].

camera coordinate frame) and a failure detection system. When a failure is de-

tected (abrupt changes in the orientation estimates with regard to the measurement

rate), the related visual measurements are automatically discarded to prevent the

corruption of data.

In [HC14], the authors use trifocal tensor geometry which considers epipolar

constraints in triples of consecutive images instead of pairs of images. Therefore,

in addition to the usual IMU states, the state vector also contains the pose and

orientation of the two previous keyframes.

In [Sa+13], the fusion is done by using measurements from three sensors: In

addition to the visual and inertial sensors, a sonar is included in the system to

measure distances (the altitude between the UAV and the ground). IMU is used to

detect whether the UAV is flying level or tilted. If it is level, the sonar measurements

are directly used to estimate the altitude. Otherwise, IMU measurements help to

rectify the incorrect altitude information due to the tilting of the UAV. Figure 4.2

provides an overview of the use of the sonar measurements for altitude estimation

and, therefore, metric scale estimation.

The scale factor estimation is represented as an optimization problem between

the sonar and visual altitude measurements which is solved using the Levenberg-
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Marquardt algorithm [Mor78].

argmin
λ

T
ÿ

k“1

}∆zsonar
k ´ λ∆zcamera

k }2
2 (4.6)

With ∆zsonar
k and ∆zcamera

k the changes in altitude computed by the sonar and the

camera, λ is the unknown scale factor due to monocular vision.

We propose an approach for fusing monocular and inertial measurements in

a loosely-coupled manner which is simple to implement, requires small compu-

tational resources and so, is suitable for UAVs. We decided to design a loosely-

coupled approach to make the methods used for visual tracking and IMU measure-

ment integration easy to replace with any other method ones may prefer, which

ensures better flexibility and usability for our approach. In our studies, we used

the ORB-SLAM algorithm [MMT15] for the visual tracking part and Euler forward

integration for the inertial measurements processing.

4.4 Scaling coefficient estimation with IMU measure-

ments

4.4.1 Coordinate Frames

Our system is composed of two sensors, a monocular camera and an IMU, attached

on a rigid flying body, the single UAV. As described in Section 3, we distinguish

four coordinate frames: camera {CAM}, vision {VIS}, inertial {IMU} and world

{W} coordinate frames. The world coordinate frame {W} corresponds to the

UAV coordinate frame as defined in Section 3.4.3. The IMU measures data in

{IMU} attached to the body of the UAV. The integration of IMU measurements

results in the estimation of the pose of the IMU in {W}. The monocular pose

estimation algorithm outputs the camera poses in {VIS}, which corresponds to the
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first {CAM} coordinate frame when the tracking starts, i.e.

tVISu =
^

tCAMut“0 (4.7)

The matrix iTc, which represents the transformation between {CAM} and {IMU},

is constant, and can be computed off-line using a calibration method [MR08]. In the

EuRoC dataset sequences that we used for our experiments, iTc is already provided.

We consider that {W} corresponds to {IMU} at the moment tracking starts, when

the {VIS} coordinate frame is generated, so

tWu =
^

tIMUut“0 (4.8)

In the following paragraphs, we consider that the monocular pose estimation

algorithm outputs measurements in the world coordinate frame by applying the

formula

wp “i Tv
cp (4.9)

where p is a 3-D measurement by the monocular pose estimation algorithm.

4.4.2 Integration of IMU Measurements

We assume having a monocular pose estimation algorithm which outputs consistent

camera poses in the world coordinate frame. As a monocular camera cannot be used

to calculate metric distances, we use the IMU measurements to compute the scaling

coefficient. IMU is a sensor composed of three accelerometers and three gyroscopes

which respectively measure accelerations and angular velocities along each of the

three axis of the inertial frame. The pose of the IMU can be estimated by integrating

the accelerometer and gyroscope measurements. However, the integration of the

IMU measurement noise and the IMU biases makes the pose estimates to drift

fast. Therefore, IMU measurements must be integrated only over a short period

for limiting the drift and consequently to corrupt the estimates. We integrate IMU
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Figure 4.3: IMU measurements obtained between the two subsequent image frames
are used to calculate the translation vectors and rotation matrices.

measurements between two consecutive image frames. So, if Fk and Fk`1 are two

coordinate frames associated with image frames k and k ` 1, as displayed in Figure

4.3, the integration results in the estimation of the rotation matrix FkRFk`1
, velocity

wvFk,Fk`1
and translation wtFk,Fk`1

vectors between the two consecutive frames Fk

and Fk`1 in the world coordinate frame using IMU measurements.

We integrated the IMU measurements using Euler forward integration following

the description given in [Con+16]

FiRFj
“

k`N´1
ź

p“k

expSO(3)prωppq ` bωppqs^
∆Tq (4.10)

where ω is the vector of gyroscope measurements, bω the gyroscope bias, k the

time step of frame Fi, k ` N the time step of frame Fj, N ´ 1 the number of IMU

measurements between the consecutive frames Fi and Fj and ∆T is the time step

size (in seconds)

wvFi,Fj
“

k`N´1
ÿ

p“k

rwRIppappq ` bappqq ´ gs∆T (4.11)
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where wRIp is the rotation matrix between the world coordinate frame and the IMU

coordinate frame at time p, a is the vector of accelerometer measurements, ba the

accelerometer bias and g the gravity vector

wtFi,Fj
“NwvFi

∆T`

1

2

k`N´1
ÿ

p“k

”

p2 pk ` N ´ 1 ´ pq ` 1q

´

wR
p pappq ` bappqq ´ g

¯ ı

∆T2 (4.12)

The expSOp3q operator maps an vector of so(3) to a matrix of SO(3). The wedge

operator .^ convert a 3 ˆ 1 vector into an element of so(3), i.e., a skew-symmetric

matrix of size 3 ˆ 3. The IMU biases, ba and bω, were modeled as a random walk

process

bapk ` 1q “ bapkq ` ∆Tσ2
a (4.13)

where σ
2
a is the variance associated to the IMU accelerometers

bωpk ` 1q “ bωpkq ` ∆Tσ2
ω (4.14)

where σ
2
ω is the variance associated to the IMU accelerometers

Note that the IMU integration equations (Equations 4.10,4.11, 4.12) can be

replaced with another approach for numerical integration (such as [For+15]) as

long as this calculates the translation vector between two consecutive frames in the

world coordinate frame {W}.

It is assumed that the estimates provided by the monocular pose estimation

algorithm xm drift slower than the estimates xi computed using the IMU measure-

ments, i.e., xm is more accurate than xi. At each incoming frame, we used the value

of xm to initialize xi. We observed that a good initialization for the IMU estimates

can greatly improve the accuracy of the estimation of the scaling coefficient. How-

ever, the initialization of the estimates xi is not discussed in this thesis and is part

of the further improvement we plan to do.
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We also benefit from the high measurement rate of the IMU (between 100 Hz

and 200 Hz) to provide fast pose estimates. The pose estimates from the vision

algorithm xm can be updated once per new frame at maximum. Therefore, the

camera pose is updated at the frame rate, usually around 30 Hz, which can be too

slow for some applications such as control or navigation.

4.4.3 Calculation of Scaling Coefficient

We want to find the scaling coefficient λ as follows

}Wti}2 “ λ}Wtm}2 (4.15)

where Wti are the translation vectors of the camera position given by the integration

of IMU measurements in the world coordinate frame, Wtm are the translation vectors

of the camera position given by the monocular odometry or SLAM algorithm in

the world coordinate frame.

For each incoming new frame Fj, the translation of the camera between the

consecutive frames Fi and Fj in the world coordinate frame given by the monocular

vision algorithm Wtm
Fi,Fj

is measured. We then integrate the corresponding IMU

measurements using the Eq. (1), (2) and (3) to obtain the corresponding translation

from the inertial measurements Wti
Fi,Fj

λFi,Fj
“

}Wti
Fi,Fj

}2

}Wtm
Fi,Fj

}2
(4.16)

So Eq. 4.16 provides an estimated value of the scaling coefficient λ.

We can measure λ for each frame, but the measurement noise on each mea-

surement is significant because both the outputs of the SLAM algorithm and the

IMU integration drift. Four methods have been tested to calculate the scaling

coefficient λ̂ using the measurements λFi,Fj
. The four methods are: moving average

on λFi,Fj
with an additive model for the error, moving average on logpλFi,Fj

q with a
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multiplicative model for the error, an autoregressive Filter and a Kalman Filter.

The moving averages are calculated over the available measurements at time t

λ̂1 “
1

M

M´1
ÿ

k“2

˜

}Wti
Fk,Fk`1

}2

}Wtm
Fk,Fk`1

}2

¸

(4.17)

where the error model is additive

λ̂2 “ exp

˜

1

M

M´1
ÿ

k“2

log

˜

}Wti
Fk,Fk`1

}2

}Wtm
Fk,Fk`1

}2

¸¸

(4.18)

where the error model is multiplicative and M is the number of frames at the

considered discrete time t. The first frame is skipped because the error on the first

IMU measurement is generally large.

We also decided to implement an autoregressive filter (AR) to estimate λ̂. More-

over, this filter can be used to check whether the measurements are correlated in

time. The current value of the filter output ypiq is a weighted linear combination of

the p previous outputs (p is the order of the filter) and the current measurement.

The weights are computed by solving the Yule-Walker equations

ypiq “ K ` spiq `

p
ÿ

j“1

αiypi ´ jq (4.19)

where ypiq is the output of the AR filter at discrete time i, αi are the weights

calculated with the Yule-Walker equations, s is a zero-mean random variable with

spiq “ λpiq ´ K (4.20)

λpiq “
}Wti

Fi,Fi`1
}2

}Wtm
Fi,Fi`1

}2
(4.21)

82



The weights αi and bias term K are calculated solving
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(4.22)

where cp is the cross-correlation of the signal y with temporal lag p and µ is the

average of y at time i.

The AR filter diverged and it led to poor accuracy for the estimate λ̂ in all

EuRoC sequences. These results show that the measurements are not temporally

correlated and do not follow an autoregressive model.

Finally, a Kalman Filter has been implemented to estimate λ̂. The model is

λk “ aλk´1 ` wk (4.23)

zk “ hλk´1 ` vk (4.24)

where a “ 1 and h “ 1.

The prediction step is done using

λ̂k|k´1 “ aλ̂k´1|k´1 (4.25)

and the a priori variance pk|k´1

pk|k´1 “ a2pk´1|k´1 ` q (4.26)

where q is the covariance of the model white noise w.
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The correction step is calculated as follows

kk|k “
hpk|k´1

h2pk|k´1 ` r
(4.27)

where k is the Kalman gain and r is the covariance of the measurement white noise

v

λ̂k|k “ λ̂k|k´1 ` kk|kpzk ´ hλ̂k|k´1q (4.28)

and the a posteriori variance pk|k

pk|k “ pk|k´1p1 ´ hkk|kq (4.29)

4.4.4 Experimental results

We experimented the proposed method using the sequences from EuRoC dataset

[Bur+16] and the ORB-SLAM algorithm [MMT15]. Table 4.1 displays the output

of our experimentations. The EuRoC dataset provides eleven sequences recorded

by an Asctec Firefly hex-rotor helicopter in two different environments, a room

equipped with a Vicon motion capture system and a machine hall. We used the

frames from one of the front stereo camera (Aptina MT9V034 global shutter, WVGA

monochrome, 20 FPS) to emulate monocular vision and the measurements of the

MEMS IMU (ADIS16448, angular rate and acceleration, 200 Hz). The ground truth

is measured either by the Vicon motion capture system in the sequences recorded

in the Vicon room, or by a Leica MS50 laser tracker and scanner in the machine hall

environment.

In the following, the sequences referred as V1 01, V1 02 and V1 03 were

recorded in the Vicon room with configuration of texture 1; the sequences referred

as V2 01, V2 02 and V2 03 were recorded in the Vicon room with configuration of

texture 2; the sequences referred as MH01, MH02, MH03, MH04 and MH05 were

recorded in the machine hall using the Leica system. Note that the trajectory of the

UAV is different in each sequence.

84



 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0  500  1000  1500  2000  2500

frame number

Ground Truth Scaling Coefficient

Estimated Scaling Coefficient

Figure 4.4: The estimation of the scaling coefficient λ using the sequence V1 01
from EuRoC dataset (In blue the ground truth calculated from the Vicon estimates,
in red the proposed estimation method).

The estimation of the scaling coefficient during the sequence V1 01 is pictured

in Figure 4.4. The value of the scaling coefficient can be compared to a ground

truth value, which is computed using a moving average with Vicon (or Leica)

measurements WtGT instead of IMU measurements

λGT “
1

M

M´1
ÿ

k“1

˜

}WtGT
Fk,Fk`1

}2

}Wtm
Fk,Fk`1

}2

¸

(4.30)

The error eλ between the ground truth scaling coefficient λGT and the coefficient

we estimate using inertial measurement λ̂ is calculated as follows

eλ “ }λGT ´ λ̂}1 (4.31)

where }.}1 is the L1 norm.

We rescaled the trajectory provided by the monocular algorithm. As presented
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Figure 4.5: The trajectory of the camera during the V1 01 sequence from EuRoC
dataset in the world coordinate frame (ORB-SLAM measurements are in blue, the
ground truth measured with a Vicon motion capture system are in red).

in Figure 4.5, the distances given by the monocular algorithm are arbitrary but

consistent, therefore the UAV’s trajectory is scaled differently than the ground

truth. In Figure 4.6, we rescaled the monocular trajectory of the sequence V1 01

using the ground truth λGT and estimated λ̂1 scaling coefficients. We computed

the root-mean-square deviation (RMSE) for each sequence as follows

RMSE “

d

řM
i“1

`

λGTxT
i ´ λ̂xT

i

˘ `

λGTxi ´ λ̂xi

˘

M
(4.32)

where M is the number of frames in the sequence and x is the position of the camera

in the world coordinate given by the monocular algorithm (ORB-SLAM for our

experiments). The RMSE for each EuRoC sequence is given in Table 4.1.

The initial trajectory of the UAVs in the sequence V1 01 provided by the ORB-

SLAM algorithm is displayed in Figure 4.5. The same trajectory rescaled using the

scaling coefficients λGT and λ̂1 is displayed in Figure 4.6.
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Figure 4.6: The rescaled trajectory of the camera provided by ORB-SLAM in the
V1 01 sequence from EuRoC dataset in the world coordinate frame (the blue trajec-
tory was rescaled using the value of λ, the red trajectory was rescaled using the
ground truth scaling coefficient).

As expected, the bigger the scaling coefficient error eλ, the bigger the RMSE.

The sequences recorded in the Vicon room provide trajectories with lower RMSE

than the sequences recorded in the machine hall. The difference between the two

sets of sequences can be explained by the strong excitation of the IMU for the

calibration of the Leica laser that incorporates a lot of noise in the measurements ti.

In the Vicon sequences, the estimate λ̂1 outperforms. The sequences recorded in the

machine hall are very challenging for the inertial fusion because the UAV performed

very fast translational movements during a few seconds for Leica ground truth

calibration purposes which result in large acceleration measurements and partially

corrupt the inertial estimates as shown in Figure 4.7. Therefore, in the machine hall

sequences where strong noise corrupts some IMU measurements, λ̂2 is far better

than λ̂1, which never managed to completely absorb the strong perturbations of the

calibration. Interestingly, Kalman Filter (KF) gives also satisfactory results for Leica
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Figure 4.7: An example of the corruption of estimates due to the fast translational
movements (shown in the rectangular area as marked) for the Leica calibration in
one of the sequences recorded in the machine hall environment (MH05).

sequences. The results of Kalman Filter can be further improved with a finer tuning

of the process noise variance q. For instance, with a smaller value for q, the RMSE

of sequences MH 03 and MH 04 drops to 0.17 m and 0.76 m respectively. As every

single EuRoC sequence is quite different from the others, finding a nice tuning

value for the Kalman Filter is not straightforward. We recommend to tune the filter

accordingly to the type of flight the UAV performs (smoothness and aggressiveness

of trajectories, motion speed, angular velocities). If a Kalman Filter cannot be

implemented or tuned, λ̂2 remains a acceptable estimate. More broadly, keeping

the IMU out from large perturbations by using smooth trajectories provides more

accurate estimates. The estimates computed through the AR filter, which are not

presented because of the dramatically large value of RMSE, show that there is no

temporal correlation of the error.
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4.4.5 Concluding Remarks and Future Work

We presented a fast and easy-to-implement method for the calculation of the scal-

ing coefficient by fusing inertial measurements with monocular pose estimation.

Monocular camera systems, due to their nature, can not provide the real-world

scale of the pose estimates. To overcome this problem, we use the inertial measure-

ments produced by an IMU to i) estimate the scaling coefficient, which relates the

monocular camera pose estimation to the real-world scale, and ii) speed up the

pose estimation by exploiting the availability of the inertial measurements in very

high rates.

The method is highly modular, which makes each component to be easily

replaceable with one’s preferences without impacting the overall operation of the

system.

To improve the current method, we plan to further investigate the initialization

of the IMU integration process, particularly with the incorporation of the current

estimate of the scaling coefficient when appropriate.

We defined three approaches for calculating the scaling coefficient with regard

to the nature of the trajectory followed by the UAV. We found that the Kalman

Filter approach gives accurate estimates when the tuning is done well, which

unfortunately can be hard to do for some applications. Determination of the tuning

value of the process noise is a complex topic which will be part of our future

research work and experimentations.
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CHAPTER FIVE

MULTI-UAV SLAM: PLACE

RECOGNITION, FEATURE MATCHING

AND ESTIMATION OF THE

POSE-GRAPH CONSTRAINTS

5.1 Introduction

In the following chapters, we consider that we have a system capable of outputting

metric SLAM estimates whether using a loosely-coupled or a tightly-coupled

fusion scheme. In this chapter, we describe the front-end of the M-SLAM system:

its design, architecture and how it is related to the single UAV metric SLAM on one

hand (the topics related to single UAV metric SLAM were discussed in Chapters

2 and 4), and to the back-end process on the other hand (Chapter 6 presents the

back-end part in details).

5.2 Related work

In this chapter, as well as in Chapters 6 and 7, we present the M-SLAM system,

an inertial-monocular SLAM system for a fleet of UAVs. Few literature can be

found on a similar system that uses only monocular vision, inertial measurements

running on a UAV platform. We discussed some approaches in Section 2.2.4. One

of the closest approach to the applications we target is the CVI-SLAM algorithm
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[KSC18] published recently in 2018. The CVI-SLAM algorithm can be seen as the

inertial extension of the CCM-SLAM algorithm we presented in Section 2.2.4. The

architecture of CVI-SLAM is similar to the CCM-SLAM (a centralized collaborative

SLAM for multi-UAV systems [SC18]), the focus is set on the map merging of local

map estimated by the UAVs on a distant server. A particular attention is devoted to

the communication part in order to ensure each UAV can remains autonomous and

working even in case of data loss or network failure. The main novelty with regard

to CCM-SLAM is the inertial-visual odometry algorithm that is run on the front-end

instead of vision-only odometry. The inertial measurements are pre-integrated and

a nonlinear optimization process minimizes both the visual and inertial residuals

in order to fuse both type of measurements. This tightly-coupled scheme (similar

to the one used in VINS-Mono) allows to get metric estimates for the UAV pose,

and consequently, metric local maps.

5.3 Objective

The M-SLAM is composed of a front-end and a back-end. The front-end manages

the input data and process the sensor measurements. The back-end generates the

SLAM pose-graph and improves the localization of the fleet by fusing the different

location information. In other words, the front-end is a perception component while

the back-end is an data fusion component. The role of the front-end is threefold:

1. Gather the data from every UAV of the fleet,

2. Detect coincidence candidates and filter false coincidence detections,

3. Process the keyframes, the features and the map points in order to estimate a

SE(3) constraint for each coincidence.
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5.4 Special Euclidean group and UAV coincidences: def-

initions

5.4.1 The SE(3) transformation

In this report, we note as SE(3) and SO(3) direct isometries that are a subgroup of

the Euclidean group (also called special Euclidean group). We use the SE(3) and

SO(3) groups to describe the positions or movements of the rigid body that is the

UAV frame.

SO(3) transforms are used to represent 3-D rotation that can be parameterized

either using Euler angles (yaw, pitch, roll), 3-by-3 rotation matrices, or quaternions.

Other representations can be found in the literature, particularly in the work about

Lie algebra.

SE(3) transforms add a 3-D translation with regard to SO(3) transforms. We use

the SE(3) transforms to represent the transformations to change from a coordinate

frame to another one or to represent the rigid body (the UAV frame) trajectory in

the 3-D environment.

5.4.2 Definition of coincidences

We define a coincidence as being the fact for one or two UAVs to visit the same

place. We consider the traditional loop-closure in single-robot SLAM as a particular

case of robot coincidence. An intra-coincidence occurs if the same UAV visits at

least two times the same area non consecutively; an inter-coincidence occurs if

two different UAVs visit the same area. Coincidences are defined spatially, inter-

coincidences can be trigger even though the UAVs are not visiting the area at the

same time. The data required to define a coincidence are the following:

• The two UAV identifiers,

• The two moment identifiers (it can be timestamps or keyframe numbers),
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• The poses of the UAVs in their coordinate frame UAVTi
j, and

• Either the two keyframes (images) or the list of features (keypoints and

descriptors) that belongs to the keyframes if they are numerous enough

(otherwise we must be able to extract additional features later in the process).

5.5 Architecture of the front-end

Each UAV of the fleet runs its own SLAM algorithm, the output of this single-robot

SLAM (as well as useful pieces of information like the camera keyframes) are used

as an input for the M-SLAM front-end. As previously discussed, the choices for the

SLAM algorithm are very limited. We identified, through our extensive search, only

two monocular SLAM algorithms with a tracking part robust enough to be run on a

UAV and available as open source: ORB-SLAM [MMT15] and VINS-Mono [QLS17].

The main benefit of VINS-Mono over ORB-SLAM is that it is a tightly-coupled

inertial-monocular SLAM algorithm, therefore the estimates are metric. This is

a significant advantage as if we work with a non metric algorithm, we will have

to compute the scaling coefficient between each pair of UAVs which makes the

research problem more complex. Moreover, with regard to the DIVINA challenge

team as described in Subsection 1.3.2, metric estimates suit better the whole context.

One approach consists in using directly the outputs of a tightly-coupled inertial-

monocular SLAM such as VINS-Mono as shown in Figure 5.1. Another approach

is to use a loosely-coupled fusion between a monocular SLAM algorithm and

inertial measurements to make metric the estimates such as the approach described

in Chapter 4 that we experimented using the ORB-SLAM algorithm [Spa+17] as

shown in Figure 5.2.
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Figure 5.1: Overview of the architecture - case of a tightly-coupled fusion.
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Figure 5.2: Overview of the architecture - case of a loosely-coupled fusion.
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5.6 Inputs and process overview

The SLAM front-end gathers the required data from each UAV of the fleet: The

keyframes elected by the single-UAV SLAM or, at least, the keypoints and their

descriptors, the metric pose of each UAV in its coordinate frame UAVk Ti
j (the jth

pose, associated to the jth keyframe, of the inertial coordinate frame attached to the

UAVk) and the metric map (sparse 3-D point cloud) associated to the area explored

by each UAV in its coordinate frame. The keyframes are sent to the coincidence

detection component to find coincidence candidates (Section 5.8). Then, using

a 2D-2D RANSAC algorithm [LD13] that estimates the essential matrix, we find

a first normalized estimate of the coincidence transformation and filter the false

detection (Subsection 5.9.1). Finally, the metric map points are used in a 3D-2D

RANSAC algorithm [LMF09] to refine the SE(3) transformation and estimate the

norm of the translation vector, as well as discarding the possible remaining false

coincidence candidates (Subsection 5.9.2).

5.7 About the network

In this work, we assume that UAVs exchange data, which implies the use of a

network infrastructure. The network and communication aspects are not discussed

in this thesis. We assume that, each time a UAV elect a new keyframe, it broadcasts

the following data:

• The UAV identifier and the keyframe identifier (ID or timestamps),

• The metric pose in its coordinate frame that corresponds with the new

keyframe UAVTi
j, and

• The associated estimated metric map (sparse 3-D point-cloud that is the depth

estimation of the processed features n the keyframe).

We also assume that the rest of fleet receives entirely those data.

97



Figure 5.3: An example of the detection of a good coincidence candidate.

Figure 5.4: Detection of a good coinci-
dence candidate despite blurred images.

Figure 5.5: Detection of a good coinci-
dence candidate despite a massive occlu-
sion.

5.8 Coincidence detection

Once the data of each UAV have been gathered and stored, they are sent to the

coincidence detection system. We have decided to use a feature-based system for its

robustness and simplicity. Like in the most recent feature-based SLAM algorithms

[MMT15] [QLS17], we use the Bags-of-Words approach [GT12] that provides a

convenient way to use visual words for fast visual comparison. The Bags-of-Words

approach allows to quickly get a similarity score between a pair of images. This

approach detects a lot of candidates for coincidence, including false detections that

must be discarded to prevent the pose-graph to be badly constraint. Figures 5.3,

5.4 and 5.5 illustrate high quality coincidence candidates detected by the detection

system, however, false detections are also numerous in the approach we chose as

represented by Figure 5.6, and must be filtered out.

In order to detect the coincidences candidates, we tried two slightly different

methods though both of them are based on Bags-of-Words. The first one was

directly inspired from VINS-Mono [QLS17] and uses the BRIEF features [Cal+10]
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Figure 5.6: Two examples of false detection of coincidence candidates.

provided by the SLAM algorithm VINS-Mono. The second one was build similarly

to the coincidence system of ORB-SLAM [MMT15] and uses ORB features [Rub+11].

The results given by the BRIEF features were not satisfactory. A lot of coin-

cidences were detected, but most of which were false detections. Therefore, a

powerful filtering mechanism was required in order to discard all those false detec-

tions. We could not afford to keep false detections because it would have corrupted

the results in the back-end process. The usual way to filter the detection is to run

a Fundamental matrix RANSAC algorithm [HZ03] [FB87] (Subsections 5.9.1 and

5.9.2). However, the experiments showed that in order to have perfectly filtered

results, we ended having few coincidences candidates in a three UAVs experiment

(less than five, which is not enough). As we use those coincidences to constrain the

pose-graph to improve the estimation of the location of the UAVs, we needed to

detect more good quality coincidence candidates, which would help the filtering

process.

The ORB based process provided better results than the BRIEF based process

as displayed in Figures 5.3, 5.4 and 5.5. This is due mainly to the fact the ORB is a

better feature than BRIEF and most importantly because we use pyramid levels

in ORB. Using ORB features, we can have numerous coincidence candidates with

good quality (almost no false detections). Therefore, even though ORB features are

slower to extract than BRIEF, we cannot afford the poor quality results given by

BRIEF features. Figure 5.7 illustrates the coincidence detection part of the front-end

of the M-SLAM system.
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Figure 5.7: Diagram of the coincidence detection process for a three-UAV experi-
ment.

5.9 Estimation of the SE(3) constraint

5.9.1 Essential matrix estimation

After the detection of coincidence candidates, we compute a first estimate of the

SE(3) transformation between the two camera coordinate frames involved in the

coincidence. The estimation of those SE(3) constraints (one per coincidence) is

critical as it is the main new measurement added to the pose-graph that is used

in the back-end to improve the UAV location. We use standard algorithms to

compute the transformation [Nis04], [LD13], [LMF09] though we must distinguish

the intra-UAV coincidence case from the inter-UAV coincidence case because we

observed that the inter-UAV coincidences were more challenging to process than

intra-UAV coincidences. The critical difference between inter-robot and intra-

robot coincidences is the knowledge about the SE(3) transformation between the

matched pair of keyframes. In a single UAV system, intra-robot coincidences are

detected along the trajectory of the same robot. When a coincidence is detected

and closed, thanks to the SLAM estimates, the system already has a first estimate

of the transformation between the two edges of the coincidence. Even if the SLAM

estimates are drifting, there is a pose estimate expressed in the same coordinate

frame for both edges because all the measurements are given in the same coordinate

frame, i.e., the local UAV coordinate frame {UAV} as illustrated in Figure 5.8.
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{UAV1} Coincidence detected
Figure 5.8: Differences between coincidences: A example of intra-UAV coincidence.

In a multi-UAV system, there is no information about the transformation be-

tween the two edges of an inter-robot coincidence because each UAV estimates

is expressed in a different coordinate frame (at least until the first coincidence be-

tween two UAVs occurs). Therefore, as shown in Figure 5.9, we have no knowledge

about the transformation between the two edges of the loop. We must compute

a first estimate of this transformation in order to ensure a satisfactory data fusion

process.

As displayed in Figure 5.7, after isolating the inter-UAV coincidences using

the Bags-of-Words approach, we can process each coincidence to estimate the

associated transformation UAVai Tc
UAVbj

(the transformation between the camera

coordinate frames of UAVs a and b at respective time, or keyframes, i and j).

We use the geometry of the keyframes to compute the transformation as shown

in Figure 5.10. A usual method is to use approaches like Fundamental Matrix

RANSAC [Har95] or Essential Matrix RANSAC [Lon87]. In our system, the camera

are calibrated, we know the intrinsic parameters of the camera model, therefore

we can use either the fundamental or essential matrices. We detect and match SIFT

features [Low04b] in the pairs of keyframes that are provided by the coincidence

detection process. Then, we use an iterative 5-points algorithm to estimate the

essential matrix E [LD13]. The essential matrix transcripts the geometric constraints

between two overlapping images. In other word, the essential matrix includes
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Figure 5.9: Differences between coincidences: An example of inter-UAV coinci-
dence. Essential matrix estimationandfilteringLoop-closurebetweenUAVa and UAVb

Figure 5.10: Diagram of the estimation of the essential matrix process.

the 3-D rotation UAVai Rc
UAVbj

and the direction of the translation UAVai tc
UAVbj

(with

}UAVai tc
UAVbj

}2 “ 1) between the two view points. The RANSAC part included in

[LD13] that is used to select the inlier point correspondences also allow to filter

some false detections: If there is not enough inliers, we discard the coincidence

candidate.

In Section 5.8, we discussed the use of either BRIEF or ORB descriptors and

concluded that ORB descriptors provided satisfactory results. However, to perform

the matching of features required to have a satisfactory Essential Matrix RANSAC

result, ORB descriptors were not descriptive enough with regard to the challenging

texture of the EuRoC datasets we used for the experiments. Therefore, we decided
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PnP RANSACRefine and make metric the transformationFilter false detectionsMap associated with KFifrom the SLAM Metric transformationMap associated with KFjfrom the SLAM
Figure 5.11: Diagram of the PnP scheme.

to use one of the most descriptive feature: SIFT. This choice comes at a cost, the

extraction and matching parts are much slower than using other descriptors like

ORB. Environments with more unique and distinctive textures than the EuRoC

environment would allow to use faster features to compute like ORB.

5.9.2 Use of the metric map

So far, we used only the 2-D information available in the keyframes to compute

UAVai Tc
UAVbj

. Therefore, the translation vector is normalized, so we have no infor-

mation about the metric distance between the two camera coordinate frames. In

order to refine the estimate of UAVai Tc
UAVbj

and to make the translation metric, we

use the PnP algorithm [LMF09] as described in Figure 5.11. Hence, we use the

3-D map points to find the optimal UAVai Tc
UAVbj

such that the re-projection error is

minimized. In other word, each map point of the keyframe i is projected in the

keyframe j, the re-projection error is the difference between the corresponding

keypoint in j and the projection of the map point. The PnP is initialized with

the transformation computed from the essential matrix E. As the map provided

by the SLAM is metric, the resulting UAVai Tc
UAVbj

is also metric. Similarly to the

previous step, the RANSAC part that is used to select the inliers is used to discard

false detections. Figure 5.12 summarizes the whole process from the detection of

candidates to the filtered coincidences with the SE(3) constraint estimated.

103
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Figure 5.12: Overview of the process to generate an additional constraint in the
pose-graph using inter-UAV coincidences.

5.10 Choice of descriptors

The feature matching is an important part of the coincidence detection and SE(3)

constraint computation. As each UAV flies in its own world, after the system

initialized there is no information about the relative pose between each UAV of the

fleet. The roles of feature descriptors are the following:

• Detect candidates for the coincidences,

• Make correspondences between the features to compute geometrical con-

straints.

The coincidence candidates are found using the Bag-of-Words approach that pro-

vide a similarity score for each pair of images based on the feature descriptors.

The feature matching is performed by comparing the descriptors. Therefore, it is

important that each feature is described uniquely by its descriptor independently of

the scale and the orientation. During the development of M-SLAM, three different

descriptors were tried: BRIEF, ORB and SIFT descriptors. BRIEF descriptors are not

unique enough to ensure a satisfactory detection for the coincidence candidate and

provide a poor quality feature matching. ORB descriptors provide satisfactory coin-

cidence candidates but are not descriptive enough to perform the feature matching
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to estimate the essential matrix using the EuRoC dataset for the experiments. Fi-

nally, we chose to use SIFT descriptors as they provide satisfactory results for the

feature matching. The main drawback of SIFT descriptors in comparison to ORB

and BRIEF descriptors is that the extraction and comparison of SIFT descriptors

are much slower than for ORB and BRIEF descriptors.

5.11 Accuracy of the coincidences

For later data fusion purpose, we should determine a quality value for the coinci-

dences that contains information about how accurate the SE(3) constraint has been

estimated. At the end of the M-SLAM research work, we have not been able to find

a relation between the accuracy of the estimation of the SE(3) constraint using the

ground truth value and the values related to coincidences, namely: the number of

inliers before and after each RANSAC, the bags-of-word similarity score and the

final PnP reprojection error (total and average per feature). This part remains for

further development and requires a deeper and more systemic study.

5.12 Conclusion

We presented the front-end of the M-SLAM algorithm. Our front-end includes

a place recognition scheme to detect candidates for coincidences, the estimation

of the relative transformation between the keyframes involved in the coincidence

using the 2-D information encoded in the images or keypoints and the 3-D map.

RANSAC algorithms are used to refined the coincidence constraint - the SO(3)

transformation - and are also critical to filter false coincidence candidates. Our

method is based on features and we provided observations about the choice for

descriptors that can be of great importance to ensure satisfactory detection and

filtering.
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CHAPTER SIX

MULTI-UAV SLAM: PROCESSING

OF THE POSE-GRAPH AND FUSION OF

LOCATION INFORMATION

6.1 Introduction

In this chapter, we describe the back-end of the M-SLAM system. We consider that

the front-end has gathered the UAV’s data and provide to the back-end process a

list of filtered coincidences with their metric transformation (the transformation

between the camera coordinate frames of the two view points of the scene scenery).

6.2 Objective

The back-end of the M-SLAM builds the multi-UAV SLAM pose-graph and fuses

the information about the UAV locations. The tasks of the back-end are the follow-

ing:

1. Generate the pose-graph including the coincidence constraints,

2. Fuse the location information in the pose-graph,

3. Update the UAV states and provide the relative localization of each UAV to

the rest of the fleet.
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6.3 M-SLAM pose-graph

The pose-graph represents the localization of the fleet from one UAV point-of-

view. As the system is fully distributed, each UAV builds a different pose-graph

with all the measurements expressed in its own coordinate frame tUAVau. The

graph consists in nodes and edges. Each edge corresponds to a constraint (a

relative motion to transform a pose into another pose) and each node corresponds

to the pose of one UAV at one moment in time, when a UAV’s SLAM elects a

new keyframe. The data fusion algorithm improves the pose estimate for each

node using the known constraints at the moment the graph is built. The graph

construction of a UAVa is done through the following steps:

• First, a node is created for each keyframe of the UAVa. It contains the pose

value of the UAVa in the coordinate frame tUAVau. The pose comes from the

front-end of the M-SLAM algorithm, namely the transformation UAVa Ti
j,

• Second, edges are generated between each node and represent the relative

motion between the consecutive nodes j and k: jTi
k,

• Third, intra-coincidences of UAVa are added, they are represented by an edge

containing the constraint between the two nodes involved in the intra-UAV

coincidence m and n: mTi
n,

• Fourth, if a direct or indirect inter-coincidence has occurred between the UAVa

and another UAV of the fleet, such as UAVb, the nodes of the UAVb are also

added to graph. We use the direct coincidence with the smallest covariance

matrix(or indirect coincidence if there are no direct inter-coincidence) jTk to

express the poses of the UAVb in the coordinate frame tUAVau. The pose of

UAVb comes from the front-end of the M-SLAM known as the transformation

UAVb Ti
j.

UAVa Tj “UAVa TUAVb

UAVb Ti
j (6.1)

UAVa TUAVb
“UAVa Ti

k
jTi-1

k
UAVb Ti´1

j (6.2)
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Intra-coincidence

Inter-coincidence

Figure 6.1: An illustration of the pose graph during a two-UAV experiment, UAVa xj

represents the pose (or the value of the state vector) at the time the keyframe j was
elected.

• Fifth, similarly to step two, edges are added to represent the relative motion

between the consecutive nodes of the UAVb in tUAVbu, and

• Finally, the inter-coincidences are added between the nodes j of UAVa and the

nodes j of UAVb. The inter-coincidence SE(3) constraints jTk are computed

by the front-end.

Figure 6.1 provides an illustration of the pose-graph that can be obtained.

109



6.4 Significant differences between coincidences and

loop-closures in single-robot SLAM

6.4.1 Single robot case

In real-time SLAM algorithms, the loop-closures scheme is always done through the

same mechanism. The robot is moving, generating poses throughout its estimated

trajectory. For the sake of comprehension, we associate each estimated pose to

a node in a graph. At a moment t, a loop-closure is detected between two non-

consecutive nodes ni and nj. Then, the node nj is corrected using the pose estimate

of ni and, finally, the correction is propagated to the nodes in between ni and nj.

Figures 6.2, 6.3 and 6.4 provide an example of the traditional processing of a loop-

closure in single robot SLAM. There are three properties that must be underlined:

• nj is the latest node of the trajectory at time t,

• nj has a greater error than ni,

• The correction is propagated to identified nodes: the nodes in between ni and

nj, the other nodes are not affected.

As a consequence, in single robot systems, when a loop-closure is processed the

following pieces of information are always known:

• Between two nodes, which node is relatively wronger than the other,

• What nodes can benefit from the correction,

• The orientation of the loop-closure: The oldest node is used to correct the

latest node,

• The corrected node is always the last available node of the trajectory at time

t, therefore, loop-closures do not have an effect on the future nodes of the

trajectory (generated after time t), the corrected value nj is simply used as the

new starting point for the odometry.
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Figure 6.2: Loop-closure
in single robot SLAM: De-
tection of the coincidence.

Figure 6.3: Loop-closure
in single robot SLAM:
Correction of the node.

Figure 6.4: Loop-closure
in single robot SLAM:
Propagation of the correc-
tion.

Most of those properties and knowledge are no longer available in a multi robot

system as we will discuss in the next subsection.

6.4.2 Multi-robot case

Orientation of the coincidence

In a multi robot system the latest node is not always corrected using a prior node.

The correction is done using the node with the smallest error which can be any

of the two nodes involved. In inter-coincidences, there is no notion of prior or

later nodes as they are provided by two different UAVs and the error can grow

differently in each UAV regarding the kind of trajectory or images that have been

processed as illustrated in Figures 6.5 and 6.6. It is also valid for intra-coincidences.

As inter-coincidences can have been processed prior to the intra-coincidence, it can

happen that the latest node have a smaller error than a prior node, Figures 6.7, 6.8

and 6.9 illustrates this mechanism.
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Figure 6.5: The possible orientations
in inter-coincidence, correction of the
wrongest node, here in the UAV 1 tra-
jectory.

Figure 6.6: The possible orientations
in inter-coincidence, correction of the
wrongest node, here in the UAV 2 tra-
jectory.

Propagation of the correction backwards

When a node is corrected, the correction is then propagated backwards in the

trajectory. The question is: How far should the correction be propagated? In single

robot system, the answer is simple, the correction is propagated in between the

two nodes involved because the later node is always wronger than the older one

and the nodes prior to the older node have already a smaller error and therefore

cannot benefit from the correction.

In a multi-robot system, the answer is not that simple because, most of the

time, the coincidences do not inherently define until where the correction must

be propagated. Figure 6.11 provides an example: until what node should the

correction be propagated? Therefore, in a multi-robot system, knowledge about

the error on the localization is way more important than in single robot system as

they are used to define the end of the propagation of the correction. As discussed

in Subsection 6.4.2, the problem of the impacted nodes by the backward correction

is encountered both in inter-coincidences and in some intra-coincidences regarding

the orientation of the coincidence.
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Figure 6.7: In some case, intra-coincidences can be processed like usual single-robot
loop-closures.

Effect on the trajectory forwards

In addition to the question of how far should the correction be propagated, the

effect of coincidences forward of the corrected node becomes also important in

multi-robot system while it has barely no importance in single-robot system. As

we can correct nodes in the past, those corrected nodes have an effect on the rest

of the trajectory as we re-built the rest of the trajectory using as a new starting

point the corrected value of the node. As further nodes can be involved in other
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Figure 6.8: Differences between intra-
coincidences and loop-closures: An
inter-coincidence occurs, the node x9

of UAV 1 is corrected.

Figure 6.9: Differences between intra-
coincidences and loop-closures: Due
to the inter-coincidence, the node x10

has now a smaller error than the node
x3, the node x3 is corrected.

coincidences, it is important to take this effect into consideration, Figures 6.12, 6.13,

6.14 and 6.15 provides an example of the entire process for a coincidence including

the forward effect. In traditional single-robot SLAM, this forward effect is barely

observed for the following reasons:

• Either the system solves a full-SLAM problem, all the measurements and loop-

closures are gathered and an optimization scheme solve the whole problem

at the end of the experiment,

• Or the system works in real-time (or at least, on the go) and the graph is

optimized after each loop-closure. As the corrected node is always the last

one measured, further odometry measurements are added using the new

corrected value of this node.
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Figure 6.10: Loop-closures, propagation of the correction.

Order for processing the coincidences

The order for processing the coincidences is a non-existent problem in single-robot

SLAM because when a loop-closure is detected, it is processed and then the new

nodes are added to the system until the next loop-closure.

In a multi-UAV system with coincidences between the UAVs, the order become

much important as the most recent coincidence can modify past nodes in the trajec-
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Figure 6.11: Inter-coincidence, propagation of the correction until what node?

tory that could have been involved in previous coincidences. In this context, does

it still make sense to process the coincidences on-the-go, when there are detected?

We decided to process the coincidences using a different criteria than the moment

they are detected. We tried two criterion: i) Processing the coincidences from the

most significant correction to the less significant correction, and ii) processing the

coincidences from the earliest correction of the trajectories to the latest effect on the

trajectories. The first criterion (i) is used to maximize the benefits provided by the

most significant node corrections for the further corrections, but due to the forward

effect, it can also increase the absolute error in the trajectory afterwards. The second
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Figure 6.12: Detection of the coinci-
dence.

Figure 6.13: Correction of the relative
wrongest node.

Figure 6.14: Propagation of the correc-
tion backwards.

Figure 6.15: Re-computing the rest of
the trajectory using the corrected value
as a new starting point.
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criterion (ii) has the benefits to minimize the forward effect on the trajectories

before processing further coincidences, but, as a consequence, the trajectory do not

benefit entirely from the most significant correction possible.

6.5 Process of a coincidence

The processing of a coincidence is done in three steps:

1. Correction of one of the node involved in the coincidence,

2. Propagation of the correction backwards,

3. Re-building of the trajectory forwards.

For the sake of notations, we define the operator p ¨ q that applies a 3-D transfor-

mation to a pose vector. A pose vector is a 7-element vector that defines a pose in

3-D: Three scalars define the 3-D translation, and four scalars are the coefficients of

the quaternion that is used to represent the orientation.

x “

„

tx ty tz qw qx qy qz

T

(6.3)

In the following subsections, we transform a pose vector into another pose

vector using 4-by-4 homogeneous matrices that encapsulates both the relative 3-D

translation and rotation.

ixk “i Tj ¨ jxk (6.4)

From a numerical point of view, we consider that T encapsulates a rotation that

can be represented either by a quaternion or a 3-by-3 rotation matrix, and a 3-by-1

translation vector. We chose to represent constraints (motion to go from one pose

at time t to the next pose at time t ` 1 and coincidences) with 4-by-4 homogeneous

matrices denoted T, and to represent the poses of the UAVs with 7-by-1 state

vectors, the changes in the state vectors defines the trajectory of the UAVs. A 7-by-7
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covariance matrix is attached to each state vector to express the inaccuracy of the

pose estimates. Those choices were made to simplify the comprehension of the

reader as both the constraints and the representation the UAV trajectories are made

of poses, which are 3-D rigid body transformation (3-D rotation and translation)

and to make easier the incorporation of covariance matrices in the M-SLAM system.

6.5.1 Correction of the node

A coincidence involves two nodes, we determine which node is relatively wronger

than the other, therefore information about errors is required. Then, the most

accurate node is used to correct the other node. Considering a coincidence between

the node UAVa xi
k from UAVa and the node UAVb xi

l, and assuming that the covari-

ance matrix used to represent the errors Pl on the node UAVb xi
l is greater than the

covariance matrix Pk on the node UAVa xi
k. We assume that a covariance matrix Pi

is greater than Pk if the sum of the elements of Pi is greater than the sum of the

elements of Pk. The corrected value of the node UAVb x̂i
l is given by

UAVb x̂i
l “UAVb TUAVa ¨UAVa xi

m ¨m Tl (6.5)

UAVb TUAVa is the transformation between one UAV coordinate frame tUAVbu and

another UAV coordinate frame tUAVau and is found by processing coincidences,

this point is discussed in 6.3. For the case of intra-coincidences (k = l),

UAVb TUAVa “

»

—

—

—

—

—

—

—

–

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(6.6)

The initial value of UAVa xi
m is given by the single-robot SLAM running onboard the

UAVa, the value can be modified later on by processing the coincidences gathered

in the system. mTi
l is the measurement of the coincidence, it comes from the
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processing of the keyframes and the single-robot SLAM estimates. The covariance

matrix of PUAVb x̂i
l

is computed as follows

PUAVb x̂i
l

“ PUAVb TUAVa
` PUAVa xi

m
` PmTi

l
(6.7)

For the case of intra-coincidences (i = j),

PUAVb TUAVa
“

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(6.8)

6.5.2 Propagation of the correction backwards

When the correction is propagated, first we must determine until where we should

propagate the modification. Once again, information about the error on the nodes

is critical. Going backwards in the trajectory, we search for the node UAVb xi
m with

an covariance matrix Pm in which all the elements are smaller than the covariance

matrix on UAVb x̂i
l (m ă l). The nodes UAVb xi

n with m ă n ă l can benefit from the

correction. To compute the new value UAVb x̂i
n of the nodes UAVb xi

n, we define an

upper and a lower bound, respectively UAVb x1i
n and UAVb xi

n. UAVb xi
n is the current

pose of the node (before the propagation of the correction). UAVb x1i
n is computed

starting from the corrected node UAVb x̂i
l and applying the odometry backwards.

We state that the value UAVb x̂i
n is in between UAVb x1i

n and UAVb xi
n.

To compute UAVb x̂i
n, several solutions can be used. We decided to use covariance

intersection (with a coefficient of 0.5) that expresses the fact that UAVb x̂i
n should be

affected more by the most accurate node and less by the less accurate node.
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Figure 6.16: Definition of the bounds for the propagation.

P´1
UAVb x̂i

n
“ P´1

UAVb x1i
n

` P´1
UAVb xi

n
(6.9)

UAVb x̂i
n “ PUAVb x̂i

n
pPUAVb x1i

n

UAVb x1i
n ` PUAVb xi

n

UAVb xi
nq (6.10)

The new quaternion computed is then normalized in order to ensure that it lies

on the unit sphere.

The covariance PUAVb x1i
n

is computed as follows

PUAVb x1i
n

“ PUAVb x1i
n`1

` PnTi
n`1

(6.11)

PnTi
n`1

is the covariance associated to the transformation to move from UAVb x1i
n`1 to

UAVb x1i
n
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Another method could be to use a non-linear solver such as Ceres in order to

minimize the following residuals

rmnpuavb pm,uavb qm,uavb pn,uavb qnq “

»

—

–

Rpuavb qmq-1puavb pn ´uavb pmq ´m p̂mn

puavb qn ´uavb qmq ´m q̂mn

fi

ffi

fl

(6.12)

with

ip̂mn “ R̂´1puavb p̂n ´uavb p̂mq (6.13)

iq̂mn “uavb q̂n ´uavb q̂m (6.14)

6.5.3 Effect on the trajectory forwards

The existing values of the existing nodes forwards to the coincidence are updated

using the new value of the node involved in the loop closures. Starting from the

corrected node, the odometry measurements are successively applied to update

the pose state of each node as well as its covariance matrix.

UAVj x̂i
l`1 “l`1 Ti

l ¨UAVj x̂i
l (6.15)

PUAVj x̂i
l`1

“ PUAVj x̂i
l

` PlTi
l`1

(6.16)

6.5.4 The roles of the coincidences

The coincidences are used to solve two distinct problems. On one hand, they are

used to find the transformation from one UAV coordinate frame to another UAV

coordinate frame UAVaTUAVb
. Any process that involves at least two different UAVs

requires to know this transformation. On the other hand, coincidences are used as

additional information in the system to improve the localization estimation of the

UAV of the fleet.
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6.6 Data size for network load estimation

The network communication is not discussed in this thesis, though we provide an

overview of the data load required by the M-SLAM system.

Each time a new keyframe is elected by one of the UAV of the fleet, the following

data are transmitted:

• The UAV identifier,

• The current keyframe identifier and/or timestamps,

• The current state vector: a 7-by-1 vector,

• The covariance matrix associated with the state vector: a 7-by-7 matrix,

• The list of descriptors and keypoints and the keyframe image if additional

feature extraction is required,

• The 3-D point cloud associated with the keyframe (depth estimation of the

features).

The M-SLAM system gather the data broad casted by the fleet and process the

input data to search for coincidences and then, update the estimate of the fleet

trajectory from each UAV point of view.

6.7 Further work

Several ways of improvement for our back-end are under consideration:

• As mentioned in Section 6.5.2, a nonlinear solver for minimizing the residuals

such as Ceres could improve the benefits brought by the coincidences,

• The propagation of uncertainty and the algebra regarding the matrix covari-

ance propagation, particularly when we use the transformation between
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several local coordinate frames to express the measurements, require a partic-

ular focus, the Lie theory provides interesting mathematical tools that could

be applied to solve this question [SDA18] [ZGS18],

• As described in Section 2.2.4, most approaches use either a global or a local

Bundle Adjustment scheme to optimize the re projection error, due to our

focus on the Ceres solver, we did not try this kind of optimization in the

M-SLAM algorithm, it is likely that the use of Bundle Adjustment could

significantly improve the location estimates considering the addition of coin-

cidences, this task remains for future work and experimentation.

6.8 Conclusion

We presented the back-end of the M-SLAM algorithm. We discussed deeply the

differences between the traditional loop-closure and their extended version for

multi-UAV systems: The coincidences. In addition, we provided a method to

incorporate coincidences into the location estimates using a Kalman filtering-like

method (or covariance intersection). New effects on the UAV location were un-

derlined with regard to single-UAV systems. Finally, several approaches can be

considered to improve parts of the M-SLAM system, they are referenced in Section

6.7 and remain for future research.
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CHAPTER SEVEN

M-SLAM EXPERIMENTAL RESULTS:
TOWARD TECHNOLOGICAL

SYSTEM-OF-SYSTEMS

7.1 Introduction

In this chapter, we present the experimental results obtained with the M-SLAM

algorithm. We demonstrate and discuss several significant points

• The effect of the order of coincidences,

• The effect on the location estimates using measurements from the ground

truth for the coincidences (ideal case) in the M-SLAM algorithm compared

with a single-robot SLAM algorithm,

• The effect on the location estimates using real noisy measurements in the

M-SLAM algorithm compared with single-robot SLAM algorithm,

• The accuracy of the location of the fleet for each UAV (information that is not

available in single-robot SLAM algorithm).

7.2 Presentation format of the results

Most of the following plots compare the error on a pose parameter for each UAV’s

keyframe (the keyframes can be seen as samples of the UAV trajectories). The coin-

125



The last coincidence to be processedInter-coincidence between the keyframe 398 of UAV 2 and the keyframe 512 of UAV 3
The first coincidences processed

Intra-coincidence in UAV 1 between the keyframes 493 and 43Order for processing the coincidences
Figure 7.1: An example of plot with explanatory notes.

cidences that occurred during the experimentation are represented with horizontal

arrows. The color of the arrows represent the UAVs involved. The order for pro-

cessing the coincidences is indicated in a bottom-up order. The lowest horizontal

arrow represents the first coincidence processed while the highest horizontal arrow

represents the latest coincidence processed. The following experimentations were

performed using a fleet of three UAVs. For the horizontal arrows, the red color is

associated with the first UAV, the green color is associated with the second UAV

and the blue color is associated with the third UAV. The Figure 7.1 provides an

example with notes about how the plots can be read.

Each UAV navigates independently from the others. We used the EuRoC

dataset to emulate our fleet of UAVs: The first UAV used the sensor measurements

provided by the sequence V 01, the second UAV used the sensor measurements

provided by the sequence V 02 and the third UAV used the sensor measurements

provided by the sequence V 03. In order to provide the reader a better overview

126



-5
-4

-3
-2

-1
 0

 1
 2-5

-4
-3

-2
-1

 0
 1

 2

-0.5

 0

 0.5

 1

 1.5

 2

(m)

UAV 1 trajectory

UAV 2 trajectory

UAV 3 trajectory

(m)

(m)

(m)

Figure 7.2: Overview of the UAV trajectories

of the experiment, the Figure 7.2 displays the trajectory of each UAV in the UAV 1

coordinate frame.

We denote the x, the first component of the translation vector, y, the second

component of the translation vector, and z the third component of the translation

vector. The error on the rotation is expressed using Euler angles, the yaw angles is

denoted φ, the pitch angle is denoted θ, and the roll angle is denoted ψ.

7.3 Effect of the order of the coincidences

As discussed in Section 6.4.2, in multi-UAV systems, it is interesting to process the

coincidences using a different order than the chronological order. Changing the

order for processing the coincidences can have significant effects on the locations.

We tried two sorting criteria to process the coincidences:

1. Processing the coincidences from the most significant correction to the less

significant correction,
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2. Processing the coincidences from the earliest correction of the trajectories to

the latest effect on the trajectories.

We compared the error in position by sorting the coincidences using either the

first or the second criteria. We also compared the errors using ground truth mea-

surements for the coincidences and real noisy measurements for the coincidences.

The measurement associated with a coincidence is the transformation jTi
k, the

transformation between the inertial coordinate frames paired with the jth keyframe

(or pose) of the UAVa and the kth keyframe (or pose) of the UAVb. We explored the

processing of the coincidences using two sources for the coincidence measurements:

Either the ground truth measurement from the motion capture system Vicon or

the measurement from the front-end computed through the method described in

Chapter 5. The ground truth measurements are determined using the timestamps

of the keyframes involved in the coincidences. The main benefit of using ground

truth measurement is to assess the outcomes of the M-SLAM system when the

coincidence measurements are very accurate (the Vicon system provides position

with a precision below the millimeter range). We also evaluated the outcomes of

the M-SLAM system using only the sensors placed on board the UAVs as described

in Section 1.2: the inertial measurements and the front monocular camera imagery

measured on board the UAVs.

Figures 7.3a, 7.3b and 7.3c display the differences in position error in UAV 1

trajectory regarding the sorting criterion using the ground truth measurements

(ideal case) for the coincidences from the UAV 1 point of view. Figures 7.4a, 7.4b

and 7.4c display the error on the trajectory of UAV 2 and Figures 7.5a, 7.5b and 7.5c

display the error on the trajectory of UAV 3.

Figures 7.3a, 7.3b, 7.3c, 7.4a, 7.4b, 7.4c, 7.5a, 7.5b and 7.5c show that with

ideal measurements for the coincidences, the effect of the order for processing the

coincidences is barely visible. Table 7.1 confirms this conclusion as the differences

on the RMSE on the position are significantly small.
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RMSE Criterion 1 Criterion 2 Absolute difference
UAV 1 0.172 m 0.169 m 0.003 m
UAV 2 0.227 m 0.234 m 0.007 m
UAV 3 0.171 m 0.165 m 0.006 m

Table 7.1: RMSE on the position regarding the order criterion for processing the
coincidences using ground truth measurements.

RMSE Criterion 1 Criterion 2 Absolute difference
UAV 1 0.672 m 0.590 m 0.082 m
UAV 2 0.376 m 0.552 m 0.176 m
UAV 3 0.245 m 0.357 m 0.112 m

Table 7.2: RMSE on the position regarding the order criterion for processing the
coincidences using the front-end measurements.

Similarly, we display the error on positions of the trajectories of UAV 1 (Figures

7.6a, 7.6b and 7.6c), UAV 2 (Figures 7.7a, 7.7b and 7.7c) and UAV 3 (Figures 7.8a,

7.8b and 7.8c) regarding the sorting criterion using the front-end measurements

(real case) for the coincidences from the UAV 1 point of view.

When the front-end measurements are used, the order for processing the coinci-

dences make a significant difference on the error on the UAV’s position as shown

in Figures 7.6a, 7.6b, 7.6c, 7.7a, 7.7b, 7.7c, 7.8a, 7.8b and 7.8c. Table 7.2 confirms

this conclusion with a difference in RMSE regarding the order criterion a hundred

times the difference in RMSE obtained using the ground-truth measurements.

In conclusion, the order for processing the coincidences does not have a signifi-

cantly effect on the UAV’s position error if the measurements of the coincidences

are precise enough (below the millimeters of error for the position). If the coinci-

dence measurements are less accurate, the order for processing produces significant

change in the location estimate of the fleet, therefore, the criterion to sort the coinci-

dences must be chosen and studied carefully.

7.4 Ideal case, single-UAV versus multi-UAV

In this section, we compare the location estimate of the UAVs using either a single-

robot system or our M-SLAM system (multi-robot).
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In the first place, we use the ground truth values for setting the coordinate

frames and the coincidences measurements. Therefore, we use precise measure-

ments for the transformations UAVa TUAVb
and jTc

k for each coincidence.

As single-robot system provides the UAV’s location in different coordinate

frames, in order to be able to compare a single-robot SLAM with the M-SLAM out-

put, we considered each UAV’s location from it’s own point of view: We compare

the location estimate of UAV 1 from the UAV 1 point of view, the location of UAV 2

from the UAV 2 point of view and the location of UAV 3 from the UAV 3 point of

view. Figures 7.9a, 7.9b, 7.9c, 7.9d, 7.9e and 7.9f display the absolute error on x, y,

z, φ, θ and ψ for each keyframe of UAV 1 trajectory from the UAV 1 point of view.

Similarly, Figures 7.10a, 7.10b, 7.10c, 7.10d, 7.10e and 7.10f display the absolute

error on UAV 2 trajectory and Figures 7.11a, 7.11b, 7.11c, 7.11d, 7.11e and 7.11f

display the absolute error on the poses of UAV 3.

Using the M-SLAM system, the positions of the UAVs are improved though

peaks in error can be observed. The results for orientation are more unstable,

and should be monitored carefully as they can create instability in the system.

Using our multi-UAV system, we managed to improve the location estimates in

comparison with a single-UAV system. However, our system is not satisfactory

for the orientation estimation. An interesting development would be to include an

INS-based system like in [KHS17] to process the inertial measurements in between

each keyframes, at least for the orientation part. The small distances in between

consecutive keyframes would prevent any significant drifts.

Tables 7.3, 7.4 and 7.5 summarize the plot by displaying the average error the

UAV poses. The results obtained show that for the orientation the M-SLAM system

is outperforms by the single-UAV system. The estimation of orientations are the

main weakness of the M-SLAM system and will be the most important part to

improve in further work. Moreover, the improvement in orientation estimation

should produce a significant improvement in the position estimation. However,

improvements can be observed in the position of UAVs using the M-SLAM system.
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Single-UAV system

Error x y z φ θ ψ

UAV 1 0.144m 0.075m 0.132m 1.435˝ 1.738˝ 0.728˝

UAV 2 0.016m 0.023m 0.020m 0.513˝ 0.300˝ 1.471˝

UAV 3 0.142m 0.042m 0.043m 0.844˝ 0.583˝ 1.961˝

Table 7.3: Average error on the pose of the UAVs using a single-UAV system.

M-SLAM order criterion 1

Error x y z φ θ ψ

UAV 1 0.089m 0.063m 0.067m 1.486˝ 3.324˝ 2.707˝

UAV 2 0.046m 0.034m 0.050m 2.156˝ 2.649˝ 2.830˝

UAV 3 0.080m 0.044m 0.047m 1.727˝ 1.946˝ 2.963˝

Table 7.4: Average error on the pose of the UAVs using the M-SLAM system with
order criterion 1 using ground truth measurements.

The position of UAV 1 is significantly improved using the M-SLAM system, the

UAV 3 position is also improved or at least similar to the results produced by the

single-UAV system. The case of UAV 2 is slightly different, the single-UAV system

outperforms the M-SLAM system. However, it is interesting to observe that the

error on the UAV 2 position given by the single-UAV system are dramatically small.

Obviously, the UAV 2 trajectory is a favorable case for the single-UAV system while

the M-SLAM system do not manage to benefit as much as the single-UAV system

of the measurements taken by the UAV 2.

As displayed, peaks can appear sometimes in the error. Figure 7.12 outlines this

phenomenon.

To understand how the peaks appeared, Figures 7.13a, 7.13b, 7.13c, 7.13d, 7.13e,

7.13f, 7.14a, 7.14b,7.14c, 7.14d, 7.14e and 7.14f provide an overview of the change in

M-SLAM order criterion 2

Error x y z φ θ ψ

UAV 1 0.084m 0.063m 0.068m 1.466˝ 3.220˝ 2.513˝

UAV 2 0.050m 0.028m 0.044m 2.044˝ 2.193˝ 1.789˝

UAV 3 0.077m 0.044m 0.044m 1.597˝ 1.722˝ 2.750˝

Table 7.5: Average error on the pose of the UAVs using the M-SLAM system with
order criterion 2 using ground truth measurements.
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Figure 7.12: An example of peak in the error in the UAV 2 trajectory

the error on x throughout the processing of the coincidences.

We discovered that those peaks are due to the forward effect (Section 6.4.2).

When the coincidences are processed, the trajectory is re-built based on the new

value of the corrected node using the relative motion measurements. This strategy

is successful for a medium time range (about 250 keyframes) but when the trajectory

becomes longer, it can create instabilities (the peak observed in Figure 7.12). To

counter-balance those instabilities, two strategies could be considered: Either to

trigger coincidences around this moment (it could be part of the navigation and

decision algorithm for the multi-UAV exploration), or include a feed-back loop in

the system to update the output from the odometry measurements. Those peaks

can also be partially explained by the values of the covariance matrices. As VINS-

Mono do not output the covariance matrices related to the poses and keyframes,

we estimate the value using the ground truth which lead to an underestimation

of the covariances. As the covariance values are underestimated, the backward
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propagation cannot smooth fully the trajectory and therefore, correct entirely the

peaks due to the forward effect.

7.5 Real measurements, single-UAV versus multi-UAV

The Section 7.4 provides an overview of the best performance we can expect from

our M-SLAM approach using precise measurements from a motion capture system

Vicon for the coincidences; but in a real system, the ground truth cannot be used as

measurements. In this section, we provide an overview of the results we obtained

from the M-SLAM system in comparison to the single-UAV SLAM when we use the

measurements computed by the front-end (Chapter 5). Both the coordinate frame

transformations UAVi TUAVj
and the transformations camk Tcaml

for each coincidence

are computed from real measurements recorded on board the UAVs.

Figures 7.15a, 7.15b, 7.15c, 7.15d, 7.15e and 7.15f display the absolute error on x,

y, z, φ, θ and ψ for each keyframe of UAV 1 trajectory from the UAV 1 point of view.

Similarly, Figures 7.16a, 7.16b, 7.16c, 7.16d, 7.16e and 7.16f display the absolute

error on UAV 2 trajectory and Figures 7.17a, 7.17b, 7.17c, 7.17d, 7.17e and 7.17f

display the absolute error on the poses of UAV 3.

As expected, using the front-end measurements that are less precise than the

ground truth measurements for the coincidences, we obtain greater error. Quite

surprisingly, except for the x component, the position error is similar to the results

obtained using the ground truth measurements. Regarding the orientation part,

the estimate are significantly less precise in average than the results obtained with

ground truth which confirm that the orientation is more sensitive to the processing

of the coincidences than the position. However, we would like to underline that in

this experiment there is a critical additional piece of information that is estimated:

The transformation between the UAV’s coordinate frames. As a matter of fact, the

transformations UAVa TUAVb
are not considered in a single-UAV system (because

there is only one UAV) and are measured very precisely when we use the ground
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M-SLAM order criterion 1

Error x y z φ θ ψ

UAV 1 0.378m 0.137m 0.227m 9.138˝ 7.471˝ 2.162˝

UAV 2 0.073m 0.040m 0.044m 3.025˝ 3.055˝ 1.850˝

UAV 3 0.148m 0.039m 0.043m 0.870˝ 1.146˝ 2.273˝

Table 7.6: Average error on the pose of the UAVs using the M-SLAM system with
order criterion 1 using the front-end measurements.

M-SLAM order criterion 2

Error x y z φ θ ψ

UAV 1 0.424m 0.073m 0.121m 4.714˝ 6.223˝ 2.093˝

UAV 2 0.104m 0.039m 0.068m 4.164˝ 3.884˝ 2.622˝

UAV 3 0.161m 0.040m 0.047m 1.124˝ 1.576˝ 2.681˝

Table 7.7: Average error on the pose of the UAVs using the M-SLAM system with
order criterion 2 using the front-end measurements.

truth measurements.

Tables 7.6 and 7.7 provide a summary of the results by displaying the average

error on the poses.

Using the front-end measurements, the single-UAV outperforms the precision

on the pose estimation provided by the M-SLAM system. However, there is an

additional piece of information that is estimated in the M-SLAM that is required

for each UAV to estimate where are the other UAVs of the fleet.

7.6 Localization of the fleet

7.6.1 Experiment goal

One of the main benefit of the M-SLAM approach is to make possible for each UAV

to have an estimate of the location of the other UAV of the fleet, information that is

not available in single-UAV SLAM. In this section we focus on the estimation of the

trajectory of the fleet for each UAV. This part is critical for the design of distributed

exploration algorithm as UAVs cannot have an effective exploration strategy with-

out having information about the pose of the others. In this experiment, we are in
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Figure 7.18: UAV 1 point of view, trajectory of the fleet (1)

the shoes of each UAV to understand what information they receive from the other

via the inter-coincidence processing.

7.6.2 UAV 1 point of view

We present the estimation of the fleet trajectory from UAV 1 point of view for the

first keyframes. After some keyframes, the graphs become so tangled that a static

visual representation is not suitable anymore.

When the experiment begun, the UAV 1 and UAV 3 take off roughly at the

same and from close position. Figure 7.18 shows what UAV 1 knows after a few

keyframes: the UAV 1 pose estimates and the UAV 3 trajectory with regard to

tUAV1u. The trajectory of UAV 3 is longer as the UAV flies faster than UAV 1.

The UAV 1 trajectory is very close to the ground truth because we are regarding

the experiment from UAV 1 point of view, UAV 3 is further to its ground truth

because the transformation UAV1TUAV3
is estimated by the M-SLAM system using

the detected inter-coincidences, measurements that are noisy.
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Figure 7.19: UAV 1 point of view, trajectory of the fleet (2)

UAV 2 took off after the other UAVs. Figure 7.19 illustrate the inclusion of UAV

2 into the UAV 1 pose-graph. An inter-coincidence is detected between UAV 2

and UAV 3. As UAV 3 and UAV 1 are already connected, there is an indirect link

between UAV 1 and UAV 2. Using this indirect link, the transformation UAV1TUAV2

can be estimated.

In Figure 7.20, the trajectory of UAV 2 with regard to tUAV1u is improved by

the detection of a direct inter-coincidence between UAV 1 and UAV 2. There is also

the first intra-coincidence in the UAV 2 trajectory.

In Figure 7.21, the experimentation keep running and the UAV trajectories

become longer with the time going. Additional coincidences are detected and

processed to improve the pose estimates.

7.6.3 UAV 2 point of view

The case of UAV 2 is interesting as it takes off after UAV 1 and UAV 3.

The moment in the experiment Figure 7.18 was taken, UAV 2 has not taken
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Figure 7.20: UAV 1 point of view, trajectory of the fleet (3)
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Figure 7.21: UAV 1 point of view, trajectory of the fleet (4)
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Figure 7.22: UAV 2 point of view, trajectory of the fleet (1)

off yet. Therefore, UAV 2 has no knowledge about the rest of fleet, this explains

why only ground truth trajectories are plotted in Figure 7.22. UAV 1 and UAV 3

are flying following the trajectories plotted by their ground truth measurements,

however, as UAV 2 has not detected coincidences, it cannot know where the UAVs

are.

Similarly to UAV 1, the trajectory of UAV 2 is very close to the ground truth as

this we are observing from the UAV 2 point of view. Therefore, the transformations

UAV1TUAV2
and UAV2TUAV3

are estimated either directly (Figure 7.24) or indirectly

(Figure 7.23). Figure 7.25 illustrates the experiment running with he first intra-

coincidences detected.

To be consistent in the representation, the plots of the fleet trajectories from

each UAV point of view (respectively Figures 7.18, 7.22 and 7.26 for the first freeze,

Figures 7.19, 7.23 and 7.27 for the second freeze, Figures 7.20, 7.24 and 7.28 for the

third freeze, and Figures 7.21, 7.25 and 7.29 for the fourth freeze) were all taken at

the same time with the same number of coincidences processed.
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Figure 7.23: UAV 2 point of view, trajectory of the fleet (2)
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Figure 7.24: UAV 2 point of view, trajectory of the fleet (3)
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Figure 7.25: UAV 2 point of view, trajectory of the fleet (4)

7.6.4 UAV 3 point of view

Finally, we observe the scene from UAV 3 point of view. Figures 7.26, 7.27, 7.28

and 7.29 illustrate how the trajectories change with the experiment running. We

confirm the previous remarks: The UAV 3 poses are precisely estimated with regard

to the ground truth because we are observing from the UAV 3 point of view. At

the beginning, UAV 1 did not take off and therefore does not share any direct or

direct coincidences with UAV 3, that is the reason why the UAV 2 trajectory does

not appear on Figure 7.26. Then, there is a good quality inter-coincidence between

the UAV 2 and UAV 3 that allow UAV 3 to estimate where is UAV 2 with regard to

tUAV3u quite precisely.

Tables 7.8 and 7.9 provide the RMSE of the fleet for each UAV point of view.

The main goal we target is fulfilled as each UAV has information about the

location of the other UAVs of the fleet with regard to its own coordinate frame.

However, we cannot conclude to best criterion for ranking the coincidences before
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Figure 7.26: UAV 3 point of view, trajectory of the fleet (1)
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Figure 7.27: UAV 3 point of view, trajectory of the fleet (2)
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Figure 7.28: UAV 3 point of view, trajectory of the fleet (3)
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Figure 7.29: UAV 3 point of view, trajectory of the fleet (4)
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UAV 1 UAV 2 UAV 3
PoV UAV 1 0.622 m 0.537 m 0.297 m
PoV UAV 2 0.793 m 0.257 m 0.206 m
PoV UAV 3 0.602 m 0.335 m 0.234 m

Table 7.8: RMSE of the fleet using the front-end measurement and order criterion 1.

UAV 1 UAV 2 UAV 3
PoV UAV 1 0.537 m 0.721 m 0.606 m
PoV UAV 2 0.724 m 0.476 m 0.213 m
PoV UAV 3 0.509 m 0.459 m 0.251 m

Table 7.9: RMSE of the fleet using the front-end measurement and order criterion 2.

their processing. Though, we can affirm that this order has a significant on the

error of the estimates.
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CHAPTER EIGHT

CONCLUDING REMARKS AND

DIRECTIONS FOR FUTURE RESEARCH

8.1 Contributions

In this thesis, we presented the M-SLAM system that solves some of the critical

issues related to the localization of the UAVs. The main application of the system

is navigation and exploration of unknown areas by using a fleet of collaborative

autonomous UAVs. We provided a distributed localization component considering

the inherent challenges due to the independent operations of the autonomous

UAVs: They can take off and land from any place and time without constraints.

As the M-SLAM is meant to be included into distributed exploration algorithms

and is part the DIVINA challenge team, some specifications were imposed: To

produce metric estimates for both the 3-D representation of the environment and

the locations, by using only a front monocular camera and an IMU placed on board

each UAV for the sensing part.

We proposed an extensive study about the Technological System-of-Systems

about autonomous fleet of robots to define and illustrate most of the concepts we

used to manage the fleet of UAVs, and about the single robot SLAM algorithms

with a specific focus on monocular SLAM, monocular-inertial SLAM and real-time

SLAM algorithms.

We created a novel mechanism for metric map and pose estimation in monocular
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SLAM using a loosely-coupled fusion with inertial measurements. This work

was published in the IEEE International Conference on Multi-sensor Fusion and

Integration for Intelligent Systems (MFI) in 2017 [Spa+17].

We designed and implemented the M-SLAM system, which is capable of pro-

viding for each UAV, a location estimation of the UAVs of the fleet (including itself)

with a minimal set of work hypothesis (no absolute measurements and no a priori

knowledge on the positions).

We compared the results provided by the M-SLAM system to the output of

a recently published inertial-monocular SLAM regarding the location of a single

robot. We also discussed the estimation of the trajectory of the fleet from each UAV

point of view, an information that is not available in the usual single-UAV systems.

To create the M-SLAM system, we extended the concept of loop-closure in

traditional single-robot SLAM to multi-robot systems.

8.2 Further improvements in the M-SLAM system

During this work, choices had to be made in order to being able to offer a complete

system. Therefore, in some components, there is a good potential for further

investigation and improvement:

• In our loosely-coupled scheme, we should add a RANSAC module to improve

the convergence to the best scaling coefficient,

• In the M-SLAM system, further investigation should be performed to improve

the orientation estimation,

• In the M-SLAM system, additional experiments should be done with better

estimated covariance matrices, this implies a follow-up work in the field of

uncertainty and covariance matrices in the single-UAV SLAM used as the

input,

• Find a solution to assess the uncertainty of the detected coincidences,
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• Extend and compare the experiments using a fleet of five drones and a loosely-

coupled inertial-monocular SLAM as an input, in addition to the current

tightly-coupled inertial-monocular SLAM algorithm.

If we consider a longer road-map, we also plan additional engineering work on

the ROS package for the M-SLAM that is currently a prototype. As well as testing

the M-SLAM system as an input for an exploration algorithm.

8.3 Future research

2018 has been a prolific year for research publications in multi-UAV SLAM and

visual-inertial systems. The incorporation of a number of published works into the

M-SLAM would be beneficial for additional experiments and comparative analysis.

Many publications would be interesting to be incorporated in the M-SLAM

system in order to perform additional experiments and comparisons.

The front-end of the CVI-SLAM, the OKVis and ROVIOLI algorithms and our

loosely-coupled approach for metric state estimation are all of great interest to test

on our front-end. A deeper study on the choice of descriptors and the filtering of

false coincidence candidates could also help to add improvements in our system

and save computation time.

For the back-end, several components can be studied or improved. The problem

of the propagation of covariance matrices and the propagation of uncertainty more

generally would require thorough investigation. The Lie theory [SDA18] can help

to bring a satisfactory answer to this problem. The effect of the map merging on

the localization is also an phenomenon that could be studied, moreover, now that

useful frameworks, such as Maplab [Sch+18], exist. A particular attention can

also be given to define an optimization process in the back-end, either minimizing

residuals through a nonlinear solver such as Ceres [AM12], or using one of the

form of the Bundle Adjustment, would it be global, local or pose-only optimization.
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