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README

This	site	contains	source	text	for	Computer	Networks:	A	Systems	Approach,	now	available	under	terms	of	the
Creative	Commons	(CC	BY	4.0)	license.	The	community	is	invited	to	contribute	corrections,	improvements,	updates,
and	new	material	under	the	same	terms.

Like	many	open	source	software	projects,	this	one	has	been	seeded	with	once	restricted	content:	the	5th	edition	of
Peterson	and	Davie,	copyrighted	by	Elsevier.	Our	hope	is	that	open	sourcing	this	material	will	both	make	it	widely
available	and	serve	as	an	attractor	for	new	content:	updating	what's	already	there,	expanding	it	to	cover	new	topics,
and	augmenting	the	text	with	additional	teaching	collateral.

We	will	initially	play	an	editorial	role	(curating	and	wordsmithing)	for	contributions	that	come	back,	but	our	plan	is	to
share	ownership	of	the	project	with	others	committed	to	its	success.

And	if	you	make	use	of	this	work,	the	attribution	should	include	the	following	information:

Title:	Computer	Networks:	A	Systems	Approach
Authors:	Larry	Peterson	and	Bruce	Davie
Copyright:	Elsevier,	2012
Source:	https://github.com/SystemsApproach
License:	CC	BY	4.0

Read	the	Book
An	online	version	of	the	book	is	published	at	https://book.systemsapproach.org.	You	can	also	find	PDF	and	eBook
versions	here.

To	track	progress	and	receive	notices	about	new	versions,	you	can	follow	the	project	on	Facebook	and	Twitter.	To
read	a	running	commentary	on	how	the	Internet	is	evolving,	follow	the	Systems	Approach	Blog.

The	latest	release	is	v6.0,	which	you	can	roughly	equate	with	a	6th	Edition.	Read	the	Preface	to	find	out	what's
new	in	this	version.	Note	that	Morgan	Kaufmann	(Elsevier)	plans	to	publish	a	6th	edition	of	their	textbook	based
on	a	fork	of	this	version,	but	going	forward,	open	source	releases	found	here	will	not	necessarily	stay	in	sync
with	any	future	published	editions.

Build	the	Book

The	source	content	is	organized	as	a	git	repository	per	chapter,	each	of	which	focuses	on	a	major	networking	topic
(e.g.,	Internetworking,	Congestion	Control).	A	"root"	repo	(this	one)	contains	the	gitbook	files	that	can	be	used	to
create	a	full	book.	To	build	a	web-viewable	version,	you	first	need	to	install	a	couple	packages:

Gitbook	Toolchain
Node.js	Package	Manager

Then	do	the	following	to	download	the	source:

mkdir	~/systemsapproach
cd	~/systemsapproach
git	clone	https://github.com/systemsapproach/book.git
cd	book
git	submodule	init
git	submodule	update

About
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To	build	a	web	version	of	the	book,	simply	type:

make

If	all	goes	well,	you	will	be	able	to	view	the	book	in	your	browser	at		localhost:4000	.	(If	all	doesn't	go	well,	you	might	try
typing		make		a	second	time.)

You	can	also	build	other	versions	of	the	book	(e.g.,	pdf,	ebook),	but	doing	so	requires	installing	other	packages,	as
documented	on	the	GitBook	Toolchain	site.

How	to	Contribute

We	hope	that	if	you	use	this	material,	you	are	also	willing	to	contribute	back	to	it.	If	you	are	new	to	open	source,	you
might	check	out	this	How	to	Contribute	to	Open	Source	guide.	Among	other	things,	you'll	learn	about	posting	Issues
that	you'd	like	to	see	addressed,	and	issuing	Pull	Requests	to	merge	your	improvements	back	into	GitHub.

If	you	do	want	to	contribute	either	patches	or	new	material,	you	will	need	to	sign	a	Contributor	Licensing	Agreement
(CLA).	You'll	be	prompted	to	sign	the	CLA	the	first	time	you	make	a	pull	request.

The	CLA	is	pretty	straightforward:	it	establishes	that	(a)	you	have	the	right	to	contribute	what	you're	contributing,	and
(b)	what	you	contribute	is	available	to	everyone	else	under	the	same	CC	BY	terms	as	the	existing	content.	The	CLA	is
a	little	unusual	in	that	it	explicitly	calls	out	Elsevier's	rights	(which	are	the	same	as	everyone's),	but	this	does	signal
their	intent	to	continue	publishing	textbooks	based	on	the	material.

You	should	also	familiarize	yourself	with	the	guidelines	for	contributing.	As	a	first	step,	we	recommend	you	check	to
see	if	any	new	text	you'd	like	to	submit	passes	our		MarkDownLint		test.	To	do	this,	run

cd	~/systemsapproach
make	lint

If	you'd	like	to	contribute	and	are	looking	for	something	that	needs	attention,	see	the	current	Project	Board.	We'd	also
like	to	expand	the	set	of	topics/chapters	beyond	the	initial	set	inherited	from	the	5th	edition,	so	if	you	have	ideas,	we'd
love	to	hear	from	you.	Send	email	to		discuss@systemsapproach.org	,	or	better	yet,	join	the	forum.

Finally,	in	as	much	as	this	is	an	on-going	effort,	we	will	try	to	record	and	track	our	progress.	For	now,	think	of	this	as	a
poor-man's	release	notes.	Additional	information	about	work-in-progress	can	be	found	in	the	wiki.

Join	Us

We	hope	you've	gotten	value	out	of	Computer	Networks:	A	Systems	Approach	over	the	years,	and	we're	eager	to
have	you	join	us	in	this	new	venture.

Larry	Peterson	&	Bruce	Davie
August	2018
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Preface

It	has	been	nearly	ten	years	since	the	5th	Edition	of	Computer	Networks:	A	Systems	Approach	was	published.	Much
has	changed	in	that	time,	most	notably,	the	explosion	of	the	cloud	and	smartphone	apps	onto	the	scene.	In	many
ways,	this	is	reminiscent	of	the	dramatic	affect	the	Web	was	having	on	the	Internet	when	we	published	the	1st	Edition
of	the	book	in	1996.

The	6th	Edition	adapts	to	the	times,	but	keeps	the	Systems	Approach	as	its	north	star.	In	broad	strokes,	we	updated
this	new	edition	in	three	main	ways:

We	refreshed	the	examples	to	reflect	the	current	state	of	the	world.	This	includes	deleting	anachronisms	(e.g.,
dial-up	modem),	using	popular	applications	(e.g.,	Netflix,	Spotify)	to	motivate	the	problems	being	addressed,	and
updating	the	numbers	to	represent	the	state-of-the-art	technology	(e.g.,	10-Gbps	Ethernet).

We	emphasize	a	historical	perspective,	connecting	the	dots	between	the	original	research	that	led	to	the
development	of	technologies	like	multicast,	real-time	video	streaming,	and	quality-of-service,	and	now-familar
cloud	applications	like	GoToMeeting,	Netflix,	and	Spotify.	This	is	in	keeping	with	our	emphasis	on	the	design
process	and	not	just	the	end	result,	which	is	especially	important	today	since	so	much	the	Internet	is	now
available	primarily	in	proprietary	commercial	products.

We	place	the	Internet	in	the	broader	context	of	the	Cloud,	and	just	as	importantly,	in	the	context	of	the	commerial
forces	that	are	shaping	the	Internet	and	Cloud.	This	has	minimal	impact	on	the	technical	details	presented
throughout	the	book,	but	it	is	discussed	in	a	new	Broader	Perspective	section	at	the	end	of	each	chapter.	We
hope	one	side-effect	of	this	discussion	is	to	foster	an	appreciation	for	the	Internet's	continuous	evolution,	and	the
opportunity	for	innovation	it	represents.

More	specifically,	the	6th	Edition	includes	the	following	major	changes:

New	Section	1.6	introduces	the	recurring	Cloudification	theme.
New	Section	2.8	describes	the	Access	Network,	including	Passive	Optical	Networks	(PON)	and	5G's	Radio
Access	Networks	(RAN).
Section	3.4	updated	to	include	descriptions	of	White-Box	Switches	and	Software-Defined	Networks	(SDN).
New	Section	3.5	describes	VXLANs	and	the	role	of	overlays	in	the	Cloud.
New	Section	4.5	describes	how	the	Cloud	impacts	the	Internet's	structure.
Section	5.3	expanded	to	include	a	description	of	gRPC.
Sections	6.3	and	6.4	updated	to	include	descriptions	of	TCP	CUBIC,	DCTCP,	and	BBR.
Section	6.4	expanded	to	include	a	description	of	Active	Queue	Management	(AQM).
Section	7.1	expanded	to	include	a	desciption	of	Protocol	Buffers.
Section	7.2	expanded	to	include	a	desciption	of	HTTP	Adaptive	Streaming.
New	Section	8.1	introduces	the	duality	of	Threats	and	Trust.
New	Section	8.6	describes	Decentralized	Identity	Management	and	the	role	of	Blockchains.
Section	9.1	updated	to	include	a	description	of	HTTP/2,	along	with	a	discussion	of	REST,	gRPC,	and	Cloud
Services.
Section	9.3	expaned	to	include	a	description	of	modern	Network	Management	Systems	including	the	use	of
OpenConfig	and	gNMI.

We	would	like	to	acknowledge	the	following	people	for	their	help	with	new	content:

Larry	Brakmo:	TCP	Congestion	Control
Carmelo	Cascone:	White-Box	Switches
Charles	Chan:	White-Box	Switches
Jude	Nelson:	Decentralized	Identity
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Oguz	Sunay:	Cellular	Networks
Thomas	Vachuska:	Network	Management

And	the	following	individuals	(github	users)	for	their	various	contributions:

Mohammed	Al-Ameen
Andy	Bavier
Manuel	Berfelde
Chris	Goldsworthy
John	Hartman
Diego	López	León
Matteo	Scandolo
Mike	Wawrzoniak
罗泽轩	(spacewander)
Arnaud	(arvdrpoo)
Desmond	(kingdido999)
Guo	(ZJUGuoShuai)
Hellman	(eshellman)
Xtao	(vertextao)

Larry	&	Bruce
August	2019
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Chapter	1:	Foundation

I	must	Create	a	System,	or	be	enslav'd	by	another	Man's;	I	will	not	Reason	and	Compare:	my	business	is	to
Create.	—William	Blake

Problem:	Building	a	Network

Suppose	you	want	to	build	a	computer	network,	one	that	has	the	potential	to	grow	to	global	proportions	and	to	support
applications	as	diverse	as	teleconferencing,	video	on	demand,	electronic	commerce,	distributed	computing,	and	digital
libraries.	What	available	technologies	would	serve	as	the	underlying	building	blocks,	and	what	kind	of	software
architecture	would	you	design	to	integrate	these	building	blocks	into	an	effective	communication	service?	Answering
this	question	is	the	overriding	goal	of	this	book—to	describe	the	available	building	materials	and	then	to	show	how
they	can	be	used	to	construct	a	network	from	the	ground	up.

Before	we	can	understand	how	to	design	a	computer	network,	we	should	first	agree	on	exactly	what	a	computer
network	is.	At	one	time,	the	term	network	meant	the	set	of	serial	lines	used	to	attach	dumb	terminals	to	mainframe
computers.	Other	important	networks	include	the	voice	telephone	network	and	the	cable	TV	network	used	to
disseminate	video	signals.	The	main	things	these	networks	have	in	common	are	that	they	are	specialized	to	handle
one	particular	kind	of	data	(keystrokes,	voice,	or	video)	and	they	typically	connect	to	special-purpose	devices
(terminals,	hand	receivers,	and	television	sets).

What	distinguishes	a	computer	network	from	these	other	types	of	networks?	Probably	the	most	important
characteristic	of	a	computer	network	is	its	generality.	Computer	networks	are	built	primarily	from	general-purpose
programmable	hardware,	and	they	are	not	optimized	for	a	particular	application	like	making	phone	calls	or	delivering
television	signals.	Instead,	they	are	able	to	carry	many	different	types	of	data,	and	they	support	a	wide,	and	ever
growing,	range	of	applications.	Today's	computer	networks	have	pretty	much	taken	over	the	functions	previously
performed	by	single-use	networks.	This	chapter	looks	at	some	typical	applications	of	computer	networks	and
discusses	the	requirements	that	a	network	designer	who	wishes	to	support	such	applications	must	be	aware	of.

Once	we	understand	the	requirements,	how	do	we	proceed?	Fortunately,	we	will	not	be	building	the	first	network.
Others,	most	notably	the	community	of	researchers	responsible	for	the	Internet,	have	gone	before	us.	We	will	use	the
wealth	of	experience	generated	from	the	Internet	to	guide	our	design.	This	experience	is	embodied	in	a	network
architecture	that	identifies	the	available	hardware	and	software	components	and	shows	how	they	can	be	arranged	to
form	a	complete	network	system.

In	addition	to	understanding	how	networks	are	built,	it	is	increasingly	important	to	understand	how	they	are	operated
or	managed	and	how	network	applications	are	developed.	Almost	all	of	us	now	have	computer	networks	in	our
homes,	offices,	and	in	some	cases	in	our	cars,	so	operating	networks	is	no	longer	a	matter	only	for	a	few	specialists.
And	with	the	proliferation	of	smartphones,	many	more	of	this	generation	are	developing	networked	applications	than	in
the	past.	So	we	need	to	consider	networks	from	these	multiple	perspectives:	builders,	operators,	application
developers.

To	start	us	on	the	road	toward	understanding	how	to	build,	operate,	and	program	a	network,	this	chapter	does	four
things.	First,	it	explores	the	requirements	that	different	applications	and	different	communities	of	people	place	on	the
network.	Second,	it	introduces	the	idea	of	a	network	architecture,	which	lays	the	foundation	for	the	rest	of	the	book.
Third,	it	introduces	some	of	the	key	elements	in	the	implementation	of	computer	networks.	Finally,	it	identifies	the	key
metrics	that	are	used	to	evaluate	the	performance	of	computer	networks.

Chapter	1:	Foundation
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1.1	Applications

Most	people	know	the	Internet	through	its	applications:	the	World	Wide	Web,	email,	social	media,	streaming	music	or
movies,	videoconferencing,	instant	messaging,	file-sharing,	to	name	just	a	few	examples.	That	is	to	say,	we	interact
with	the	Internet	as	users	of	the	network.	Internet	users	represent	the	largest	class	of	people	who	interact	with	the
Internet	in	some	way,	but	there	are	several	other	important	constituencies.

There	is	the	group	of	people	who	create	the	applications—a	group	that	has	greatly	expanded	in	recent	years	as
powerful	programming	platforms	and	new	devices	such	as	smartphones	have	created	new	opportunities	to	develop
applications	quickly	and	to	bring	them	to	a	large	market.

Then	there	are	those	who	operate	or	manage	networks—mostly	a	behind-the-scenes	job,	but	a	critical	one	and	often
a	very	complex	one.	With	the	prevalence	of	home	networks,	more	and	more	people	are	also	becoming,	if	only	in	a
small	way,	network	operators.

Finally,	there	are	those	who	design	and	build	the	devices	and	protocols	that	collectively	make	up	the	Internet.	That
final	constituency	is	the	traditional	target	of	networking	textbooks	such	as	this	one	and	will	continue	to	be	our	main
focus.	However,	throughout	this	book	we	will	also	consider	the	perspectives	of	application	developers	and	network
operators.

Considering	these	perspectives	will	enable	us	to	better	understand	the	diverse	requirements	that	a	network	must
meet.	Application	developers	will	also	be	able	to	make	applications	that	work	better	if	they	understand	how	the
underlying	technology	works	and	interacts	with	the	applications.	So,	before	we	start	figuring	out	how	to	build	a
network,	let's	look	more	closely	at	the	types	of	applications	that	today's	networks	support.

Classes	of	Applications
The	World	Wide	Web	is	the	Internet	application	that	catapulted	the	Internet	from	a	somewhat	obscure	tool	used
mostly	by	scientists	and	engineers	to	the	mainstream	phenomenon	that	it	is	today.	The	Web	itself	has	become	such	a
powerful	platform	that	many	people	confuse	it	with	the	Internet,	and	it's	a	bit	of	a	stretch	to	say	that	the	Web	is	a	single
application.

In	its	basic	form,	the	Web	presents	an	intuitively	simple	interface.	Users	view	pages	full	of	textual	and	graphical
objects	and	click	on	objects	that	they	want	to	learn	more	about,	and	a	corresponding	new	page	appears.	Most	people
are	also	aware	that	just	under	the	covers	each	selectable	object	on	a	page	is	bound	to	an	identifier	for	the	next	page
or	object	to	be	viewed.	This	identifier,	called	a	Uniform	Resource	Locator	(URL),	provides	a	way	of	identifying	all	the
possible	objects	that	can	be	viewed	from	your	web	browser.	For	example,

http://www.cs.princeton.edu/llp/index.html

is	the	URL	for	a	page	providing	information	about	one	of	this	book's	authors:	the	string		http		indicates	that	the
Hypertext	Transfer	Protocol	(HTTP)	should	be	used	to	download	the	page,		www.cs.princeton.edu		is	the	name	of	the
machine	that	serves	the	page,	and		/llp/index.html		uniquely	identifies	Larry's	home	page	at	this	site.

What	most	web	users	are	not	aware	of,	however,	is	that	by	clicking	on	just	one	such	URL	over	a	dozen	messages
may	be	exchanged	over	the	Internet,	and	many	more	than	that	if	the	web	page	is	complicated	with	lots	of	embedded
objects.	This	message	exchange	includes	up	to	six	messages	to	translate	the	server	name	(	www.cs.princeton.edu	)	into
its	Internet	Protocol	(IP)	address	(	128.112.136.35	),	three	messages	to	set	up	a	Transmission	Control	Protocol	(TCP)
connection	between	your	browser	and	this	server,	four	messages	for	your	browser	to	send	the	HTTP	"GET"	request
and	the	server	to	respond	with	the	requested	page	(and	for	each	side	to	acknowledge	receipt	of	that	message),	and
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four	messages	to	tear	down	the	TCP	connection.	Of	course,	this	does	not	include	the	millions	of	messages
exchanged	by	Internet	nodes	throughout	the	day,	just	to	let	each	other	know	that	they	exist	and	are	ready	to	serve
web	pages,	translate	names	to	addresses,	and	forward	messages	toward	their	ultimate	destination.

Another	widespread	application	class	of	the	Internet	is	the	delivery	of	"streaming"	audio	and	video.	Services	such	as
video	on	demand	and	Internet	radio	use	this	technology.	While	we	frequently	start	at	a	website	to	initiate	a	streaming
session,	the	delivery	of	audio	and	video	has	some	important	differences	from	fetching	a	simple	web	page	of	text	and
images.	For	example,	you	often	don't	want	to	download	an	entire	video	file—a	process	that	might	take	a	few	minutes
—before	watching	the	first	scene.	Streaming	audio	and	video	implies	a	more	timely	transfer	of	messages	from	sender
to	receiver,	and	the	receiver	displays	the	video	or	plays	the	audio	pretty	much	as	it	arrives.

Note	that	the	difference	between	streaming	applications	and	the	more	traditional	delivery	of	a	page	of	text	or	still
images	is	that	humans	consume	audio	and	video	streams	in	a	continuous	manner,	and	discontinuity—in	the	form	of
skipped	sounds	or	stalled	video—is	not	acceptable.	By	contrast,	a	page	of	text	can	be	delivered	and	read	in	bits	and
pieces.	This	difference	affects	how	the	network	supports	these	different	classes	of	applications.

A	subtly	different	application	class	is	real-time	audio	and	video.	These	applications	have	considerably	tighter	timing
constraints	than	streaming	applications.	When	using	a	voice-over-IP	application	such	as	Skype	or	a
videoconferencing	application,	the	interactions	among	the	participants	must	be	timely.	When	a	person	at	one	end
gestures,	then	that	action	must	be	displayed	at	the	other	end	as	quickly	as	possible.

Not	quite	"as	soon	as	possible"...	Human	factors	research	indicates	300	ms	is	a	reasonable	upper	bound	for
how	much	round-trip	delay	can	be	tolerated	in	a	telephone	call	before	humans	complain,	and	a	100-ms	delay
sounds	very	good.

When	one	person	tries	to	interrupt	another,	the	interrupted	person	needs	to	hear	that	as	soon	as	possible	and	decide
whether	to	allow	the	interruption	or	to	keep	talking	over	the	interrupter.	Too	much	delay	in	this	sort	of	environment
makes	the	system	unusable.	Contrast	this	with	video	on	demand	where,	if	it	takes	several	seconds	from	the	time	the
user	starts	the	video	until	the	first	image	is	displayed,	the	service	is	still	deemed	satisfactory.	Also,	interactive
applications	usually	entail	audio	and/or	video	flows	in	both	directions,	while	a	streaming	application	is	most	likely
sending	video	or	audio	in	only	one	direction.

Figure	1.	A	multimedia	application	including	videoconferencing.

Videoconferencing	tools	that	run	over	the	Internet	have	been	around	now	since	the	early	1990s	but	have	achieved
widespread	use	in	the	last	few	years,	with	several	commercial	products	on	the	market.	An	example	of	one	such
system	is	shown	in	Figure	1.	Just	as	downloading	a	web	page	involves	a	bit	more	than	meets	the	eye,	so	too	with
video	applications.	Fitting	the	video	content	into	a	relatively	low	bandwidth	network,	for	example,	or	making	sure	that
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the	video	and	audio	remain	in	sync	and	arrive	in	time	for	a	good	user	experience	are	all	problems	that	network	and
protocol	designers	have	to	worry	about.	We'll	look	at	these	and	many	other	issues	related	to	multimedia	applications
later	in	the	book.

Although	they	are	just	two	examples,	downloading	pages	from	the	web	and	participating	in	a	videoconference
demonstrate	the	diversity	of	applications	that	can	be	built	on	top	of	the	Internet	and	hint	at	the	complexity	of	the
Internet's	design.	Later	in	the	book	we	will	develop	a	more	complete	taxonomy	of	application	types	to	help	guide	our
discussion	of	key	design	decisions	as	we	seek	to	build,	operate,	and	use	networks	that	such	a	wide	range	of
applications.	The	book	concludes	by	revisiting	these	two	specific	applications,	as	well	as	several	others	that	illustrate
the	breadth	of	what	is	possible	on	today's	Internet.

For	now,	this	quick	look	at	a	few	typical	applications	will	suffice	to	enable	us	to	start	looking	at	the	problems	that	must
be	addressed	if	we	are	to	build	a	network	that	supports	such	application	diversity.
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1.2	Requirements

We	have	established	an	ambitious	goal	for	ourselves:	to	understand	how	to	build	a	computer	network	from	the	ground
up.	Our	approach	to	accomplishing	this	goal	will	be	to	start	from	first	principles	and	then	ask	the	kinds	of	questions	we
would	naturally	ask	if	building	an	actual	network.	At	each	step,	we	will	use	today's	protocols	to	illustrate	various	design
choices	available	to	us,	but	we	will	not	accept	these	existing	artifacts	as	gospel.	Instead,	we	will	be	asking	(and
answering)	the	question	of	why	networks	are	designed	the	way	they	are.	While	it	is	tempting	to	settle	for	just
understanding	the	way	it's	done	today,	it	is	important	to	recognize	the	underlying	concepts	because	networks	are
constantly	changing	as	technology	evolves	and	new	applications	are	invented.	It	is	our	experience	that	once	you
understand	the	fundamental	ideas,	any	new	protocol	that	you	are	confronted	with	will	be	relatively	easy	to	digest.

Stakeholders

As	we	noted	above,	a	student	of	networks	can	take	several	perspectives.	When	we	wrote	the	first	edition	of	this	book,
the	majority	of	the	population	had	no	Internet	access	at	all,	and	those	who	did	obtained	it	while	at	work,	at	a	university,
or	by	a	dial-up	modem	at	home.	The	set	of	popular	applications	could	be	counted	on	one's	fingers.	Thus,	like	most
books	at	the	time,	ours	focused	on	the	perspective	of	someone	who	would	design	networking	equipment	and
protocols.	We	continue	to	focus	on	this	perspective,	and	our	hope	is	that	after	reading	this	book	you	will	know	how	to
design	the	networking	equipment	and	protocols	of	the	future.

However,	we	also	want	to	cover	the	perspectives	of	two	additional	stakeholders:	those	who	develop	networked
applications	and	those	who	manage	or	operate	networks.	Let's	consider	how	these	three	stakeholders	might	list	their
requirements	for	a	network:

An	application	programmer	would	list	the	services	that	his	or	her	application	needs:	for	example,	a	guarantee	that
each	message	the	application	sends	will	be	delivered	without	error	within	a	certain	amount	of	time	or	the	ability	to
switch	gracefully	among	different	connections	to	the	network	as	the	user	moves	around.

A	network	operator	would	list	the	characteristics	of	a	system	that	is	easy	to	administer	and	manage:	for	example,
in	which	faults	can	be	easily	isolated,	new	devices	can	be	added	to	the	network	and	configured	correctly,	and	it	is
easy	to	account	for	usage.

A	network	designer	would	list	the	properties	of	a	cost-effective	design:	for	example,	that	network	resources	are
efficiently	utilized	and	fairly	allocated	to	different	users.	Issues	of	performance	are	also	likely	to	be	important.

This	section	attempts	to	distill	the	requirements	of	different	stakeholders	into	a	high-level	introduction	to	the	major
considerations	that	drive	network	design	and,	in	doing	so,	identify	the	challenges	addressed	throughout	the	rest	of	this
book.

Scalable	Connectivity

Starting	with	the	obvious,	a	network	must	provide	connectivity	among	a	set	of	computers.	Sometimes	it	is	enough	to
build	a	limited	network	that	connects	only	a	few	select	machines.	In	fact,	for	reasons	of	privacy	and	security,	many
private	(corporate)	networks	have	the	explicit	goal	of	limiting	the	set	of	machines	that	are	connected.	In	contrast,	other
networks	(of	which	the	Internet	is	the	prime	example)	are	designed	to	grow	in	a	way	that	allows	them	the	potential	to
connect	all	the	computers	in	the	world.	A	system	that	is	designed	to	support	growth	to	an	arbitrarily	large	size	is	said
to	scale.	Using	the	Internet	as	a	model,	this	book	addresses	the	challenge	of	scalability.
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To	understand	the	requirements	of	connectivity	more	fully,	we	need	to	take	a	closer	look	at	how	computers	are
connected	in	a	network.	Connectivity	occurs	at	many	different	levels.	At	the	lowest	level,	a	network	can	consist	of	two
or	more	computers	directly	connected	by	some	physical	medium,	such	as	a	coaxial	cable	or	an	optical	fiber.	We	call
such	a	physical	medium	a	link,	and	we	often	refer	to	the	computers	it	connects	as	nodes.	(Sometimes	a	node	is	a
more	specialized	piece	of	hardware	rather	than	a	computer,	but	we	overlook	that	distinction	for	the	purposes	of	this
discussion.)	As	illustrated	in	Figure	1,	physical	links	are	sometimes	limited	to	a	pair	of	nodes	(such	a	link	is	said	to	be
point-to-point),	while	in	other	cases	more	than	two	nodes	may	share	a	single	physical	link	(such	a	link	is	said	to	be
multiple-access).	Wireless	links,	such	as	those	provided	by	cellular	networks	and	Wi-Fi	networks,	are	an	important
class	of	multiple-access	links.	It	is	always	the	case	that	multiple-access	links	are	limited	in	size,	in	terms	of	both	the
geographical	distance	they	can	cover	and	the	number	of	nodes	they	can	connect.

Figure	1.	Direct	links:	(a)	point-to-point;	(b)	multiple-access.

If	computer	networks	were	limited	to	situations	in	which	all	nodes	are	directly	connected	to	each	other	over	a	common
physical	medium,	then	either	networks	would	be	very	limited	in	the	number	of	computers	they	could	connect,	or	the
number	of	wires	coming	out	of	the	back	of	each	node	would	quickly	become	both	unmanageable	and	very	expensive.
Fortunately,	connectivity	between	two	nodes	does	not	necessarily	imply	a	direct	physical	connection	between	them—
indirect	connectivity	may	be	achieved	among	a	set	of	cooperating	nodes.	Consider	the	following	two	examples	of	how
a	collection	of	computers	can	be	indirectly	connected.

Figure	2	shows	a	pair	of	shows	a	set	of	nodes,	each	of	which	is	attached	to	one	or	more	point-to-point	links.	Those
nodes	that	are	attached	to	at	least	two	links	run	software	that	forwards	data	received	on	one	link	out	on	another.	If
organized	in	a	systematic	way,	these	forwarding	nodes	form	a	switched	network.	There	are	numerous	types	of
switched	networks,	of	which	the	two	most	common	are	circuit	switched	and	packet	switched.	The	former	is	most
notably	employed	by	the	telephone	system,	while	the	latter	is	used	for	the	overwhelming	majority	of	computer
networks	and	will	be	the	focus	of	this	book.	(Circuit	switching	is,	however,	making	a	bit	of	a	comeback	in	the	optical
networking	realm,	which	turns	out	to	be	important	as	demand	for	network	capacity	constantly	grows.)	The	important
feature	of	packet-switched	networks	is	that	the	nodes	in	such	a	network	send	discrete	blocks	of	data	to	each	other.
Think	of	these	blocks	of	data	as	corresponding	to	some	piece	of	application	data	such	as	a	file,	a	piece	of	email,	or	an
image.	We	call	each	block	of	data	either	a	packet	or	a	message,	and	for	now	we	use	these	terms	interchangeably.
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Figure	2.	Switched	network.

Packet-switched	networks	typically	use	a	strategy	called	store-and-forward.	As	the	name	suggests,	each	node	in	a
store-and-forward	network	first	receives	a	complete	packet	over	some	link,	stores	the	packet	in	its	internal	memory,
and	then	forwards	the	complete	packet	to	the	next	node.	In	contrast,	a	circuit-switched	network	first	establishes	a
dedicated	circuit	across	a	sequence	of	links	and	then	allows	the	source	node	to	send	a	stream	of	bits	across	this
circuit	to	a	destination	node.	The	major	reason	for	using	packet	switching	rather	than	circuit	switching	in	a	computer
network	is	efficiency,	discussed	in	the	next	subsection.

The	cloud	in	Figure	2	distinguishes	between	the	nodes	on	the	inside	that	implement	the	network	(they	are	commonly
called	switches,	and	their	primary	function	is	to	store	and	forward	packets)	and	the	nodes	on	the	outside	of	the	cloud
that	use	the	network	(they	are	traditionally	called	hosts,	and	they	support	users	and	run	application	programs).	Also
note	that	the	cloud	is	one	of	the	most	important	icons	of	computer	networking.	In	general,	we	use	a	cloud	to	denote
any	type	of	network,	whether	it	is	a	single	point-to-point	link,	a	multiple-access	link,	or	a	switched	network.	Thus,
whenever	you	see	a	cloud	used	in	a	figure,	you	can	think	of	it	as	a	placeholder	for	any	of	the	networking	technologies
covered	in	this	book.

Interestingly,	the	use	of	clouds	in	this	way	predates	the	term	cloud	computing	by	at	least	a	couple	of	decades,
but	there	is	a	connection	between	these	two	usages,	which	we'll	discuss	later.
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Figure	3.	Interconnection	of	networks.

A	second	way	in	which	a	set	of	computers	can	be	indirectly	connected	is	shown	in	Figure	3.	In	this	situation,	a	set	of
independent	networks	(clouds)	are	interconnected	to	form	an	internetwork,	or	internet	for	short.	We	adopt	the
Internet's	convention	of	referring	to	a	generic	internetwork	of	networks	as	a	lowercase	i	internet,	and	the	currently
operational	TCP/IP	Internet	as	the	capital	I	Internet.	A	node	that	is	connected	to	two	or	more	networks	is	commonly
called	a	router	or	gateway,	and	it	plays	much	the	same	role	as	a	switch—it	forwards	messages	from	one	network	to
another.	Note	that	an	internet	can	itself	be	viewed	as	another	kind	of	network,	which	means	that	an	internet	can	be
built	from	an	of	internets.	Thus,	we	can	recursively	build	arbitrarily	large	networks	by	interconnecting	clouds	to	form
larger	clouds.	It	can	reasonably	be	argued	that	this	idea	of	interconnecting	widely	differing	networks	was	the
fundamental	innovation	of	the	Internet	and	that	the	successful	growth	of	the	Internet	to	global	size	and	billions	of
nodes	was	the	result	of	some	very	good	design	decisions	by	the	early	Internet	architects,	which	we	will	discuss	later.

Just	because	a	set	of	hosts	are	directly	or	indirectly	connected	to	each	other	does	not	mean	that	we	have	succeeded
in	providing	host-to-host	connectivity.	The	final	requirement	is	that	each	node	must	be	able	to	say	which	of	the	other
nodes	on	the	network	it	wants	to	communicate	with.	This	is	done	by	assigning	an	address	to	each	node.	An	address
is	a	byte	string	that	identifies	a	node;	that	is,	the	network	can	use	a	node's	address	to	distinguish	it	from	the	other
nodes	connected	to	the	network.	When	a	source	node	wants	the	network	to	deliver	a	message	to	a	certain	destination
node,	it	specifies	the	address	of	the	destination	node.	If	the	sending	and	receiving	nodes	are	not	directly	connected,
then	the	switches	and	routers	of	the	network	use	this	address	to	decide	how	to	forward	the	message	toward	the
destination.	The	process	of	determining	systematically	how	to	forward	messages	toward	the	destination	node	based
on	its	address	is	called	routing.

This	brief	introduction	to	addressing	and	routing	has	presumed	that	the	source	node	wants	to	send	a	message	to	a
single	destination	node	(unicast).	While	this	is	the	most	common	scenario,	it	is	also	possible	that	the	source	node
might	want	to	broadcast	a	message	to	all	the	nodes	on	the	network.	Or,	a	source	node	might	want	to	send	a	message
to	some	subset	of	the	other	nodes	but	not	all	of	them,	a	situation	called	multicast.	Thus,	in	addition	to	node-specific
addresses,	another	requirement	of	a	network	is	that	it	supports	multicast	and	broadcast	addresses.

Key	Takeaway

The	main	idea	to	take	away	from	this	discussion	is	that	we	can	define	a	network	recursively	as	consisting	of	two
or	more	nodes	connected	by	a	physical	link,	or	as	two	or	more	networks	connected	by	a	node.	In	other	words,	a
network	can	be	constructed	from	a	nesting	of	networks,	where	at	the	bottom	level,	the	network	is	implemented
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by	some	physical	medium.	Among	the	key	challenges	in	providing	network	connectivity	are	the	definition	of	an
address	for	each	node	that	is	reachable	on	the	network	(including	support	for	broadcast	and	multicast),	and	the
use	of	such	addresses	to	forward	messages	toward	the	appropriate	destination	node(s).

Cost-Effective	Resource	Sharing

As	stated	above,	this	book	focuses	on	packet-switched	networks.	This	section	explains	the	key	requirement	of
computer	networks—efficiency—that	leads	us	to	packet	switching	as	the	strategy	of	choice.

Given	a	collection	of	nodes	indirectly	connected	by	a	nesting	of	networks,	it	is	possible	for	any	pair	of	hosts	to	send
messages	to	each	other	across	a	sequence	of	links	and	nodes.	Of	course,	we	want	to	do	more	than	support	just	one
pair	of	communicating	hosts—we	want	to	provide	all	pairs	of	hosts	with	the	ability	to	exchange	messages.	The
question,	then,	is	how	do	all	the	hosts	that	want	to	communicate	share	the	network,	especially	if	they	want	to	use	it	at
the	same	time?	And,	as	if	that	problem	isn't	hard	enough,	how	do	several	hosts	share	the	same	link	when	they	all
want	to	use	it	at	the	same	time?

To	understand	how	hosts	share	a	network,	we	need	to	introduce	a	fundamental	concept,	multiplexing,	which	means
that	a	system	resource	is	shared	among	multiple	users.	At	an	intuitive	level,	multiplexing	can	be	explained	by	analogy
to	a	timesharing	computer	system,	where	a	single	physical	processor	is	shared	(multiplexed)	among	multiple	jobs,
each	of	which	believes	it	has	its	own	private	processor.	Similarly,	data	being	sent	by	multiple	users	can	be	multiplexed
over	the	physical	links	that	make	up	a	network.

To	see	how	this	might	work,	consider	the	simple	network	illustrated	in	Figure	4,	where	the	three	hosts	on	the	left	side
of	the	network	(senders	S1-S3)	are	sending	data	to	the	three	hosts	on	the	right	(receivers	R1-R3)	by	sharing	a
switched	network	that	contains	only	one	physical	link.	(For	simplicity,	assume	that	host	S1	is	sending	data	to	host	R1,
and	so	on.)	In	this	situation,	three	flows	of	data—corresponding	to	the	three	pairs	of	hosts—are	multiplexed	onto	a
single	physical	link	by	switch	1	and	then	demultiplexed	back	into	separate	flows	by	switch	2.	Note	that	we	are	being
intentionally	vague	about	exactly	what	a	"flow	of	data"	corresponds	to.	For	the	purposes	of	this	discussion,	assume
that	each	host	on	the	left	has	a	large	supply	of	data	that	it	wants	to	send	to	its	counterpart	on	the	right.

Figure	4.	Multiplexing	multiple	logical	flows	over	a	single	physical	link.

There	are	several	different	methods	for	multiplexing	multiple	flows	onto	one	physical	link.	One	common	method	is
synchronous	time-division	multiplexing	(STDM).	The	idea	of	STDM	is	to	divide	time	into	equal-sized	quanta	and,	in	a
round-robin	fashion,	give	each	flow	a	chance	to	send	its	data	over	the	physical	link.	In	other	words,	during	time
quantum	1,	data	from	S1	to	R1	is	transmitted;	during	time	quantum	2,	data	from	S2	to	R2	is	transmitted;	in	quantum	3,
S3	sends	data	to	R3.	At	this	point,	the	first	flow	(S1	to	R1)	gets	to	go	again,	and	the	process	repeats.	Another	method
is	frequency-division	multiplexing	(FDM).	The	idea	of	FDM	is	to	transmit	each	flow	over	the	physical	link	at	a	different
frequency,	much	the	same	way	that	the	signals	for	different	TV	stations	are	transmitted	at	a	different	frequency	over
the	airwaves	or	on	a	coaxial	cable	TV	link.
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Although	simple	to	understand,	both	STDM	and	FDM	are	limited	in	two	ways.	First,	if	one	of	the	flows	(host	pairs)
does	not	have	any	data	to	send,	its	share	of	the	physical	link—that	is,	its	time	quantum	or	its	frequency—remains	idle,
even	if	one	of	the	other	flows	has	data	to	transmit.	For	example,	S3	had	to	wait	its	turn	behind	S1	and	S2	in	the
previous	paragraph,	even	if	S1	and	S2	had	nothing	to	send.	For	computer	communication,	the	amount	of	time	that	a
link	is	idle	can	be	very	large—for	example,	consider	the	amount	of	time	you	spend	reading	a	web	page	(leaving	the
link	idle)	compared	to	the	time	you	spend	fetching	the	page.	Second,	both	STDM	and	FDM	are	limited	to	situations	in
which	the	maximum	number	of	flows	is	fixed	and	known	ahead	of	time.	It	is	not	practical	to	resize	the	quantum	or	to
add	additional	quanta	in	the	case	of	STDM	or	to	add	new	frequencies	in	the	case	of	FDM.

The	form	of	multiplexing	that	addresses	these	shortcomings,	and	of	which	we	make	most	use	in	this	book,	is	called
statistical	multiplexing.	Although	the	name	is	not	all	that	helpful	for	understanding	the	concept,	statistical	multiplexing
is	really	quite	simple,	with	two	key	ideas.	First,	it	is	like	STDM	in	that	the	physical	link	is	shared	over	time—first	data
from	one	flow	is	transmitted	over	the	physical	link,	then	data	from	another	flow	is	transmitted,	and	so	on.	Unlike
STDM,	however,	data	is	transmitted	from	each	flow	on	demand	rather	than	during	a	predetermined	time	slot.	Thus,	if
only	one	flow	has	data	to	send,	it	gets	to	transmit	that	data	without	waiting	for	its	quantum	to	come	around	and	thus
without	having	to	watch	the	quanta	assigned	to	the	other	flows	go	by	unused.	It	is	this	avoidance	of	idle	time	that
gives	packet	switching	its	efficiency.

As	defined	so	far,	however,	statistical	multiplexing	has	no	mechanism	to	ensure	that	all	the	flows	eventually	get	their
turn	to	transmit	over	the	physical	link.	That	is,	once	a	flow	begins	sending	data,	we	need	some	way	to	limit	the
transmission,	so	that	the	other	flows	can	have	a	turn.	To	account	for	this	need,	statistical	multiplexing	defines	an
upper	bound	on	the	size	of	the	block	of	data	that	each	flow	is	permitted	to	transmit	at	a	given	time.	This	limited-size
block	of	data	is	typically	referred	to	as	a	packet,	to	distinguish	it	from	the	arbitrarily	large	message	that	an	application
program	might	want	to	transmit.	Because	a	packet-switched	network	limits	the	maximum	size	of	packets,	a	host	may
not	be	able	to	send	a	complete	message	in	one	packet.	The	source	may	need	to	fragment	the	message	into	several
packets,	with	the	receiver	reassembling	the	packets	back	into	the	original	message.

In	other	words,	each	flow	sends	a	sequence	of	packets	over	the	physical	link,	with	a	decision	made	on	a	packet-by-
packet	basis	as	to	which	flow's	packet	to	send	next.	Notice	that,	if	only	one	flow	has	data	to	send,	then	it	can	send	a
sequence	of	packets	back-to-back;	however,	should	more	than	one	of	the	flows	have	data	to	send,	then	their	packets
are	interleaved	on	the	link.	Figure	4	depicts	a	switch	multiplexing	packets	from	multiple	sources	onto	a	single	shared
link.

The	decision	as	to	which	packet	to	send	next	on	a	shared	link	can	be	made	in	a	number	of	different	ways.	For
example,	in	a	network	consisting	of	switches	interconnected	by	links	such	as	the	one	in	Figure	4,	the	decision	would
be	made	by	the	switch	that	transmits	packets	onto	the	shared	link.	(As	we	will	see	later,	not	all	packet-switched
networks	actually	involve	switches,	and	they	may	use	other	mechanisms	to	determine	whose	packet	goes	onto	the
link	next.)	Each	switch	in	a	packet-switched	network	makes	this	decision	independently,	on	a	packet-by-packet	basis.
One	of	the	issues	that	faces	a	network	designer	is	how	to	make	this	decision	in	a	fair	manner.	For	example,	a	switch
could	be	designed	to	service	packets	on	a	first-in,	first-out	(FIFO)	basis.	Another	approach	would	be	to	transmit	the
packets	from	each	of	the	different	flows	that	are	currently	sending	data	through	the	switch	in	a	round-robin	manner.
This	might	be	done	to	ensure	that	certain	flows	receive	a	particular	share	of	the	link's	bandwidth	or	that	they	never
have	their	packets	delayed	in	the	switch	for	more	than	a	certain	length	of	time.	A	network	that	attempts	to	allocate
bandwidth	to	particular	flows	is	sometimes	said	to	support	quality	of	service	(QoS).

Also,	notice	in	Figure	4	that	since	the	switch	has	to	multiplex	three	incoming	packet	streams	onto	one	outgoing	link,	it
is	possible	that	the	switch	will	receive	packets	faster	than	the	shared	link	can	accommodate.	In	this	case,	the	switch	is
forced	to	buffer	these	packets	in	its	memory.	Should	a	switch	receive	packets	faster	than	it	can	send	them	for	an
extended	period	of	time,	then	the	switch	will	eventually	run	out	of	buffer	space,	and	some	packets	will	have	to	be
dropped.	When	a	switch	is	operating	in	this	state,	it	is	said	to	be	congested.

Key	Takeaway
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The	bottom	line	is	that	statistical	multiplexing	defines	a	cost-effective	way	for	multiple	users	(e.g.,	host-to-host
flows	of	data)	to	share	network	resources	(links	and	nodes)	in	a	fine-grained	manner.	It	defines	the	packet	as
the	granularity	with	which	the	links	of	the	network	are	allocated	to	different	flows,	with	each	switch	able	to
schedule	the	use	of	the	physical	links	it	is	connected	to	on	a	per-packet	basis.	Fairly	allocating	link	capacity	to
different	flows	and	dealing	with	congestion	when	it	occurs	are	the	key	challenges	of	statistical	multiplexing.

Support	for	Common	Services

The	previous	discussion	focused	on	the	challenges	involved	in	providing	cost-effective	connectivity	among	a	group	of
hosts,	but	it	is	overly	simplistic	to	view	a	computer	network	as	simply	delivering	packets	among	a	collection	of
computers.	It	is	more	accurate	to	think	of	a	network	as	providing	the	means	for	a	set	of	application	processes	that	are
distributed	over	those	computers	to	communicate.	In	other	words,	the	next	requirement	of	a	computer	network	is	that
the	application	programs	running	on	the	hosts	connected	to	the	network	must	be	able	to	communicate	in	a	meaningful
way.	From	the	application	developer's	perspective,	the	network	needs	to	make	his	or	her	life	easier.

When	two	application	programs	need	to	communicate	with	each	other,	a	lot	of	complicated	things	must	happen
beyond	simply	sending	a	message	from	one	host	to	another.	One	option	would	be	for	application	designers	to	build	all
that	complicated	functionality	into	each	application	program.	However,	since	many	applications	need	common
services,	it	is	much	more	logical	to	implement	those	common	services	once	and	then	to	let	the	application	designer
build	the	application	using	those	services.	The	challenge	for	a	network	designer	is	to	identify	the	right	set	of	common
services.	The	goal	is	to	hide	the	complexity	of	the	network	from	the	application	without	overly	constraining	the
application	designer.

Figure	5.	Processes	communicating	over	an	abstract	channel.

Intuitively,	we	view	the	network	as	providing	logical	channels	over	which	application-level	processes	can	communicate
with	each	other;	each	channel	provides	the	set	of	services	required	by	that	application.	In	other	words,	just	as	we	use
a	cloud	to	abstractly	represent	connectivity	among	a	set	of	computers,	we	now	think	of	a	channel	as	connecting	one
process	to	another.	Figure	5	shows	a	pair	of	application-level	processes	communicating	over	a	logical	channel	that	is,
in	turn,	implemented	on	top	of	a	cloud	that	connects	a	set	of	hosts.	We	can	think	of	the	channel	as	being	like	a	pipe
connecting	two	applications,	so	that	a	sending	application	can	put	data	in	one	end	and	expect	that	data	to	be
delivered	by	the	network	to	the	application	at	the	other	end	of	the	pipe.

The	challenge	is	to	recognize	what	functionality	the	channels	should	provide	to	application	programs.	For	example,
does	the	application	require	a	guarantee	that	messages	sent	over	the	channel	are	delivered,	or	is	it	acceptable	if
some	messages	fail	to	arrive?	Is	it	necessary	that	messages	arrive	at	the	recipient	process	in	the	same	order	in	which
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they	are	sent,	or	does	the	recipient	not	care	about	the	order	in	which	messages	arrive?	Does	the	network	need	to
ensure	that	no	third	parties	are	able	to	eavesdrop	on	the	channel,	or	is	privacy	not	a	concern?	In	general,	a	network
provides	a	variety	of	different	types	of	channels,	with	each	application	selecting	the	type	that	best	meets	its	needs.
The	rest	of	this	section	illustrates	the	thinking	involved	in	defining	useful	channels.

Identify	Common	Communication	Patterns

Designing	abstract	channels	involves	first	understanding	the	communication	needs	of	a	representative	collection	of
applications,	then	extracting	their	common	communication	requirements,	and	finally	incorporating	the	functionality	that
meets	these	requirements	in	the	network.

One	of	the	earliest	applications	supported	on	any	network	is	a	file	access	program	like	the	File	Transfer	Protocol
(FTP)	or	Network	File	System	(NFS).	Although	many	details	vary—for	example,	whether	whole	files	are	transferred
across	the	network	or	only	single	blocks	of	the	file	are	read/written	at	a	given	time—the	communication	component	of
remote	file	access	is	characterized	by	a	pair	of	processes,	one	that	requests	that	a	file	be	read	or	written	and	a
second	process	that	honors	this	request.	The	process	that	requests	access	to	the	file	is	called	the	client,	and	the
process	that	supports	access	to	the	file	is	called	the	server.

Reading	a	file	involves	the	client	sending	a	small	request	message	to	a	server	and	the	server	responding	with	a	large
message	that	contains	the	data	in	the	file.	Writing	works	in	the	opposite	way—the	client	sends	a	large	message
containing	the	data	to	be	written	to	the	server,	and	the	server	responds	with	a	small	message	confirming	that	the	write
to	disk	has	taken	place.

A	digital	library	is	a	more	sophisticated	application	than	file	transfer,	but	it	requires	similar	communication	services.
For	example,	the	Association	for	Computing	Machinery	(ACM)	operates	a	large	digital	library	of	computer	science
literature	at

http://portal.acm.org/dl.cfm

This	library	has	a	wide	range	of	searching	and	browsing	features	to	help	users	find	the	articles	they	want,	but
ultimately	much	of	what	it	does	is	respond	to	user	requests	for	files,	such	as	electronic	copies	of	journal	articles.

Using	file	access,	a	digital	library,	and	the	two	video	applications	described	in	the	introduction	(videoconferencing	and
video	on	demand)	as	a	representative	sample,	we	might	decide	to	provide	the	following	two	types	of	channels:
request/reply	channels	and	message	stream	channels.	The	request/reply	channel	would	be	used	by	the	file	transfer
and	digital	library	applications.	It	would	guarantee	that	every	message	sent	by	one	side	is	received	by	the	other	side
and	that	only	one	copy	of	each	message	is	delivered.	The	request/reply	channel	might	also	protect	the	privacy	and
integrity	of	the	data	that	flows	over	it,	so	that	unauthorized	parties	cannot	read	or	modify	the	data	being	exchanged
between	the	client	and	server	processes.

The	message	stream	channel	could	be	used	by	both	the	video	on	demand	and	videoconferencing	applications,
provided	it	is	parameterized	to	support	both	one-way	and	two-way	traffic	and	to	support	different	delay	properties.	The
message	stream	channel	might	not	need	to	guarantee	that	all	messages	are	delivered,	since	a	video	application	can
operate	adequately	even	if	some	video	frames	are	not	received.	It	would,	however,	need	to	ensure	that	those
messages	that	are	delivered	arrive	in	the	same	order	in	which	they	were	sent,	to	avoid	displaying	frames	out	of
sequence.	Like	the	request/reply	channel,	the	message	stream	channel	might	want	to	ensure	the	privacy	and	integrity
of	the	video	data.	Finally,	the	message	stream	channel	might	need	to	support	multicast,	so	that	multiple	parties	can
participate	in	the	teleconference	or	view	the	video.

While	it	is	common	for	a	network	designer	to	strive	for	the	smallest	number	of	abstract	channel	types	that	can	serve
the	largest	number	of	applications,	there	is	a	danger	in	trying	to	get	away	with	too	few	channel	abstractions.	Simply
stated,	if	you	have	a	hammer,	then	everything	looks	like	a	nail.	For	example,	if	all	you	have	are	message	stream	and
request/reply	channels,	then	it	is	tempting	to	use	them	for	the	next	application	that	comes	along,	even	if	neither	type
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provides	exactly	the	semantics	needed	by	the	application.	Thus,	network	designers	will	probably	be	inventing	new
types	of	channels—and	adding	options	to	existing	channels—for	as	long	as	application	programmers	are	inventing
new	applications.

Also	note	that	independent	of	exactly	what	functionality	a	given	channel	provides,	there	is	the	question	of	where	that
functionality	is	implemented.	In	many	cases,	it	is	easiest	to	view	the	host-to-host	connectivity	of	the	underlying
network	as	simply	providing	a	bit	pipe,	with	any	high-level	communication	semantics	provided	at	the	end	hosts.	The
advantage	of	this	approach	is	that	it	keeps	the	switches	in	the	middle	of	the	network	as	simple	as	possible—they
simply	forward	packets—but	it	requires	the	end	hosts	to	take	on	much	of	the	burden	of	supporting	semantically	rich
process-to-process	channels.	The	alternative	is	to	push	additional	functionality	onto	the	switches,	thereby	allowing	the
end	hosts	to	be	"dumb"	devices	(e.g.,	telephone	handsets).	We	will	see	this	question	of	how	various	network	services
are	partitioned	between	the	packet	switches	and	the	end	hosts	(devices)	as	a	recurring	issue	in	network	design.

Reliable	Message	Delivery

As	suggested	by	the	examples	just	considered,	reliable	message	delivery	is	one	of	the	most	important	functions	that	a
network	can	provide.	It	is	difficult	to	determine	how	to	provide	this	reliability,	however,	without	first	understanding	how
networks	can	fail.	The	first	thing	to	recognize	is	that	computer	networks	do	not	exist	in	a	perfect	world.	Machines
crash	and	later	are	rebooted,	fibers	are	cut,	electrical	interference	corrupts	bits	in	the	data	being	transmitted,	switches
run	out	of	buffer	space,	and,	as	if	these	sorts	of	physical	problems	aren't	enough	to	worry	about,	the	software	that
manages	the	hardware	may	contain	bugs	and	sometimes	forwards	packets	into	oblivion.	Thus,	a	major	requirement	of
a	network	is	to	recover	from	certain	kinds	of	failures,	so	that	application	programs	don't	have	to	deal	with	them	or	even
be	aware	of	them.

There	are	three	general	classes	of	failure	that	network	designers	have	to	worry	about.	First,	as	a	packet	is	transmitted
over	a	physical	link,	bit	errors	may	be	introduced	into	the	data;	that	is,	a	1	is	turned	into	a	0	or	vice	versa.	Sometimes
single	bits	are	corrupted,	but	more	often	than	not	a	burst	error	occurs—several	consecutive	bits	are	corrupted.	Bit
errors	typically	occur	because	outside	forces,	such	as	lightning	strikes,	power	surges,	and	microwave	ovens,	interfere
with	the	transmission	of	data.	The	good	news	is	that	such	bit	errors	are	fairly	rare,	affecting	on	average	only	one	out	of

every	10 	to	10 	bits	on	a	typical	copper-based	cable	and	one	out	of	every	10 	to	10 	bits	on	a	typical	optical	fiber.

As	we	will	see,	there	are	techniques	that	detect	these	bit	errors	with	high	probability.	Once	detected,	it	is	sometimes
possible	to	correct	for	such	errors—if	we	know	which	bit	or	bits	are	corrupted,	we	can	simply	flip	them—while	in	other
cases	the	damage	is	so	bad	that	it	is	necessary	to	discard	the	entire	packet.	In	such	a	case,	the	sender	may	be
expected	to	retransmit	the	packet.

The	second	class	of	failure	is	at	the	packet,	rather	than	the	bit,	level;	that	is,	a	complete	packet	is	lost	by	the	network.
One	reason	this	can	happen	is	that	the	packet	contains	an	uncorrectable	bit	error	and	therefore	has	to	be	discarded.
A	more	likely	reason,	however,	is	that	one	of	the	nodes	that	has	to	handle	the	packet—for	example,	a	switch	that	is
forwarding	it	from	one	link	to	another—is	so	overloaded	that	it	has	no	place	to	store	the	packet	and	therefore	is	forced
to	drop	it.	This	is	the	problem	of	congestion	just	discussed.	Less	commonly,	the	software	running	on	one	of	the	nodes
that	handles	the	packet	makes	a	mistake.	For	example,	it	might	incorrectly	forward	a	packet	out	on	the	wrong	link,	so
that	the	packet	never	finds	its	way	to	the	ultimate	destination.	As	we	will	see,	one	of	the	main	difficulties	in	dealing
with	lost	packets	is	distinguishing	between	a	packet	that	is	indeed	lost	and	one	that	is	merely	late	in	arriving	at	the
destination.

The	third	class	of	failure	is	at	the	node	and	link	level;	that	is,	a	physical	link	is	cut,	or	the	computer	it	is	connected	to
crashes.	This	can	be	caused	by	software	that	crashes,	a	power	failure,	or	a	reckless	backhoe	operator.	Failures	due
to	misconfiguration	of	a	network	device	are	also	common.	While	any	of	these	failures	can	eventually	be	corrected,
they	can	have	a	dramatic	effect	on	the	network	for	an	extended	period	of	time.	However,	they	need	not	totally	disable
the	network.	In	a	packet-switched	network,	for	example,	it	is	sometimes	possible	to	route	around	a	failed	node	or	link.
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One	of	the	difficulties	in	dealing	with	this	third	class	of	failure	is	distinguishing	between	a	failed	computer	and	one	that
is	merely	slow	or,	in	the	case	of	a	link,	between	one	that	has	been	cut	and	one	that	is	very	flaky	and	therefore
introducing	a	high	number	of	bit	errors.

Key	Takeaway

The	key	idea	to	take	away	from	this	discussion	is	that	defining	useful	channels	involves	both	understanding	the
applications'	requirements	and	recognizing	the	limitations	of	the	underlying	technology.	The	challenge	is	to	fill	in
the	gap	between	what	the	application	expects	and	what	the	underlying	technology	can	provide.	This	is
sometimes	called	the	semantic	gap.

Manageability
A	final	requirement,	which	seems	to	be	neglected	or	left	till	last	all	too	often	(as	we	do	here),	is	that	networks	need	to
be	managed.	Managing	a	network	includes	upgrading	equipment	as	the	network	grows	to	carry	more	traffic	or	reach
more	users,	troubleshooting	the	network	when	things	go	wrong	or	performance	isn't	as	desired,	and	adding	new
features	in	support	of	new	applications.

This	requirement	is	partly	related	to	the	issue	of	scalability	discussed	above—as	the	Internet	has	scaled	up	to	support
billions	of	users	and	at	least	hundreds	of	millions	of	hosts,	the	challenges	of	keeping	the	whole	thing	running	correctly
and	correctly	configuring	new	devices	as	they	are	added	have	become	increasingly	problematic.	Configuring	a	single
router	in	a	network	is	often	a	task	for	a	trained	expert;	configuring	thousands	of	routers	and	figuring	out	why	a	network
of	such	a	size	is	not	behaving	as	expected	can	become	a	task	beyond	any	single	human.	Furthermore,	to	make	the
operation	of	a	network	scalable	and	cost-effective,	network	operators	typically	require	many	management	tasks	to	be
automated	or	at	least	performed	by	relatively	unskilled	personnel.

One	way	to	make	a	network	easier	to	manage	is	to	avoid	change.	Once	the	network	is	working,	simply	do	not	touch	it!
This	mindset	exposes	the	fundamental	tension	between	stability	and	feature	velocity:	the	rate	at	which	new
capabilities	are	introduced	into	the	network.	Favoring	stability	is	the	approach	the	telecommunications	industry	(not	to
mention	University	system	administrators	and	corporate	IT	departments)	adopted	for	many	years,	making	it	one	of	the
most	slow	moving	and	risk	averse	industries	you	will	find	anywhere.	But	the	recent	explosion	of	the	cloud	has
changed	that	dynamic,	making	it	necessary	to	bring	stability	and	feature	velocity	more	into	balance.	The	impact	of	the
cloud	on	the	network	is	a	topic	that	comes	up	over	and	over	throughout	the	book,	and	one	we	pay	particular	attention
to	in	the	Perspectives	section	at	the	end	of	each	chapter.	For	now,	suffice	it	to	say	that	managing	a	rapidly	evolving
network	is	arguably	the	central	challenge	in	networking	today.
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1.3	Architecture

In	case	you	hadn't	noticed,	the	previous	section	established	a	pretty	substantial	set	of	requirements	for	network
design—a	computer	network	must	provide	general,	cost-effective,	fair,	and	robust	connectivity	among	a	large	number
of	computers.	As	if	this	weren't	enough,	networks	do	not	remain	fixed	at	any	single	point	in	time	but	must	evolve	to
accommodate	changes	in	both	the	underlying	technologies	upon	which	they	are	based	as	well	as	changes	in	the
demands	placed	on	them	by	application	programs.	Furthermore,	networks	must	be	manageable	by	humans	of	varying
levels	of	skill.	Designing	a	network	to	meet	these	requirements	is	no	small	task.

To	help	deal	with	this	complexity,	network	designers	have	developed	general	blueprints—usually	called	network
architectures—that	guide	the	design	and	implementation	of	networks.	This	section	defines	more	carefully	what	we
mean	by	a	network	architecture	by	introducing	the	central	ideas	that	are	common	to	all	network	architectures.	It	also
introduces	two	of	the	most	widely	referenced	architectures—the	OSI	(or	7-layer)	architecture	and	the	Internet
architecture.

Layering	and	Protocols

Abstraction—the	hiding	of	details	behind	a	well-defined	interface—is	the	fundamental	tool	used	by	system	designers
to	manage	complexity.	The	idea	of	an	abstraction	is	to	define	a	model	that	can	capture	some	important	aspect	of	the
system,	encapsulate	this	model	in	an	object	that	provides	an	interface	that	can	be	manipulated	by	other	components
of	the	system,	and	hide	the	details	of	how	the	object	is	implemented	from	the	users	of	the	object.	The	challenge	is	to
identify	abstractions	that	simultaneously	provide	a	service	that	proves	useful	in	a	large	number	of	situations	and	that
can	be	efficiently	implemented	in	the	underlying	system.	This	is	exactly	what	we	were	doing	when	we	introduced	the
idea	of	a	channel	in	the	previous	section:	we	were	providing	an	abstraction	for	applications	that	hides	the	complexity
of	the	network	from	application	writers.

Figure	1.	Example	of	a	layered	network	system.

Abstractions	naturally	lead	to	layering,	especially	in	network	systems.	The	general	idea	is	that	you	start	with	the
services	offered	by	the	underlying	hardware	and	then	add	a	sequence	of	layers,	each	providing	a	higher	(more
abstract)	level	of	service.	The	services	provided	at	the	high	layers	are	implemented	in	terms	of	the	services	provided
by	the	low	layers.	Drawing	on	the	discussion	of	requirements	given	in	the	previous	section,	for	example,	we	might
imagine	a	simple	network	as	having	two	layers	of	abstraction	sandwiched	between	the	application	program	and	the
underlying	hardware,	as	illustrated	in	Figure	1.	The	layer	immediately	above	the	hardware	in	this	case	might	provide
host-to-host	connectivity,	abstracting	away	the	fact	that	there	may	be	an	arbitrarily	complex	network	topology	between
any	two	hosts.	The	next	layer	up	builds	on	the	available	host-to-host	communication	service	and	provides	support	for
process-to-process	channels,	abstracting	away	the	fact	that	the	network	occasionally	loses	messages,	for	example.
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Layering	provides	two	nice	features.	First,	it	decomposes	the	problem	of	building	a	network	into	more	manageable
components.	Rather	than	implementing	a	monolithic	piece	of	software	that	does	everything	you	will	ever	want,	you
can	implement	several	layers,	each	of	which	solves	one	part	of	the	problem.	Second,	it	provides	a	more	modular
design.	If	you	decide	that	you	want	to	add	some	new	service,	you	may	only	need	to	modify	the	functionality	at	one
layer,	reusing	the	functions	provided	at	all	the	other	layers.

Thinking	of	a	system	as	a	linear	sequence	of	layers	is	an	oversimplification,	however.	Many	times	there	are	multiple
abstractions	provided	at	any	given	level	of	the	system,	each	providing	a	different	service	to	the	higher	layers	but
building	on	the	same	low-level	abstractions.	To	see	this,	consider	the	two	types	of	channels	discussed	in	the	previous
section.	One	provides	a	request/reply	service	and	one	supports	a	message	stream	service.	These	two	channels	might
be	alternative	offerings	at	some	level	of	a	multilevel	networking	system,	as	illustrated	in	Figure	2.

Figure	2.	Layered	system	with	alternative	abstractions	available	at	a	given
layer.

Using	this	discussion	of	layering	as	a	foundation,	we	are	now	ready	to	discuss	the	architecture	of	a	network	more
precisely.	For	starters,	the	abstract	objects	that	make	up	the	layers	of	a	network	system	are	called	protocols.	That	is,
a	protocol	provides	a	communication	service	that	higher-level	objects	(such	as	application	processes,	or	perhaps
higher-level	protocols)	use	to	exchange	messages.	For	example,	we	could	imagine	a	network	that	supports	a
request/reply	protocol	and	a	message	stream	protocol,	corresponding	to	the	request/reply	and	message	stream
channels	discussed	above.

Each	protocol	defines	two	different	interfaces.	First,	it	defines	a	service	interface	to	the	other	objects	on	the	same
computer	that	want	to	use	its	communication	services.	This	service	interface	defines	the	operations	that	local	objects
can	perform	on	the	protocol.	For	example,	a	request/reply	protocol	would	support	operations	by	which	an	application
can	send	and	receive	messages.	An	implementation	of	the	HTTP	protocol	could	support	an	operation	to	fetch	a	page
of	hypertext	from	a	remote	server.	An	application	such	as	a	web	browser	would	invoke	such	an	operation	whenever
the	browser	needs	to	obtain	a	new	page	(e.g.,	when	the	user	clicks	on	a	link	in	the	currently	displayed	page).

Second,	a	protocol	defines	a	peer	interface	to	its	counterpart	(peer)	on	another	machine.	This	second	interface
defines	the	form	and	meaning	of	messages	exchanged	between	protocol	peers	to	implement	the	communication
service.	This	would	determine	the	way	in	which	a	request/reply	protocol	on	one	machine	communicates	with	its	peer
on	another	machine.	In	the	case	of	HTTP,	for	example,	the	protocol	specification	defines	in	detail	how	a	GET
command	is	formatted,	what	arguments	can	be	used	with	the	command,	and	how	a	web	server	should	respond	when
it	receives	such	a	command.

To	summarize,	a	protocol	defines	a	communication	service	that	it	exports	locally	(the	service	interface),	along	with	a
set	of	rules	governing	the	messages	that	the	protocol	exchanges	with	its	peer(s)	to	implement	this	service	(the	peer
interface).	This	situation	is	illustrated	in	Figure	3.
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Figure	3.	Service	interfaces	and	peer	interfaces.

Except	at	the	hardware	level,	where	peers	directly	communicate	with	each	other	over	a	physical	medium,	peer-to-peer
communication	is	indirect—each	protocol	communicates	with	its	peer	by	passing	messages	to	some	lower-level
protocol,	which	in	turn	delivers	the	message	to	its	peer.	In	addition,	there	are	potentially	more	than	one	protocol	at	any
given	level,	each	providing	a	different	communication	service.	We	therefore	represent	the	suite	of	protocols	that	make
up	a	network	system	with	a	protocol	graph.	The	nodes	of	the	graph	correspond	to	protocols,	and	the	edges	represent
a	depends	on	relation.	For	example,	Figure	4	illustrates	a	protocol	graph	for	the	hypothetical	layered	system	we	have
been	discussing—protocols	RRP	(Request/Reply	Protocol)	and	MSP	(Message	Stream	Protocol)	implement	two
different	types	of	process-to-process	channels,	and	both	depend	on	the	Host-to-Host	Protocol	(HHP)	which	provides	a
host-to-host	connectivity	service.

Figure	4.	Example	of	a	protocol	graph.

In	this	example,	suppose	that	the	file	access	program	on	host	1	wants	to	send	a	message	to	its	peer	on	host	2	using
the	communication	service	offered	by	RRP.	In	this	case,	the	file	application	asks	RRP	to	send	the	message	on	its
behalf.	To	communicate	with	its	peer,	RRP	invokes	the	services	of	HHP,	which	in	turn	transmits	the	message	to	its
peer	on	the	other	machine.	Once	the	message	has	arrived	at	the	instance	of	HHP	on	host	2,	HHP	passes	the
message	up	to	RRP,	which	in	turn	delivers	the	message	to	the	file	application.	In	this	particular	case,	the	application	is
said	to	employ	the	services	of	the	protocol	stack	RRP/HHP.

Note	that	the	term	protocol	is	used	in	two	different	ways.	Sometimes	it	refers	to	the	abstract	interfaces—that	is,	the
operations	defined	by	the	service	interface	and	the	form	and	meaning	of	messages	exchanged	between	peers,	and
sometimes	it	refers	to	the	module	that	actually	implements	these	two	interfaces.	To	distinguish	between	the	interfaces
and	the	module	that	implements	these	interfaces,	we	generally	refer	to	the	former	as	a	protocol	specification.
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Specifications	are	generally	expressed	using	a	combination	of	prose,	pseudocode,	state	transition	diagrams,	pictures
of	packet	formats,	and	other	abstract	notations.	It	should	be	the	case	that	a	given	protocol	can	be	implemented	in
different	ways	by	different	programmers,	as	long	as	each	adheres	to	the	specification.	The	challenge	is	ensuring	that
two	different	implementations	of	the	same	specification	can	successfully	exchange	messages.	Two	or	more	protocol
modules	that	do	accurately	implement	a	protocol	specification	are	said	to	interoperate	with	each	other.

We	can	imagine	many	different	protocols	and	protocol	graphs	that	satisfy	the	communication	requirements	of	a
collection	of	applications.	Fortunately,	there	exist	standardization	bodies,	such	as	the	Internet	Engineering	Task	Force
(IETF)	and	the	International	Standards	Organization	(ISO),	that	establish	policies	for	a	particular	protocol	graph.	We
call	the	set	of	rules	governing	the	form	and	content	of	a	protocol	graph	a	network	architecture.	Although	beyond	the
scope	of	this	book,	standardization	bodies	have	established	well-defined	procedures	for	introducing,	validating,	and
finally	approving	protocols	in	their	respective	architectures.	We	briefly	describe	the	architectures	defined	by	the	IETF
and	ISO	shortly,	but	first	there	are	two	additional	things	we	need	to	explain	about	the	mechanics	of	protocol	layering.

Encapsulation

Consider	what	happens	in	when	one	of	the	application	programs	sends	a	message	to	its	peer	by	passing	the
message	to	RRP.	From	RRP's	perspective,	the	message	it	is	given	by	the	application	is	an	uninterpreted	string	of
bytes.	RRP	does	not	care	that	these	bytes	represent	an	array	of	integers,	an	email	message,	a	digital	image,	or
whatever;	it	is	simply	charged	with	sending	them	to	its	peer.	However,	RRP	must	communicate	control	information	to
its	peer,	instructing	it	how	to	handle	the	message	when	it	is	received.	RRP	does	this	by	attaching	a	header	to	the
message.	Generally	speaking,	a	header	is	a	small	data	structure—from	a	few	bytes	to	a	few	dozen	bytes—that	is
used	among	peers	to	communicate	with	each	other.	As	the	name	suggests,	headers	are	usually	attached	to	the	front
of	a	message.	In	some	cases,	however,	this	peer-to-peer	control	information	is	sent	at	the	end	of	the	message,	in
which	case	it	is	called	a	trailer.	The	exact	format	for	the	header	attached	by	RRP	is	defined	by	its	protocol
specification.	The	rest	of	the	message—that	is,	the	data	being	transmitted	on	behalf	of	the	application—is	called	the
message's	body	or	payload.	We	say	that	the	application's	data	is	encapsulated	in	the	new	message	created	by	RRP.

Figure	5.	High-level	messages	are	encapsulated	inside	of	low-level
messages.
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This	process	of	encapsulation	is	then	repeated	at	each	level	of	the	protocol	graph;	for	example,	HHP	encapsulates
RRP's	message	by	attaching	a	header	of	its	own.	If	we	now	assume	that	HHP	sends	the	message	to	its	peer	over
some	network,	then	when	the	message	arrives	at	the	destination	host,	it	is	processed	in	the	opposite	order:	HHP	first
interprets	the	HHP	header	at	the	front	of	the	message	(i.e.,	takes	whatever	action	is	appropriate	given	the	contents	of
the	header)	and	passes	the	body	of	the	message	(but	not	the	HHP	header)	up	to	RRP,	which	takes	whatever	action	is
indicated	by	the	RRP	header	that	its	peer	attached	and	passes	the	body	of	the	message	(but	not	the	RRP	header)	up
to	the	application	program.	The	message	passed	up	from	RRP	to	the	application	on	host	2	is	exactly	the	same
message	as	the	application	passed	down	to	RRP	on	host	1;	the	application	does	not	see	any	of	the	headers	that	have
been	attached	to	it	to	implement	the	lower-level	communication	services.	This	whole	process	is	illustrated	in	Figure	5.
Note	that	in	this	example,	nodes	in	the	network	(e.g.,	switches	and	routers)	may	inspect	the	HHP	header	at	the	front
of	the	message.

Note	that	when	we	say	a	low-level	protocol	does	not	interpret	the	message	it	is	given	by	some	high-level	protocol,	we
mean	that	it	does	not	know	how	to	extract	any	meaning	from	the	data	contained	in	the	message.	It	is	sometimes	the
case,	however,	that	the	low-level	protocol	applies	some	simple	transformation	to	the	data	it	is	given,	such	as	to
compress	or	encrypt	it.	In	this	case,	the	protocol	is	transforming	the	entire	body	of	the	message,	including	both	the
original	application's	data	and	all	the	headers	attached	to	that	data	by	higher-level	protocols.

Multiplexing	and	Demultiplexing

Recall	from	that	a	fundamental	idea	of	packet	switching	is	to	multiplex	multiple	flows	of	data	over	a	single	physical
link.	This	same	idea	applies	up	and	down	the	protocol	graph,	not	just	to	switching	nodes.	In	Figure	4,	for	example,	we
can	think	of	RRP	as	implementing	a	logical	communication	channel,	with	messages	from	two	different	applications
multiplexed	over	this	channel	at	the	source	host	and	then	demultiplexed	back	to	the	appropriate	application	at	the
destination	host.

Practically	speaking,	this	simply	means	that	the	header	that	RRP	attaches	to	its	messages	contains	an	identifier	that
records	the	application	to	which	the	message	belongs.	We	call	this	identifier	RRP's	demultiplexing	key,	or	demux	key
for	short.	At	the	source	host,	RRP	includes	the	appropriate	demux	key	in	its	header.	When	the	message	is	delivered
to	RRP	on	the	destination	host,	it	strips	its	header,	examines	the	demux	key,	and	demultiplexes	the	message	to	the
correct	application.

RRP	is	not	unique	in	its	support	for	multiplexing;	nearly	every	protocol	implements	this	mechanism.	For	example,	HHP
has	its	own	demux	key	to	determine	which	messages	to	pass	up	to	RRP	and	which	to	pass	up	to	MSP.	However,
there	is	no	uniform	agreement	among	protocols—even	those	within	a	single	network	architecture—on	exactly	what
constitutes	a	demux	key.	Some	protocols	use	an	8-bit	field	(meaning	they	can	support	only	256	high-level	protocols),
and	others	use	16-	or	32-bit	fields.	Also,	some	protocols	have	a	single	demultiplexing	field	in	their	header,	while	others
have	a	pair	of	demultiplexing	fields.	In	the	former	case,	the	same	demux	key	is	used	on	both	sides	of	the
communication,	while	in	the	latter	case	each	side	uses	a	different	key	to	identify	the	high-level	protocol	(or	application
program)	to	which	the	message	is	to	be	delivered.

7-Layer	OSI	Model

The	ISO	was	one	of	the	first	organizations	to	formally	define	a	common	way	to	connect	computers.	Their	architecture,
called	the	Open	Systems	Interconnection	(OSI)	architecture	and	illustrated	in	Figure	6,	defines	a	partitioning	of
network	functionality	into	seven	layers,	where	one	or	more	protocols	implement	the	functionality	assigned	to	a	given
layer.	In	this	sense,	the	schematic	given	in	is	not	a	protocol	graph,	per	se,	but	rather	a	reference	model	for	a	protocol
graph.	It	is	often	referred	to	as	the	7-layer	model.
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Figure	6.	The	OSI	7-layer	model.

Starting	at	the	bottom	and	working	up,	the	physical	layer	handles	the	transmission	of	raw	bits	over	a	communications
link.	The	data	link	layer	then	collects	a	stream	of	bits	into	a	larger	aggregate	called	a	frame.	Network	adaptors,	along
with	device	drivers	running	in	the	node's	operating	system,	typically	implement	the	data	link	level.	This	means	that
frames,	not	raw	bits,	are	actually	delivered	to	hosts.	The	network	layer	handles	routing	among	nodes	within	a	packet-
switched	network.	At	this	layer,	the	unit	of	data	exchanged	among	nodes	is	typically	called	a	packet	rather	than	a
frame,	although	they	are	fundamentally	the	same	thing.	The	lower	three	layers	are	implemented	on	all	network	nodes,
including	switches	within	the	network	and	hosts	connected	to	the	exterior	of	the	network.	The	transport	layer	then
implements	what	we	have	up	to	this	point	been	calling	a	process-to-process	channel.	Here,	the	unit	of	data
exchanged	is	commonly	called	a	message	rather	than	a	packet	or	a	frame.	The	transport	layer	and	higher	layers
typically	run	only	on	the	end	hosts	and	not	on	the	intermediate	switches	or	routers.

There	is	less	agreement	about	the	definition	of	the	top	three	layers,	in	part	because	they	are	not	always	all	present,	as
we	will	see	below.	Skipping	ahead	to	the	top	(seventh)	layer,	we	find	the	application	layer.	Application	layer	protocols
include	things	like	the	Hypertext	Transfer	Protocol	(HTTP),	which	is	the	basis	of	the	World	Wide	Web	and	is	what
enables	web	browsers	to	request	pages	from	web	servers.	Below	that,	the	presentation	layer	is	concerned	with	the
format	of	data	exchanged	between	peers—for	example,	whether	an	integer	is	16,	32,	or	64	bits	long,	whether	the
most	significant	byte	is	transmitted	first	or	last,	or	how	a	video	stream	is	formatted.	Finally,	the	session	layer	provides
a	name	space	that	is	used	to	tie	together	the	potentially	different	transport	streams	that	are	part	of	a	single
application.	For	example,	it	might	manage	an	audio	stream	and	a	video	stream	that	are	being	combined	in	a
teleconferencing	application.

Internet	Architecture
The	Internet	architecture,	which	is	also	sometimes	called	the	TCP/IP	architecture	after	its	two	main	protocols,	is
depicted	in	Figure	7.	An	alternative	representation	is	given	in	Figure	8.	The	Internet	architecture	evolved	out	of
experiences	with	an	earlier	packet-switched	network	called	the	ARPANET.	Both	the	Internet	and	the	ARPANET	were
funded	by	the	Advanced	Research	Projects	Agency	(ARPA),	one	of	the	research	and	development	funding	agencies
of	the	U.S.	Department	of	Defense.	The	Internet	and	ARPANET	were	around	before	the	OSI	architecture,	and	the
experience	gained	from	building	them	was	a	major	influence	on	the	OSI	reference	model.
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Figure	7.	Internet	protocol	graph.

Figure	8.	Alternative	view	of	the	Internet	architecture.	The	"subnetwork"
layer	was	historically	referred	to	as	the	"network"	layer	and	is	now	often

referred	to	as	"layer	2."

While	the	7-layer	OSI	model	can,	with	some	imagination,	be	applied	to	the	Internet,	a	4-layer	model	is	often	used

instead.	At	the	lowest	level	is	a	wide	variety	of	network	protocols,	denoted	NET ,	NET ,	and	so	on.	In	practice,	these

protocols	are	implemented	by	a	combination	of	hardware	(e.g.,	a	network	adaptor)	and	software	(e.g.,	a	network
device	driver).	For	example,	you	might	find	Ethernet	or	wireless	protocols	(such	as	the	802.11	Wi-Fi	standards)	at	this
layer.	(These	protocols	in	turn	may	actually	involve	several	sublayers,	but	the	Internet	architecture	does	not	presume
anything	about	them.)	The	second	layer	consists	of	a	single	protocol—the	Internet	Protocol	(IP).	This	is	the	protocol
that	supports	the	interconnection	of	multiple	networking	technologies	into	a	single,	logical	internetwork.	The	third	layer
contains	two	main	protocols—the	Transmission	Control	Protocol	(TCP)	and	the	User	Datagram	Protocol	(UDP).	TCP
and	UDP	provide	alternative	logical	channels	to	application	programs:	TCP	provides	a	reliable	byte-stream	channel,
and	UDP	provides	an	unreliable	datagram	delivery	channel	(datagram	may	be	thought	of	as	a	synonym	for	message).
In	the	language	of	the	Internet,	TCP	and	UDP	are	sometimes	called	end-to-end	protocols,	although	it	is	equally
correct	to	refer	to	them	as	transport	protocols.

Running	above	the	transport	layer	is	a	range	of	application	protocols,	such	as	HTTP,	FTP,	Telnet	(remote	login),	and
the	Simple	Mail	Transfer	Protocol	(SMTP),	that	enable	the	interoperation	of	popular	applications.	To	understand	the
difference	between	an	application	layer	protocol	and	an	application,	think	of	all	the	different	World	Wide	Web
browsers	that	are	or	have	been	available	(e.g.,	Firefox,	Chrome,	Safari,	Netscape,	Mosaic,	Internet	Explorer).	There	is
a	similarly	large	number	of	different	implementations	of	web	servers.	The	reason	that	you	can	use	any	one	of	these
application	programs	to	access	a	particular	site	on	the	Web	is	that	they	all	conform	to	the	same	application	layer
protocol:	HTTP.	Confusingly,	the	same	term	sometimes	applies	to	both	an	application	and	the	application	layer
protocol	that	it	uses	(e.g.,	FTP	is	often	used	as	the	name	of	an	application	that	implements	the	FTP	protocol).

Most	people	who	work	actively	in	the	networking	field	are	familiar	with	both	the	Internet	architecture	and	the	7-layer
OSI	architecture,	and	there	is	general	agreement	on	how	the	layers	map	between	architectures.	The	Internet's
application	layer	is	considered	to	be	at	layer	7,	its	transport	layer	is	layer	4,	the	IP	(internetworking	or	just	network)
layer	is	layer	3,	and	the	link	or	subnet	layer	below	IP	is	layer	2.

1 2
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The	Internet	architecture	has	three	features	that	are	worth	highlighting.	First,	as	best	illustrated	by	Figure	8,	the
Internet	architecture	does	not	imply	strict	layering.	The	application	is	free	to	bypass	the	defined	transport	layers	and	to
directly	use	IP	or	one	of	the	underlying	networks.	In	fact,	programmers	are	free	to	define	new	channel	abstractions	or
applications	that	run	on	top	of	any	of	the	existing	protocols.

Second,	if	you	look	closely	at	the	protocol	graph	in	Figure	7,	you	will	notice	an	hourglass	shape—wide	at	the	top,
narrow	in	the	middle,	and	wide	at	the	bottom.	This	shape	actually	reflects	the	central	philosophy	of	the	architecture.
That	is,	IP	serves	as	the	focal	point	for	the	architecture—it	defines	a	common	method	for	exchanging	packets	among
a	wide	collection	of	networks.	Above	IP	there	can	be	arbitrarily	many	transport	protocols,	each	offering	a	different
channel	abstraction	to	application	programs.	Thus,	the	issue	of	delivering	messages	from	host	to	host	is	completely
separated	from	the	issue	of	providing	a	useful	process-to-process	communication	service.	Below	IP,	the	architecture
allows	for	arbitrarily	many	different	network	technologies,	ranging	from	Ethernet	to	wireless	to	single	point-to-point
links.

A	final	attribute	of	the	Internet	architecture	(or	more	accurately,	of	the	IETF	culture)	is	that	in	order	for	a	new	protocol
to	be	officially	included	in	the	architecture,	there	must	be	both	a	protocol	specification	and	at	least	one	(and	preferably
two)	representative	implementations	of	the	specification.	The	existence	of	working	implementations	is	required	for
standards	to	be	adopted	by	the	IETF.	This	cultural	assumption	of	the	design	community	helps	to	ensure	that	the
architecture's	protocols	can	be	efficiently	implemented.	Perhaps	the	value	the	Internet	culture	places	on	working
software	is	best	exemplified	by	a	quote	on	T-shirts	commonly	worn	at	IETF	meetings:

We	reject	kings,	presidents,	and	voting.	We	believe	in	rough	consensus	and	running	code.	(David	Clark)

Key	Takeaway

Of	these	three	attributes	of	the	Internet	architecture,	the	hourglass	design	philosophy	is	important	enough	to
bear	repeating.	The	hourglass's	narrow	waist	represents	a	minimal	and	carefully	chosen	set	of	global
capabilities	that	allows	both	higher-level	applications	and	lower-level	communication	technologies	to	coexist,
share	capabilities,	and	evolve	rapidly.	The	narrow-waisted	model	is	critical	to	the	Internet's	ability	to	adapt
rapidly	to	new	user	demands	and	changing	technologies.
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1.4	Software

Network	architectures	and	protocol	specifications	are	essential	things,	but	a	good	blueprint	is	not	enough	to	explain
the	phenomenal	success	of	the	Internet:	The	number	of	computers	connected	to	the	Internet	has	grown	exponentially
for	almost	3	decades	(although	precise	numbers	are	hard	to	come	by).	The	number	of	users	of	the	Internet	was
estimated	to	be	around	4.1	billion	by	the	end	of	2017—roughly	half	of	the	world's	population.

What	explains	the	success	of	the	Internet?	There	are	certainly	many	contributing	factors	(including	a	good
architecture),	but	one	thing	that	has	made	the	Internet	such	a	runaway	success	is	the	fact	that	so	much	of	its
functionality	is	provided	by	software	running	on	general-purpose	computers.	The	significance	of	this	is	that	new
functionality	can	be	added	readily	with	"just	a	small	matter	of	programming."	As	a	result,	new	applications	and
services	have	been	showing	up	at	an	incredible	pace.

A	related	factor	is	the	massive	increase	in	computing	power	available	in	commodity	machines.	Although	computer
networks	have	always	been	capable	in	principle	of	transporting	any	kind	of	information,	such	as	digital	voice	samples,
digitized	images,	and	so	on,	this	potential	was	not	particularly	interesting	if	the	computers	sending	and	receiving	that
data	were	too	slow	to	do	anything	useful	with	the	information.	Virtually	all	of	today's	computers	are	capable	of	playing
back	digitized	audio	and	video	at	a	speed	and	resolution	that	are	quite	usable.

In	the	years	since	the	first	edition	of	this	book	appeared,	the	writing	of	networked	applications	has	become	a	much
more	mainstream	activity	and	less	a	job	just	for	a	few	specialists.	Many	factors	have	played	into	this,	including	better
tools	to	make	the	job	easier	for	nonspecialists	and	the	opening	up	of	new	markets	such	as	applications	for
smartphones.

The	point	to	note	is	that	knowing	how	to	implement	network	software	is	an	essential	part	of	understanding	computer
networks,	and	while	the	odds	are	you	will	not	be	tasked	to	implement	a	low-level	protocol	like	IP,	there	is	a	good
chance	you	will	find	reason	to	implement	an	application-level	protocol—the	elusive	"killer	app"	that	will	lead	to
unimaginable	fame	and	fortune.	To	get	you	started,	this	section	introduces	some	of	the	issues	involved	in
implementing	a	network	application	on	top	of	the	Internet.	Typically,	such	programs	are	simultaneously	an	application
(i.e.,	designed	to	interact	with	users)	and	a	protocol	(i.e.,	communicates	with	peers	across	the	network).

Application	Programming	Interface	(Sockets)
The	place	to	start	when	implementing	a	network	application	is	the	interface	exported	by	the	network.	Since	most
network	protocols	are	in	software	(especially	those	high	in	the	protocol	stack),	and	nearly	all	computer	systems
implement	their	network	protocols	as	part	of	the	operating	system,	when	we	refer	to	the	interface	"exported	by	the
network,"	we	are	generally	referring	to	the	interface	that	the	OS	provides	to	its	networking	subsystem.	This	interface	is
often	called	the	network	application	programming	interface	(API).

Although	each	operating	system	is	free	to	define	its	own	network	API	(and	most	have),	over	time	certain	of	these	APIs
have	become	widely	supported;	that	is,	they	have	been	ported	to	operating	systems	other	than	their	native	system.
This	is	what	has	happened	with	the	socket	interface	originally	provided	by	the	Berkeley	distribution	of	Unix,	which	is
now	supported	in	virtually	all	popular	operating	systems,	and	is	the	foundation	of	language-specific	interfaces,	such	as
the	Java	or	Python	socket	library.	The	advantages	of	industry-wide	support	for	a	single	API	are	that	applications	can
be	easily	ported	from	one	OS	to	another	and	developers	can	easily	write	applications	for	multiple	operating	systems.

Not	wanting	to	pick	sides	in	a	Java-v-Python-v-Go	debate,	and	because	it	remains	the	language	of	choice	for
network	internals,	all	of	the	code	examples	given	in	this	book	are	written	in	C	and	directly	use	OS-level
interfaces.
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Before	describing	the	socket	interface,	it	is	important	to	keep	two	concerns	separate	in	your	mind.	Each	protocol
provides	a	certain	set	of	services,	and	the	API	provides	a	syntax	by	which	those	services	can	be	invoked	on	a
particular	computer	system.	The	implementation	is	then	responsible	for	mapping	the	tangible	set	of	operations	and
objects	defined	by	the	API	onto	the	abstract	set	of	services	defined	by	the	protocol.	If	you	have	done	a	good	job	of
defining	the	interface,	then	it	will	be	possible	to	use	the	syntax	of	the	interface	to	invoke	the	services	of	many	different
protocols.	Such	generality	was	certainly	a	goal	of	the	socket	interface,	although	it's	far	from	perfect.

The	main	abstraction	of	the	socket	interface,	not	surprisingly,	is	the	socket.	A	good	way	to	think	of	a	socket	is	as	the
point	where	a	local	application	process	attaches	to	the	network.	The	interface	defines	operations	for	creating	a	socket,
attaching	the	socket	to	the	network,	sending/receiving	messages	through	the	socket,	and	closing	the	socket.	To
simplify	the	discussion,	we	will	limit	ourselves	to	showing	how	sockets	are	used	with	TCP.

The	first	step	is	to	create	a	socket,	which	is	done	with	the	following	operation:

int	socket(int	domain,	int	type,	int	protocol)

The	reason	that	this	operation	takes	three	arguments	is	that	the	socket	interface	was	designed	to	be	general	enough
to	support	any	underlying	protocol	suite.	Specifically,	the		domain		argument	specifies	the	protocol	family	that	is	going
to	be	used:		PF_INET		denotes	the	Internet	family,		PF_UNIX		denotes	the	Unix	pipe	facility,	and		PF_PACKET		denotes	direct
access	to	the	network	interface	(i.e.,	it	bypasses	the	TCP/IP	protocol	stack).	The		type		argument	indicates	the
semantics	of	the	communication.		SOCK_STREAM		is	used	to	denote	a	byte	stream.		SOCK_DGRAM		is	an	alternative	that
denotes	a	message-oriented	service,	such	as	that	provided	by	UDP.	The		protocol		argument	identifies	the	specific
protocol	that	is	going	to	be	used.	In	our	case,	this	argument	is		UNSPEC		because	the	combination	of		PF_INET		and
	SOCK_STREAM		implies	TCP.	Finally,	the	return	value	from		socket		is	a	handle	for	the	newly	created	socket—that	is,	an
identifier	by	which	we	can	refer	to	the	socket	in	the	future.	It	is	given	as	an	argument	to	subsequent	operations	on	this
socket.

The	next	step	depends	on	whether	you	are	a	client	or	a	server.	On	a	server	machine,	the	application	process
performs	a	passive	open—the	server	says	that	it	is	prepared	to	accept	connections,	but	it	does	not	actually	establish	a
connection.	The	server	does	this	by	invoking	the	following	three	operations:

int	bind(int	socket,	struct	sockaddr	*address,	int	addr_len)
int	listen(int	socket,	int	backlog)
int	accept(int	socket,	struct	sockaddr	*address,	int	*addr_len)

The		bind		operation,	as	its	name	suggests,	binds	the	newly	created		socket		to	the	specified		address	.	This	is	the
network	address	of	the	local	participant—the	server.	Note	that,	when	used	with	the	Internet	protocols,		address		is	a
data	structure	that	includes	both	the	IP	address	of	the	server	and	a	TCP	port	number.	Ports	are	used	to	indirectly
identify	processes.	They	are	a	form	of	demux	keys.	The	port	number	is	usually	some	well-known	number	specific	to
the	service	being	offered;	for	example,	web	servers	commonly	accept	connections	on	port	80.

The		listen		operation	then	defines	how	many	connections	can	be	pending	on	the	specified		socket	.	Finally,	the
	accept		operation	carries	out	the	passive	open.	It	is	a	blocking	operation	that	does	not	return	until	a	remote	participant
has	established	a	connection,	and	when	it	does	complete	it	returns	a	new	socket	that	corresponds	to	this	just-
established	connection,	and	the		address		argument	contains	the	remote	participant's	address.	Note	that	when		accept	
returns,	the	original	socket	that	was	given	as	an	argument	still	exists	and	still	corresponds	to	the	passive	open;	it	is
used	in	future	invocations	of		accept	.

On	the	client	machine,	the	application	process	performs	an	active	open;	that	is,	it	says	who	it	wants	to	communicate
with	by	invoking	the	following	single	operation:

int	connect(int	socket,	struct	sockaddr	*address,	int	addr_len)
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This	operation	does	not	return	until	TCP	has	successfully	established	a	connection,	at	which	time	the	application	is
free	to	begin	sending	data.	In	this	case,		address		contains	the	remote	participant's	address.	In	practice,	the	client
usually	specifies	only	the	remote	participant's	address	and	lets	the	system	fill	in	the	local	information.	Whereas	a
server	usually	listens	for	messages	on	a	well-known	port,	a	client	typically	does	not	care	which	port	it	uses	for	itself;
the	OS	simply	selects	an	unused	one.

Once	a	connection	is	established,	the	application	processes	invoke	the	following	two	operations	to	send	and	receive
data:

int	send(int	socket,	char	*message,	int	msg_len,	int	flags)
int	recv(int	socket,	char	*buffer,	int	buf_len,	int	flags)

The	first	operation	sends	the	given		message		over	the	specified		socket	,	while	the	second	operation	receives	a
message	from	the	specified		socket		into	the	given		buffer	.	Both	operations	take	a	set	of		flags		that	control	certain
details	of	the	operation.

Example	Application

We	now	show	the	implementation	of	a	simple	client/server	program	that	uses	the	socket	interface	to	send	messages
over	a	TCP	connection.	The	program	also	uses	other	Unix	networking	utilities,	which	we	introduce	as	we	go.	Our
application	allows	a	user	on	one	machine	to	type	in	and	send	text	to	a	user	on	another	machine.	It	is	a	simplified
version	of	the	Unix		talk		program,	which	is	similar	to	the	program	at	the	core	of	an	instant	messaging	application.

Client

We	start	with	the	client	side,	which	takes	the	name	of	the	remote	machine	as	an	argument.	It	calls	the	Unix	utility	to
translate	this	name	into	the	remote	host's	IP	address.	The	next	step	is	to	construct	the	address	data	structure	(	sin	)
expected	by	the	socket	interface.	Notice	that	this	data	structure	specifies	that	we'll	be	using	the	socket	to	connect	to
the	Internet	(	AF_INET	).	In	our	example,	we	use	TCP	port	5432	as	the	well-known	server	port;	this	happens	to	be	a	port
that	has	not	been	assigned	to	any	other	Internet	service.	The	final	step	in	setting	up	the	connection	is	to	call		socket	
and		connect	.	Once	the	operation	returns,	the	connection	is	established	and	the	client	program	enters	its	main	loop,
which	reads	text	from	standard	input	and	sends	it	over	the	socket.

#include	<stdio.h>
#include	<sys/types.h>
#include	<sys/socket.h>
#include	<netinet/in.h>
#include	<netdb.h>

#define	SERVER_PORT	5432
#define	MAX_LINE	256

int
main(int	argc,	char	*	argv[])
{
		FILE	*fp;
		struct	hostent	*hp;
		struct	sockaddr_in	sin;
		char	*host;
		char	buf[MAX_LINE];
		int	s;
		int	len;

		if	(argc==2)	{
				host	=	argv[1];
		}
		else	{
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				fprintf(stderr,	"usage:	simplex-talk	host\n");
				exit(1);
		}

		/*	translate	host	name	into	peer's	IP	address	*/
		hp	=	gethostbyname(host);
		if	(!hp)	{
				fprintf(stderr,	"simplex-talk:	unknown	host:	%s\n",	host);
				exit(1);
		}

		/*	build	address	data	structure	*/
		bzero((char	*)&sin,	sizeof(sin));
		sin.sin_family	=	AF_INET;
		bcopy(hp->h_addr,	(char	*)&sin.sin_addr,	hp->h_length);
		sin.sin_port	=	htons(SERVER_PORT);

		/*	active	open	*/
		if	((s	=	socket(PF_INET,	SOCK_STREAM,	0))	<	0)	{
				perror("simplex-talk:	socket");
				exit(1);
		}
		if	(connect(s,	(struct	sockaddr	*)&sin,	sizeof(sin))	<	0)
		{
				perror("simplex-talk:	connect");
				close(s);
				exit(1);
		}
		/*	main	loop:	get	and	send	lines	of	text	*/
		while	(fgets(buf,	sizeof(buf),	stdin))	{
				buf[MAX_LINE-1]	=	'\0';
				len	=	strlen(buf)	+	1;
				send(s,	buf,	len,	0);
		}
}

Server

The	server	is	equally	simple.	It	first	constructs	the	address	data	structure	by	filling	in	its	own	port	number
(	SERVER_PORT	).	By	not	specifying	an	IP	address,	the	application	program	is	willing	to	accept	connections	on	any	of	the
local	host's	IP	addresses.	Next,	the	server	performs	the	preliminary	steps	involved	in	a	passive	open;	it	creates	the
socket,	binds	it	to	the	local	address,	and	sets	the	maximum	number	of	pending	connections	to	be	allowed.	Finally,	the
main	loop	waits	for	a	remote	host	to	try	to	connect,	and	when	one	does,	it	receives	and	prints	out	the	characters	that
arrive	on	the	connection.

#include	<stdio.h>
#include	<sys/types.h>
#include	<sys/socket.h>
#include	<netinet/in.h>
#include	<netdb.h>

#define	SERVER_PORT		5432
#define	MAX_PENDING		5
#define	MAX_LINE					256

int
main()
{
		struct	sockaddr_in	sin;
		char	buf[MAX_LINE];
		int	len;
		int	s,	new_s;

		/*	build	address	data	structure	*/
		bzero((char	*)&sin,	sizeof(sin));

1.4	Software

34



		sin.sin_family	=	AF_INET;
		sin.sin_addr.s_addr	=	INADDR_ANY;
		sin.sin_port	=	htons(SERVER_PORT);

		/*	setup	passive	open	*/
		if	((s	=	socket(PF_INET,	SOCK_STREAM,	0))	<	0)	{
				perror("simplex-talk:	socket");
				exit(1);
		}
		if	((bind(s,	(struct	sockaddr	*)&sin,	sizeof(sin)))	<	0)	{
				perror("simplex-talk:	bind");
				exit(1);
		}
		listen(s,	MAX_PENDING);

	/*	wait	for	connection,	then	receive	and	print	text	*/
		while(1)	{
				if	((new_s	=	accept(s,	(struct	sockaddr	*)&sin,	&len))	<	0)	{
						perror("simplex-talk:	accept");
						exit(1);
				}
				while	(len	=	recv(new_s,	buf,	sizeof(buf),	0))
						fputs(buf,	stdout);
				close(new_s);
		}
}
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1.5	Performance

Up	to	this	point,	we	have	focused	primarily	on	the	functional	aspects	of	networks.	Like	any	computer	system,
however,	computer	networks	are	also	expected	to	perform	well.	This	is	because	the	effectiveness	of	computations
distributed	over	the	network	often	depends	directly	on	the	efficiency	with	which	the	network	delivers	the	computation's
data.	While	the	old	programming	adage	"first	get	it	right	and	then	make	it	fast"	remains	true,	in	networking	it	is	often
necessary	to	"design	for	performance."	It	is	therefore	important	to	understand	the	various	factors	that	impact	network
performance.

Bandwidth	and	Latency

Network	performance	is	measured	in	two	fundamental	ways:	bandwidth	(also	called	throughput)	and	latency	(also
called	delay).	The	bandwidth	of	a	network	is	given	by	the	number	of	bits	that	can	be	transmitted	over	the	network	in	a
certain	period	of	time.	For	example,	a	network	might	have	a	bandwidth	of	10	million	bits/second	(Mbps),	meaning	that
it	is	able	to	deliver	10	million	bits	every	second.	It	is	sometimes	useful	to	think	of	bandwidth	in	terms	of	how	long	it
takes	to	transmit	each	bit	of	data.	On	a	10-Mbps	network,	for	example,	it	takes	0.1	microsecond	(μs)	to	transmit	each
bit.

Bandwidth	and	throughput	are	subtly	different	terms.	First	of	all,	bandwidth	is	literally	a	measure	of	the	width	of	a
frequency	band.	For	example,	legacy	voice-grade	telephone	lines	supported	a	frequency	band	ranging	from	300	to
3300	Hz;	it	was	said	to	have	a	bandwidth	of	3300	Hz	-	300	Hz	=	3000	Hz.	If	you	see	the	word	bandwidth	used	in	a
situation	in	which	it	is	being	measured	in	hertz,	then	it	probably	refers	to	the	range	of	signals	that	can	be
accommodated.

When	we	talk	about	the	bandwidth	of	a	communication	link,	we	normally	refer	to	the	number	of	bits	per	second	that
can	be	transmitted	on	the	link.	This	is	also	sometimes	called	the	data	rate.	We	might	say	that	the	bandwidth	of	an
Ethernet	link	is	10	Mbps.	A	useful	distinction	can	also	be	made,	however,	between	the	maximum	data	rate	that	is
available	on	the	link	and	the	number	of	bits	per	second	that	we	can	actually	transmit	over	the	link	in	practice.	We	tend
to	use	the	word	throughput	to	refer	to	the	measured	performance	of	a	system.	Thus,	because	of	various	inefficiencies
of	implementation,	a	pair	of	nodes	connected	by	a	link	with	a	bandwidth	of	10	Mbps	might	achieve	a	throughput	of
only	2	Mbps.	This	would	mean	that	an	application	on	one	host	could	send	data	to	the	other	host	at	2	Mbps.

Finally,	we	often	talk	about	the	bandwidth	requirements	of	an	application.	This	is	the	number	of	bits	per	second	that	it
needs	to	transmit	over	the	network	to	perform	acceptably.	For	some	applications,	this	might	be	"whatever	I	can	get";
for	others,	it	might	be	some	fixed	number	(preferably	not	more	than	the	available	link	bandwidth);	and	for	others,	it
might	be	a	number	that	varies	with	time.	We	will	provide	more	on	this	topic	later	in	this	section.

While	you	can	talk	about	the	bandwidth	of	the	network	as	a	whole,	sometimes	you	want	to	be	more	precise,	focusing,
for	example,	on	the	bandwidth	of	a	single	physical	link	or	of	a	logical	process-to-process	channel.	At	the	physical
level,	bandwidth	is	constantly	improving,	with	no	end	in	sight.	Intuitively,	if	you	think	of	a	second	of	time	as	a	distance
you	could	measure	with	a	ruler	and	bandwidth	as	how	many	bits	fit	in	that	distance,	then	you	can	think	of	each	bit	as	a
pulse	of	some	width.	For	example,	each	bit	on	a	1-Mbps	link	is	1	μs	wide,	while	each	bit	on	a	2-Mbps	link	is	0.5	μs
wide,	as	illustrated	in	Figure	1.	The	more	sophisticated	the	transmitting	and	receiving	technology,	the	narrower	each
bit	can	become	and,	thus,	the	higher	the	bandwidth.	For	logical	process-to-process	channels,	bandwidth	is	also
influenced	by	other	factors,	including	how	many	times	the	software	that	implements	the	channel	has	to	handle,	and
possibly	transform,	each	bit	of	data.
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Figure	1.	Bits	transmitted	at	a	particular	bandwidth	can	be	regarded	as
having	some	width:	(a)	bits	transmitted	at	1	Mbps	(each	bit	is	1
microsecond	wide);	(b)	bits	transmitted	at	2	Mbps	(each	bit	is	0.5

microseconds	wide).

The	second	performance	metric,	latency,	corresponds	to	how	long	it	takes	a	message	to	travel	from	one	end	of	a
network	to	the	other.	(As	with	bandwidth,	we	could	be	focused	on	the	latency	of	a	single	link	or	an	end-to-end
channel.)	Latency	is	measured	strictly	in	terms	of	time.	For	example,	a	transcontinental	network	might	have	a	latency
of	24	milliseconds	(ms);	that	is,	it	takes	a	message	24	ms	to	travel	from	one	coast	of	North	America	to	the	other.
There	are	many	situations	in	which	it	is	more	important	to	know	how	long	it	takes	to	send	a	message	from	one	end	of
a	network	to	the	other	and	back,	rather	than	the	one-way	latency.	We	call	this	the	round-trip	time	(RTT)	of	the
network.

We	often	think	of	latency	as	having	three	components.	First,	there	is	the	speed-of-light	propagation	delay.	This	delay
occurs	because	nothing,	including	a	bit	on	a	wire,	can	travel	faster	than	the	speed	of	light.	If	you	know	the	distance
between	two	points,	you	can	calculate	the	speed-of-light	latency,	although	you	have	to	be	careful	because	light	travels

across	different	media	at	different	speeds:	It	travels	at	3.0	×	10 m/s	in	a	vacuum,	2.3	×	10 m/s	in	a	copper	cable,	and

2.0	×	10 m/s	in	an	optical	fiber.	Second,	there	is	the	amount	of	time	it	takes	to	transmit	a	unit	of	data.	This	is	a

function	of	the	network	bandwidth	and	the	size	of	the	packet	in	which	the	data	is	carried.	Third,	there	may	be	queuing
delays	inside	the	network,	since	packet	switches	generally	need	to	store	packets	for	some	time	before	forwarding
them	on	an	outbound	link.	So,	we	could	define	the	total	latency	as

Latency	=	Propagation	+	Transmit	+	Queue
Propagation	=		Distance/SpeedOfLight
Transmit	=	Size/Bandwidth

where		Distance		is	the	length	of	the	wire	over	which	the	data	will	travel,		SpeedOfLight		is	the	effective	speed	of	light
over	that	wire,		Size		is	the	size	of	the	packet,	and		Bandwidth		is	the	bandwidth	at	which	the	packet	is	transmitted.	Note
that	if	the	message	contains	only	one	bit	and	we	are	talking	about	a	single	link	(as	opposed	to	a	whole	network),	then
the		Transmit		and		Queue		terms	are	not	relevant,	and	latency	corresponds	to	the	propagation	delay	only.

Bandwidth	and	latency	combine	to	define	the	performance	characteristics	of	a	given	link	or	channel.	Their	relative
importance,	however,	depends	on	the	application.	For	some	applications,	latency	dominates	bandwidth.	For	example,
a	client	that	sends	a	1-byte	message	to	a	server	and	receives	a	1-byte	message	in	return	is	latency	bound.	Assuming
that	no	serious	computation	is	involved	in	preparing	the	response,	the	application	will	perform	much	differently	on	a
transcontinental	channel	with	a	100-ms	RTT	than	it	will	on	an	across-the-room	channel	with	a	1-ms	RTT.	Whether	the
channel	is	1	Mbps	or	100	Mbps	is	relatively	insignificant,	however,	since	the	former	implies	that	the	time	to	transmit	a
byte	(	Transimt	)	is	8	μs	and	the	latter	implies		Transmit		=	0.08	μs.

In	contrast,	consider	a	digital	library	program	that	is	being	asked	to	fetch	a	25-megabyte	(MB)	image—the	more
bandwidth	that	is	available,	the	faster	it	will	be	able	to	return	the	image	to	the	user.	Here,	the	bandwidth	of	the	channel
dominates	performance.	To	see	this,	suppose	that	the	channel	has	a	bandwidth	of	10	Mbps.	It	will	take	20	seconds	to
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transmit	the	image	(25	×	10 ×	8-bits	/	(10	×	10 	Mbps	=	20	seconds),	making	it	relatively	unimportant	if	the	image	is
on	the	other	side	of	a	1-ms	channel	or	a	100-ms	channel;	the	difference	between	a	20.001-second	response	time	and
a	20.1-second	response	time	is	negligible.

Figure	2.	Perceived	latency	(response	time)	versus	round-trip	time	for
various	object	sizes	and	link	speeds.

Figure	2	gives	you	a	sense	of	how	latency	or	bandwidth	can	dominate	performance	in	different	circumstances.	The
graph	shows	how	long	it	takes	to	move	objects	of	various	sizes	(1	byte,	2	KB,	1	MB)	across	networks	with	RTTs
ranging	from	1	to	100	ms	and	link	speeds	of	either	1.5	or	10	Mbps.	We	use	logarithmic	scales	to	show	relative
performance.	For	a	1-byte	object	(say,	a	keystroke),	latency	remains	almost	exactly	equal	to	the	RTT,	so	that	you
cannot	distinguish	between	a	1.5-Mbps	network	and	a	10-Mbps	network.	For	a	2-KB	object	(say,	an	email	message),
the	link	speed	makes	quite	a	difference	on	a	1-ms	RTT	network	but	a	negligible	difference	on	a	100-ms	RTT	network.
And	for	a	1-MB	object	(say,	a	digital	image),	the	RTT	makes	no	difference—it	is	the	link	speed	that	dominates
performance	across	the	full	range	of	RTT.

Note	that	throughout	this	book	we	use	the	terms	latency	and	delay	in	a	generic	way	to	denote	how	long	it	takes	to
perform	a	particular	function,	such	as	delivering	a	message	or	moving	an	object.	When	we	are	referring	to	the	specific
amount	of	time	it	takes	a	signal	to	propagate	from	one	end	of	a	link	to	another,	we	use	the	term	propagation	delay.
Also,	we	make	it	clear	in	the	context	of	the	discussion	whether	we	are	referring	to	the	one-way	latency	or	the	round-
trip	time.

As	an	aside,	computers	are	becoming	so	fast	that	when	we	connect	them	to	networks,	it	is	sometimes	useful	to	think,
at	least	figuratively,	in	terms	of	instructions	per	mile.	Consider	what	happens	when	a	computer	that	is	able	to	execute
100	billion	instructions	per	second	sends	a	message	out	on	a	channel	with	a	100-ms	RTT.	(To	make	the	math	easier,
assume	that	the	message	covers	a	distance	of	5000	miles.)	If	that	computer	sits	idle	the	full	100	ms	waiting	for	a	reply
message,	then	it	has	forfeited	the	ability	to	execute	10	billion	instructions,	or	2	million	instructions	per	mile.	It	had
better	have	been	worth	going	over	the	network	to	justify	this	waste.

Delay	x	Bandwidth	Product
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It	is	also	useful	to	talk	about	the	product	of	these	two	metrics,	often	called	the	delay	×	bandwidth	product.	Intuitively,	if
we	think	of	a	channel	between	a	pair	of	processes	as	a	hollow	pipe	(see	Figure	3),	where	the	latency	corresponds	to
the	length	of	the	pipe	and	the	bandwidth	gives	the	diameter	of	the	pipe,	then	the	delay	×	bandwidth	product	gives	the
volume	of	the	pipe—the	maximum	number	of	bits	that	could	be	in	transit	through	the	pipe	at	any	given	instant.	Said
another	way,	if	latency	(measured	in	time)	corresponds	to	the	length	of	the	pipe,	then	given	the	width	of	each	bit	(also
measured	in	time)	you	can	calculate	how	many	bits	fit	in	the	pipe.	For	example,	a	transcontinental	channel	with	a	one-
way	latency	of	50	ms	and	a	bandwidth	of	45	Mbps	is	able	to	hold

50 × 10 sec× 45 × 10 	bits/sec = 2.25 × 10 	bits

or	approximately	280	KB	of	data.	In	other	words,	this	example	channel	(pipe)	holds	as	many	bytes	as	the	memory	of	a
personal	computer	from	the	early	1980s	could	hold.

Figure	3.	Network	as	a	pipe.

The	delay	×	bandwidth	product	is	important	to	know	when	constructing	high-performance	networks	because	it
corresponds	to	how	many	bits	the	sender	must	transmit	before	the	first	bit	arrives	at	the	receiver.	If	the	sender	is
expecting	the	receiver	to	somehow	signal	that	bits	are	starting	to	arrive,	and	it	takes	another	channel	latency	for	this
signal	to	propagate	back	to	the	sender,	then	the	sender	can	send	up	one	RTT	×	bandwidth	worth	of	data	before
hearing	from	the	receiver	that	all	is	well.	The	bits	in	the	pipe	are	said	to	be	"in	flight,"	which	means	that	if	the	receiver
tells	the	sender	to	stop	transmitting	it	might	receive	up	to	one	RTT	×	bandwidth's	worth	of	data	before	the	sender

manages	to	respond.	In	our	example	above,	that	amount	corresponds	to	5.5	×	10 	bits	(671	KB)	of	data.	On	the	other

hand,	if	the	sender	does	not	fill	the	pipe—i.e.,	does	not	send	a	whole	RTT	×	bandwidth	product's	worth	of	data	before
it	stops	to	wait	for	a	signal—the	sender	will	not	fully	utilize	the	network.

Note	that	most	of	the	time	we	are	interested	in	the	RTT	scenario,	which	we	simply	refer	to	as	the	delay	×	bandwidth
product,	without	explicitly	saying	that	"delay"	is	the	RTT	(i.e.,	multiply	the	one-way	delay	by	two).	Usually,	whether	the
"delay"	in	delay	×	bandwidth	means	one-way	latency	or	RTT	is	made	clear	by	the	context.	Table	1	shows	some
examples	of	RTT	×	bandwidth	products	for	some	typical	network	links.

Table	1.	Example	delay	x	bandwidth	products.

Link	Type Bandwidth One-Way	Distance RTT RTT	x	Bandwidth

Wireless	LAN 54	Mbps 50	m 0.33	μs 18	bits

Satellite 1	Gbps 35,000	km 230	ms 230	Mb

Cross-country	fiber 10	Gbps 4,000	km 40	ms 400	Mb

High-Speed	Networks

The	seeming	continual	increase	in	bandwidth	causes	network	designers	to	start	thinking	about	what	happens	in	the
limit	or,	stated	another	way,	what	is	the	impact	on	network	design	of	having	infinite	bandwidth	available.

Although	high-speed	networks	bring	a	dramatic	change	in	the	bandwidth	available	to	applications,	in	many	respects
their	impact	on	how	we	think	about	networking	comes	in	what	does	not	change	as	bandwidth	increases:	the	speed	of
light.	To	quote	Scotty	from	Star	Trek,	"Ye	cannae	change	the	laws	of	physics."	In	other	words,	"high	speed"	does	not
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mean	that	latency	improves	at	the	same	rate	as	bandwidth;	the	transcontinental	RTT	of	a	1-Gbps	link	is	the	same	100
ms	as	it	is	for	a	1-Mbps	link.

To	appreciate	the	significance	of	ever-increasing	bandwidth	in	the	face	of	fixed	latency,	consider	what	is	required	to
transmit	a	1-MB	file	over	a	1-Mbps	network	versus	over	a	1-Gbps	network,	both	of	which	have	an	RTT	of	100	ms.	In
the	case	of	the	1-Mbps	network,	it	takes	80	round-trip	times	to	transmit	the	file;	during	each	RTT,	1.25%	of	the	file	is
sent.	In	contrast,	the	same	1-MB	file	doesn't	even	come	close	to	filling	1	RTT's	worth	of	the	1-Gbps	link,	which	has	a
delay	x	bandwidth	product	of	12.5	MB.

Figure	4	illustrates	the	difference	between	the	two	networks.	In	effect,	the	1-MB	file	looks	like	a	stream	of	data	that
needs	to	be	transmitted	across	a	1-Mbps	network,	while	it	looks	like	a	single	packet	on	a	1-Gbps	network.	To	help
drive	this	point	home,	consider	that	a	1-MB	file	is	to	a	1-Gbps	network	what	a	1-KB	packet	is	to	a	1-Mbps	network.

Figure	4.	Relationship	between	bandwidth	and	latency.	A	1-MB	file	would
fill	the	1-Mbps	link	80	times	but	only	fill	1/12th	of	a	1-Gbps	link.

Another	way	to	think	about	the	situation	is	that	more	data	can	be	transmitted	during	each	RTT	on	a	high-speed
network,	so	much	so	that	a	single	RTT	becomes	a	significant	amount	of	time.	Thus,	while	you	wouldn't	think	twice
about	the	difference	between	a	file	transfer	taking	101	RTTs	rather	than	100	RTTs	(a	relative	difference	of	only	1%),
suddenly	the	difference	between	1	RTT	and	2	RTTs	is	significant—a	100%	increase.	In	other	words,	latency,	rather
than	throughput,	starts	to	dominate	our	thinking	about	network	design.

Perhaps	the	best	way	to	understand	the	relationship	between	throughput	and	latency	is	to	return	to	basics.	The
effective	end-to-end	throughput	that	can	be	achieved	over	a	network	is	given	by	the	simple	relationship

Throughput	=	TransferSize	/	TransferTime

where	includes	not	only	the	elements	of	one-way	identified	earlier	in	this	section,	but	also	any	additional	time	spent
requesting	or	setting	up	the	transfer.	Generally,	we	represent	this	relationship	as

TransferTime	=	RTT	+	1/Bandwidth	x	TransferSize

We	use	in	this	calculation	to	account	for	a	request	message	being	sent	across	the	network	and	the	data	being	sent
back.	For	example,	consider	a	situation	where	a	user	wants	to	fetch	a	1-MB	file	across	a	1-Gbps	with	a	round-trip	time
of	100	ms.	This	includes	both	the	transmit	time	for	1	MB	(1	/	1	Gbps	×	1	MB	=	8	ms)	and	the	100-ms	RTT,	for	a	total
transfer	time	of	108	ms.	This	means	that	the	effective	throughput	will	be

1	MB	/	108	ms	=	74.1	Mbps

not	1	Gbps.	Clearly,	transferring	a	larger	amount	of	data	will	help	improve	the	effective	throughput,	where	in	the	limit
an	infinitely	large	transfer	size	will	cause	the	effective	throughput	to	approach	the	network	bandwidth.	On	the	other
hand,	having	to	endure	more	than	1	RTT—for	example,	to	retransmit	missing	packets—will	hurt	the	effective
throughput	for	any	transfer	of	finite	size	and	will	be	most	noticeable	for	small	transfers.
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Application	Performance	Needs

The	discussion	in	this	section	has	taken	a	network-centric	view	of	performance;	that	is,	we	have	talked	in	terms	of
what	a	given	link	or	channel	will	support.	The	unstated	assumption	has	been	that	application	programs	have	simple
needs—they	want	as	much	bandwidth	as	the	network	can	provide.	This	is	certainly	true	of	the	aforementioned	digital
library	program	that	is	retrieving	a	250-MB	image;	the	more	bandwidth	that	is	available,	the	faster	the	program	will	be
able	to	return	the	image	to	the	user.

However,	some	applications	are	able	to	state	an	upper	limit	on	how	much	bandwidth	they	need.	Video	applications
are	a	prime	example.	Suppose	one	wants	to	stream	a	video	that	is	one	quarter	the	size	of	a	standard	TV	screen;	that
is,	it	has	a	resolution	of	352	by	240	pixels.	If	each	pixel	is	represented	by	24	bits	of	information,	as	would	be	the	case
for	24-bit	color,	then	the	size	of	each	frame	would	be

(352 × 240 × 24)/8 = 247.5KB

If	the	application	needs	to	support	a	frame	rate	of	30	frames	per	second,	then	it	might	request	a	throughput	rate	of	75
Mbps.	The	ability	of	the	network	to	provide	more	bandwidth	is	of	no	interest	to	such	an	application	because	it	has	only
so	much	data	to	transmit	in	a	given	period	of	time.

Unfortunately,	the	situation	is	not	as	simple	as	this	example	suggests.	Because	the	difference	between	any	two
adjacent	frames	in	a	video	stream	is	often	small,	it	is	possible	to	compress	the	video	by	transmitting	only	the
differences	between	adjacent	frames.	Each	frame	can	also	be	compressed	because	not	all	the	detail	in	a	picture	is
readily	perceived	by	a	human	eye.	The	compressed	video	does	not	flow	at	a	constant	rate,	but	varies	with	time
according	to	factors	such	as	the	amount	of	action	and	detail	in	the	picture	and	the	compression	algorithm	being	used.
Therefore,	it	is	possible	to	say	what	the	average	bandwidth	requirement	will	be,	but	the	instantaneous	rate	may	be
more	or	less.

The	key	issue	is	the	time	interval	over	which	the	average	is	computed.	Suppose	that	this	example	video	application
can	be	compressed	down	to	the	point	that	it	needs	only	2	Mbps,	on	average.	If	it	transmits	1	megabit	in	a	1-second
interval	and	3	megabits	in	the	following	1-second	interval,	then	over	the	2-second	interval	it	is	transmitting	at	an
average	rate	of	2	Mbps;	however,	this	will	be	of	little	consolation	to	a	channel	that	was	engineered	to	support	no	more
than	2	megabits	in	any	one	second.	Clearly,	just	knowing	the	average	bandwidth	needs	of	an	application	will	not
always	suffice.

Generally,	however,	it	is	possible	to	put	an	upper	bound	on	how	large	a	burst	an	application	like	this	is	likely	to
transmit.	A	burst	might	be	described	by	some	peak	rate	that	is	maintained	for	some	period	of	time.	Alternatively,	it
could	be	described	as	the	number	of	bytes	that	can	be	sent	at	the	peak	rate	before	reverting	to	the	average	rate	or
some	lower	rate.	If	this	peak	rate	is	higher	than	the	available	channel	capacity,	then	the	excess	data	will	have	to	be
buffered	somewhere,	to	be	transmitted	later.	Knowing	how	big	of	a	burst	might	be	sent	allows	the	network	designer	to
allocate	sufficient	buffer	capacity	to	hold	the	burst.

Analogous	to	the	way	an	application's	bandwidth	needs	can	be	something	other	than	"all	it	can	get,"	an	application's
delay	requirements	may	be	more	complex	than	simply	"as	little	delay	as	possible."	In	the	case	of	delay,	it	sometimes
doesn't	matter	so	much	whether	the	one-way	latency	of	the	network	is	100	ms	or	500	ms	as	how	much	the	latency
varies	from	packet	to	packet.	The	variation	in	latency	is	called	jitter.

Consider	the	situation	in	which	the	source	sends	a	packet	once	every	33	ms,	as	would	be	the	case	for	a	video
application	transmitting	frames	30	times	a	second.	If	the	packets	arrive	at	the	destination	spaced	out	exactly	33	ms
apart,	then	we	can	deduce	that	the	delay	experienced	by	each	packet	in	the	network	was	exactly	the	same.	If	the
spacing	between	when	packets	arrive	at	the	destination—sometimes	called	the	inter-packet	gap—is	variable,
however,	then	the	delay	experienced	by	the	sequence	of	packets	must	have	also	been	variable,	and	the	network	is
said	to	have	introduced	jitter	into	the	packet	stream,	as	shown	in	Figure	5.	Such	variation	is	generally	not	introduced
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in	a	single	physical	link,	but	it	can	happen	when	packets	experience	different	queuing	delays	in	a	multihop	packet-
switched	network.	This	queuing	delay	corresponds	to	the	component	of	latency	defined	earlier	in	this	section,	which
varies	with	time.

Figure	5.	Network-induced	jitter.

To	understand	the	relevance	of	jitter,	suppose	that	the	packets	being	transmitted	over	the	network	contain	video
frames,	and	in	order	to	display	these	frames	on	the	screen	the	receiver	needs	to	receive	a	new	one	every	33	ms.	If	a
frame	arrives	early,	then	it	can	simply	be	saved	by	the	receiver	until	it	is	time	to	display	it.	Unfortunately,	if	a	frame
arrives	late,	then	the	receiver	will	not	have	the	frame	it	needs	in	time	to	update	the	screen,	and	the	video	quality	will
suffer;	it	will	not	be	smooth.	Note	that	it	is	not	necessary	to	eliminate	jitter,	only	to	know	how	bad	it	is.	The	reason	for
this	is	that	if	the	receiver	knows	the	upper	and	lower	bounds	on	the	latency	that	a	packet	can	experience,	it	can	delay
the	time	at	which	it	starts	playing	back	the	video	(i.e.,	displays	the	first	frame)	long	enough	to	ensure	that	in	the	future
it	will	always	have	a	frame	to	display	when	it	needs	it.	The	receiver	delays	the	frame,	effectively	smoothing	out	the
jitter,	by	storing	it	in	a	buffer.
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1.6	Broader	Perspective

Feature	Velocity

This	chapter	introduces	some	of	the	stakeholders	in	computer	networks—network	designers,	application	developers,
end	users,	and	network	operators—to	help	motivate	the	technical	requirements	that	shape	how	networks	are
designed	and	built.	This	presumes	all	design	decisions	are	purely	technical,	but	of	course,	that’s	usually	not	the	case.
Many	other	factors,	from	market	forces,	to	government	policy,	to	ethical	considerations,	also	influence	how	networks
are	designed	and	built.

Of	these,	the	marketplace	is	the	most	influential,	and	corresponds	to	the	interplay	between	network	operators	(e.g.,
AT&T,	Comcast,	Verizon,	DT,	NTT,	China	Mobile),	network	equipment	venders	(e.g.,	Cisco,	Juniper,	Ericsson,	Nokia,
Huawei,	NEC),	application	and	service	providers	(e.g.,	Facebook,	Google,	Amazon,	Microsoft,	Apple,	Netflix,	Spotify),
and	of	course,	subscribers	and	customers	(i.e.,	individuals,	but	also	enterprises	and	businesses).	The	lines	between
these	players	are	not	always	crisp,	with	many	companies	playing	multiple	roles.	The	most	notable	example	of	this	are
the	large	cloud	providers,	who	(a)	build	their	own	networking	equipment	using	commodity	components,	(b)	deploy	and
operate	their	own	networks,	and	(c)	provide	end-user	services	and	applications	on	top	of	their	networks.

When	you	account	for	these	other	factors	in	the	technical	design	process,	you	realize	there	are	a	couple	of	implicit
assumptions	in	the	textbook	version	of	the	story	that	need	to	be	reevaluated.	One	is	that	designing	a	network	is	a	one-
time	activity.	Build	it	once	and	use	it	forever	(modulo	hardware	upgrades	so	users	can	enjoy	the	benefits	of	the	latest
performance	improvements).	A	second	is	that	the	job	of	building	the	network	is	largely	divorced	from	the	job	of
operating	the	network.	Neither	of	these	assumptions	is	quite	right.

The	network’s	design	is	clearly	evolving,	and	we	have	documented	these	changes	with	each	new	edition	of	the
textbook	over	the	years.	Doing	that	on	a	timeline	measured	in	years	has	historically	been	good	enough,	but	anyone
that	has	downloaded	and	used	the	latest	smartphone	app	knows	how	glacially	slow	anything	measured	in	years	is	by
today’s	standards.	Designing	for	evolution	has	to	be	part	of	the	decision	making	process.

On	the	second	point,	the	companies	that	build	networks	are	almost	always	the	same	ones	that	operate	them.	They
are	collectively	known	as	network	operators,	and	they	include	the	companies	listed	above.	But	if	we	again	look	to	the
cloud	for	inspiration,	we	see	that	develop-and-operate	isn’t	true	just	at	the	company	level,	but	it	is	also	how	the	fastest
moving	cloud	companies	organize	their	engineering	teams:	around	the	DevOps	model.	(If	you	are	unfamiliar	with
DevOps,	we	recommend	you	read	Site	Reliability	Engineering:	How	Google	Runs	Production	Systems	to	see	how	it	is
practiced.)

What	this	all	means	is	that	computer	networks	are	now	in	the	midst	of	a	major	transformation,	with	network	operators
trying	to	simultaneously	accelerate	the	pace	of	innovation	(sometimes	known	as	feature	velocity)	and	yet	continue	to
offer	a	reliable	service	(preserve	stability).	And	they	are	increasingly	doing	this	by	adopting	the	best	practices	of	cloud
providers,	which	can	be	summarized	as	having	two	major	themes:	(1)	take	advantage	of	commodity	hardware	and
move	all	intelligence	into	software,	and	(2)	adopt	agile	engineering	processes	that	break	down	barriers	between
development	and	operations.

This	transformation	is	sometimes	called	the	“cloudification”	or	“softwarization”	of	the	network,	but	by	another	name,	it
is	known	as	Software	Defined	Networks	(SDN).	Whatever	you	call	it,	this	new	approach	is	a	game	changer,	not	so
much	in	terms	of	how	we	address	the	fundamental	technical	challenges	of	framing,	routing,
fragmentation/reassembly,	packet	scheduling,	congestion	control,	security,	and	so	on,	but	in	terms	of	how	rapidly	the
network	evolves	to	support	new	features.
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This	transformation	is	so	important	that	we	take	it	up	again	in	the	Broader	Perspective	section	at	the	end	of	each
chapter.	As	these	discussions	will	explore,	what	happens	in	the	networking	industry	is	partly	about	technology,	but
also	partly	about	many	other	non-technical	factors,	all	of	which	is	a	testament	to	how	deeply	embedded	the	Internet	is
in	our	lives.

Broader	Perspective

To	continue	reading	about	the	cloudification	of	the	Internet,	see	Race	to	the	Edge.

To	learn	more	about	DevOps,	we	recommend:

Site	Reliability	Engineering:	How	Google	Runs	Production	Systems,	2016.
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Chapter	2:	Direct	Connections

It	is	a	mistake	to	look	too	far	ahead.	Only	one	link	in	the	chain	of	destiny	can	be	handled	at	a	time.	—Winston
Churchill

Problem:	Connecting	to	a	Network

In	Chapter	1	we	saw	that	networks	consist	of	links	interconnecting	nodes.	One	of	the	fundamental	problems	we	face
is	how	to	connect	two	nodes	together.	We	also	introduced	the	"cloud"	abstraction	to	represent	a	network	without
revealing	all	of	its	internal	complexities.	So	we	also	need	to	address	the	similar	problem	of	connecting	a	host	to	a
cloud.	This,	in	effect,	is	the	problem	every	Internet	Service	Provider	(ISP)	faces	when	it	wants	to	connect	a	new
customer	to	its	network.

Whether	we	want	to	construct	a	trivial	two-node	network	with	one	link	or	connect	the	one-billionth	host	to	an	existing
network	like	the	Internet,	we	need	to	address	a	common	set	of	issues.	First,	we	need	some	physical	medium	over
which	to	make	the	connection.	The	medium	may	be	a	length	of	wire,	a	piece	of	optical	fiber,	or	some	less	tangible
medium	(such	as	air)	through	which	electromagnetic	radiation	(e.g.,	radio	waves)	can	be	transmitted.	It	may	cover	a
small	area	(e.g.,	an	office	building)	or	a	wide	area	(e.g.,	transcontinental).

Connecting	two	nodes	with	a	suitable	medium	is	only	the	first	step,	however.	Five	additional	problems	must	be
addressed	before	the	nodes	can	successfully	exchange	packets,	and	once	addressed,	we	will	have	provided	Layer	2
(L2)	connectivity	(using	terminology	from	the	OSI	architecture).

The	first	is	encoding	bits	onto	the	transmission	medium	so	that	they	can	be	understood	by	a	receiving	node.	Second
is	the	matter	of	delineating	the	sequence	of	bits	transmitted	over	the	link	into	complete	messages	that	can	be
delivered	to	the	end	node.	This	is	the	framing	problem,	and	the	messages	delivered	to	the	end	hosts	are	often	called
frames	(or	sometimes	packets).	Third,	because	frames	are	sometimes	corrupted	during	transmission,	it	is	necessary
to	detect	these	errors	and	take	the	appropriate	action;	this	is	the	error	detection	problem.	The	fourth	issue	is	making	a
link	appear	reliable	in	spite	of	the	fact	that	it	corrupts	frames	from	time	to	time.	Finally,	in	those	cases	where	the	link	is
shared	by	multiple	hosts—as	is	often	the	case	with	wireless	links,	for	example—it	is	necessary	to	mediate	access	to
this	link.	This	is	the	media	access	control	problem.

Although	these	five	issues—encoding,	framing,	error	detection,	reliable	delivery,	and	access	mediation—can	be
discussed	in	the	abstract,	they	are	very	real	problems	that	are	addressed	in	different	ways	by	different	networking
technologies.	This	chapter	considers	these	issues	in	the	context	of	specific	network	technologies:	point-to-point	fiber
links	(for	which	SONET	is	the	prevalent	example);	Carrier	Sense	Multiple	Access	(CSMA)	networks	(of	which	Ethernet
is	the	most	famous	example);	wireless	networks	(for	which	802.11	is	the	most	widespread	standard);	fiber-to-the
home	(for	which	PON	is	the	dominant	standard);	and	mobile	wireless	(where	4G	is	rapidly	morphing	into	5G).

The	goal	of	this	chapter	is	simultaneously	to	survey	the	available	link-level	technology	and	to	explore	these	five
fundamental	issues.	We	will	examine	what	it	takes	to	make	a	wide	variety	of	different	physical	media	and	link
technologies	useful	as	building	blocks	for	the	construction	of	robust,	scalable	networks.

Chapter	2:	Direct	Connections
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2.1	Technology	Landscape

Before	diving	into	the	challenges	outlined	in	the	problem	statement	at	the	beginning	of	this	chapter,	it	is	helpful	to	first
get	a	lay	of	the	land,	which	includes	a	wide	array	of	link	technologies.	This	is	due,	in	part,	to	the	diverse	circumstances
under	which	users	are	trying	to	connect	their	devices.

At	one	end	of	the	spectrum,	network	operators	that	build	global	networks	must	deal	with	links	that	span	hundreds	or
thousands	of	kilometers	connecting	refrigerator-sized	routers.	At	the	other	end	of	the	spectrum,	a	typical	user
encounters	links	mostly	as	a	way	to	connect	a	computer	to	the	existing	Internet.	Sometimes	this	link	will	be	a	wireless
(Wi-Fi)	link	in	a	coffee	shop;	sometimes	it's	an	Ethernet	link	in	an	office	building	or	university;	sometimes	it	is	a
smartphone	connected	to	a	cellular	network;	for	an	increasingly	large	slice	of	the	population	it	is	a	fiber	optic	link
provided	by	an	ISP;	and	many	others	use	some	sort	of	copper	wire	or	cable	to	connect.	Fortunately,	there	are	many
common	strategies	used	on	these	seemingly	disparate	types	of	links	so	that	they	can	all	be	made	reliable	and	useful
to	higher	layers	in	the	protocol	stack.	This	chapter	examines	those	strategies.

Figure	1.	An	end-user's	view	of	the	Internet.

Figure	1	illustrates	various	types	of	links	that	might	be	found	in	today's	Internet.	On	the	left,	we	see	a	variety	of	end-
user	devices	ranging	from	smartphones	to	tablets	to	full-fledged	computers	connected	by	various	means	to	an	ISP.
While	those	links	might	use	different	technologies,	they	all	look	the	same	in	this	picture—a	straight	line	connecting	a
device	to	a	router.	There	are	links	that	connect	routers	together	inside	the	ISP,	as	well	as	links	that	connect	the	ISP	to
the	"rest	of	the	Internet,"	which	consists	of	lots	of	other	ISPs	and	the	hosts	to	which	they	connect.

These	links	all	look	alike	not	just	because	we're	not	very	good	artists	but	because	part	of	the	role	of	a	network
architecture	is	to	provide	a	common	abstraction	of	something	as	complex	and	diverse	as	a	link.	The	idea	is	that	your
laptop	or	smartphone	doesn't	have	to	care	what	sort	of	link	it	is	connected	to—the	only	thing	that	matters	is	that	it	has
a	link	to	the	Internet.	Similarly,	a	router	doesn't	have	to	care	what	sort	of	link	connects	it	to	other	routers—it	can	send
a	packet	on	the	link	with	a	pretty	good	expectation	that	the	packet	will	reach	the	other	end	of	the	link.

How	do	we	make	all	these	different	types	of	links	look	sufficiently	alike	to	end	users	and	routers?	Essentially,	we	have
to	deal	with	all	the	physical	limitations	and	shortcomings	of	links	that	exist	in	the	real	world.	We	sketched	out	some	of
these	issues	in	the	opening	problem	statement	for	this	chapter,	but	before	we	can	discuss	these,	we	need	to	first
introduce	some	simple	physics.	All	of	these	links	are	made	of	some	physical	material	that	can	propagate	signals,	such
as	radio	waves	or	other	sorts	of	electromagnetic	radiation,	but	what	we	really	want	to	do	is	send	bits.	In	the	later
sections	of	this	chapter,	we'll	look	at	how	to	encode	bits	for	transmission	on	a	physical	medium,	followed	by	the	other
issues	mentioned	above.	By	the	end	of	this	chapter,	we'll	understand	how	to	send	complete	packets	over	just	about
any	sort	of	link,	no	matter	what	physical	medium	is	involved.
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One	way	to	characterize	links,	then,	is	by	the	medium	they	use—typically,	copper	wire	in	some	form,	such	as	twisted
pair	(phone)	and	coaxial	(cable);	optical	fiber,	which	is	used	for	both	fiber-to-the-home	and	many	long-distance	links	in
the	Internet's	backbone;	or	air/free	space	for	wireless	links.

Another	important	link	characteristic	is	the	frequency,	measured	in	hertz,	with	which	the	electromagnetic	waves
oscillate.	The	distance	between	a	pair	of	adjacent	maxima	or	minima	of	a	wave,	typically	measured	in	meters,	is
called	the	wave's	wavelength.	Since	all	electromagnetic	waves	travel	at	the	speed	of	light	(which	in	turn	depends	on
the	medium),	that	speed	divided	by	the	wave's	frequency	is	equal	to	its	wavelength.	We	have	already	seen	the
example	of	a	voice-grade	telephone	line,	which	carries	continuous	electromagnetic	signals	ranging	between	300	Hz
and	3300	Hz;	a	300-Hz	wave	traveling	through	copper	would	have	a	wavelength	of

SpeedOfLightInCopper	/	Frequency

= 2/3 × 3 × 10 /300

= 667 × 10 	meters

Generally,	electromagnetic	waves	span	a	much	wider	range	of	frequencies,	ranging	from	radio	waves,	to	infrared
light,	to	visible	light,	to	x-rays	and	gamma	rays.	Figure	2	depicts	the	electromagnetic	spectrum	and	shows	which
media	are	commonly	used	to	carry	which	frequency	bands.

Figure	2.	Electromagnetic	spectrum.

So	far	we	understand	a	link	to	be	a	physical	medium	carrying	signals	in	the	form	of	electromagnetic	waves.	Such	links
provide	the	foundation	for	transmitting	all	sorts	of	information,	including	the	kind	of	data	we	are	interested	in
transmitting—binary	data	(1s	and	0s).	We	say	that	the	binary	data	is	encoded	in	the	signal.	The	problem	of	encoding
binary	data	onto	electromagnetic	signals	is	a	complex	topic.	To	help	make	the	topic	more	manageable,	we	can	think
of	it	as	being	divided	into	two	layers.	The	lower	layer	is	concerned	with	modulation—varying	the	frequency,	amplitude,
or	phase	of	the	signal	to	effect	the	transmission	of	information.	A	simple	example	of	modulation	is	to	vary	the	power
(amplitude)	of	a	single	wavelength.	Intuitively,	this	is	equivalent	to	turning	a	light	on	and	off.	Because	the	issue	of
modulation	is	secondary	to	our	discussion	of	links	as	a	building	block	for	computer	networks,	we	simply	assume	that	it
is	possible	to	transmit	a	pair	of	distinguishable	signals—think	of	them	as	a	"high"	signal	and	a	"low"	signal—and	we
consider	only	the	upper	layer,	which	is	concerned	with	the	much	simpler	problem	of	encoding	binary	data	onto	these
two	signals.	The	next	section	discusses	such	encodings.

Another	way	to	classify	links	is	in	terms	of	how	they	are	used.	Various	economic	and	deployment	issues	tend	to
influence	where	different	link	types	are	found.	Most	consumers	interact	with	the	Internet	either	through	wireless
networks	(which	they	encounter	in	coffee	shops,	airports,	universities,	etc.)	or	through	so-called	last-mile	links	(or
alternatively,	access	networks)	provided	by	an	ISP,	as	illustrated	in	Figure	1.	These	link	types	are	summarized	in
Table	1.	They	typically	are	chosen	because	they	are	cost-effective	ways	of	reaching	millions	of	consumers.	DSL
(Digital	Subscriber	Line),	for	example,	is	an	older	technology	that	was	deployed	over	the	existing	twisted	pair	copper
wires	that	already	existed	for	plain	old	telephone	services;	G.Fast	is	a	copper-based	technology	typically	used	within
multi-dwelling	apartment	buildings,	and	PON	(Passive	Optical	Network)	is	a	newer	technology	that	is	commonly	used
to	connect	homes	and	businesses	over	recently	deployed	fiber.
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Table	1.	Common	services	available	for	the	last-mile	connection	to	your	home.

Service Bandwidth

DSL	(copper) up	to	100	Mbps

G.Fast	(copper) up	to	1	Gbps

PON	(optical) up	to	10	Gbps

And	of	course	there	is	also	the	mobile	or	cellular	network	(also	referred	to	as	4G,	but	which	is	rapidly	evolving	into	5G)
that	connects	our	mobile	devices	to	the	Internet.	This	technology	can	also	serve	as	the	sole	Internet	connection	into
our	homes	or	offices,	but	comes	with	the	added	benefit	of	allowing	us	to	maintain	Internet	connectivity	while	moving
from	place	to	place.

These	example	technologies	are	common	options	for	the	last-mile	connection	to	your	home	or	business,	but	they	are
not	sufficient	for	building	a	complete	network	from	scratch.	To	do	that,	you'll	also	need	some	long-distance	backbone
links	to	interconnect	cities.	Modern	backbone	links	are	almost	exclusively	fiber	today,	and	they	typically	use	a
technology	called	SONET	(Synchronous	Optical	Network),	which	was	originally	developed	to	meet	the	demanding
management	requirements	of	telephone	carriers.

Finally,	in	addition	to	last-mile,	backbone,	and	mobile	links,	there	are	the	links	that	you	find	inside	a	building	or	a
campus—generally	referred	to	as	local	area	networks	(LANs).	Ethernet,	and	its	wireless	cousin	Wi-Fi,	are	the
dominant	technologies	in	this	space.

This	survey	of	link	types	is	by	no	means	exhaustive,	but	it	should	have	given	you	a	taste	of	the	diversity	of	link	types
that	exist	and	some	of	the	reasons	for	that	diversity.	In	the	coming	sections,	we	will	see	how	networking	protocols	can
take	advantage	of	that	diversity	and	present	a	consistent	view	of	the	network	to	higher	layers	in	spite	of	all	the	low-
level	complexity	and	economic	factors.

2.1	Technology	Landscape

48



2.2	Encoding

The	first	step	in	turning	nodes	and	links	into	usable	building	blocks	is	to	understand	how	to	connect	them	in	such	a
way	that	bits	can	be	transmitted	from	one	node	to	the	other.	As	mentioned	in	the	preceding	section,	signals	propagate
over	physical	links.	The	task,	therefore,	is	to	encode	the	binary	data	that	the	source	node	wants	to	send	into	the
signals	that	the	links	are	able	to	carry	and	then	to	decode	the	signal	back	into	the	corresponding	binary	data	at	the
receiving	node.	We	ignore	the	details	of	modulation	and	assume	we	are	working	with	two	discrete	signals:	high	and
low.	In	practice,	these	signals	might	correspond	to	two	different	voltages	on	a	copper-based	link	or	two	different	power
levels	on	an	optical	link.

Most	of	the	functions	discussed	in	this	chapter	are	performed	by	a	network	adaptor—a	piece	of	hardware	that
connects	a	node	to	a	link.	The	network	adaptor	contains	a	signalling	component	that	actually	encodes	bits	into	signals
at	the	sending	node	and	decodes	signals	into	bits	at	the	receiving	node.	Thus,	as	illustrated	in	Figure	1,	signals	travel
over	a	link	between	two	signalling	components,	and	bits	flow	between	network	adaptors.

Figure	1.	Signals	travel	between	signalling	components;	bits	flow	between
adaptors.

Let's	return	to	the	problem	of	encoding	bits	onto	signals.	The	obvious	thing	to	do	is	to	map	the	data	value	1	onto	the
high	signal	and	the	data	value	0	onto	the	low	signal.	This	is	exactly	the	mapping	used	by	an	encoding	scheme	called,
cryptically	enough,	non-return	to	zero	(NRZ).	For	example,	Figure	2	schematically	depicts	the	NRZ-encoded	signal
(bottom)	that	corresponds	to	the	transmission	of	a	particular	sequence	of	bits	(top).

Figure	2.	NRZ	encoding	of	a	bit	stream.

The	problem	with	NRZ	is	that	a	sequence	of	several	consecutive	1s	means	that	the	signal	stays	high	on	the	link	for	an
extended	period	of	time;	similarly,	several	consecutive	0s	means	that	the	signal	stays	low	for	a	long	time.	There	are
two	fundamental	problems	caused	by	long	strings	of	1s	or	0s.	The	first	is	that	it	leads	to	a	situation	known	as	baseline
wander.	Specifically,	the	receiver	keeps	an	average	of	the	signal	it	has	seen	so	far	and	then	uses	this	average	to
distinguish	between	low	and	high	signals.	Whenever	the	signal	is	significantly	lower	than	this	average,	the	receiver
concludes	that	it	has	just	seen	a	0;	likewise,	a	signal	that	is	significantly	higher	than	the	average	is	interpreted	to	be	a
1.	The	problem,	of	course,	is	that	too	many	consecutive	1s	or	0s	cause	this	average	to	change,	making	it	more	difficult
to	detect	a	significant	change	in	the	signal.

The	second	problem	is	that	frequent	transitions	from	high	to	low	and	vice	versa	are	necessary	to	enable	clock
recovery.	Intuitively,	the	clock	recovery	problem	is	that	both	the	encoding	and	decoding	processes	are	driven	by	a
clock—every	clock	cycle	the	sender	transmits	a	bit	and	the	receiver	recovers	a	bit.	The	sender's	and	the	receiver's
clocks	have	to	be	precisely	synchronized	in	order	for	the	receiver	to	recover	the	same	bits	the	sender	transmits.	If	the
receiver's	clock	is	even	slightly	faster	or	slower	than	the	sender's	clock,	then	it	does	not	correctly	decode	the	signal.
You	could	imagine	sending	the	clock	to	the	receiver	over	a	separate	wire,	but	this	is	typically	avoided	because	it
makes	the	cost	of	cabling	twice	as	high.	So,	instead,	the	receiver	derives	the	clock	from	the	received	signal—the	clock
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recovery	process.	Whenever	the	signal	changes,	such	as	on	a	transition	from	1	to	0	or	from	0	to	1,	then	the	receiver
knows	it	is	at	a	clock	cycle	boundary,	and	it	can	resynchronize	itself.	However,	a	long	period	of	time	without	such	a
transition	leads	to	clock	drift.	Thus,	clock	recovery	depends	on	having	lots	of	transitions	in	the	signal,	no	matter	what
data	is	being	sent.

One	approach	that	addresses	this	problem,	called	non-return	to	zero	inverted	(NRZI),	has	the	sender	make	a
transition	from	the	current	signal	to	encode	a	1	and	stay	at	the	current	signal	to	encode	a	0.	This	solves	the	problem
of	consecutive	1s,	but	obviously	does	nothing	for	consecutive	0s.	NRZI	is	illustrated	in	Figure	3.	An	alternative,	called
Manchester	encoding,	does	a	more	explicit	job	of	merging	the	clock	with	the	signal	by	transmitting	the	exclusive	OR	of
the	NRZ-encoded	data	and	the	clock.	(Think	of	the	local	clock	as	an	internal	signal	that	alternates	from	low	to	high;	a
low/high	pair	is	considered	one	clock	cycle.)	The	Manchester	encoding	is	also	illustrated	in	Figure	3.	Observe	that	the
Manchester	encoding	results	in	0	being	encoded	as	a	low-to-high	transition	and	1	being	encoded	as	a	high-to-low
transition.	Because	both	0s	and	1s	result	in	a	transition	to	the	signal,	the	clock	can	be	effectively	recovered	at	the
receiver.	(There	is	also	a	variant	of	the	Manchester	encoding,	called	Differential	Manchester,	in	which	a	1	is	encoded
with	the	first	half	of	the	signal	equal	to	the	last	half	of	the	previous	bit's	signal	and	a	0	is	encoded	with	the	first	half	of
the	signal	opposite	to	the	last	half	of	the	previous	bit's	signal.)

Figure	3.	Different	encoding	strategies.

The	problem	with	the	Manchester	encoding	scheme	is	that	it	doubles	the	rate	at	which	signal	transitions	are	made	on
the	link,	which	means	that	the	receiver	has	half	the	time	to	detect	each	pulse	of	the	signal.	The	rate	at	which	the
signal	changes	is	called	the	link's	baud	rate.	In	the	case	of	the	Manchester	encoding,	the	bit	rate	is	half	the	baud	rate,
so	the	encoding	is	considered	only	50%	efficient.	Keep	in	mind	that	if	the	receiver	had	been	able	to	keep	up	with	the
faster	baud	rate	required	by	the	Manchester	encoding	in	Figure	3,	then	both	NRZ	and	NRZI	could	have	been	able	to
transmit	twice	as	many	bits	in	the	same	time	period.

The	bit	rate	isn't	necessarily	less	than	or	equal	to	the	baud	rate,	as	the	Manchester	encoding	suggests.	If	the
modulation	scheme	is	able	to	utilize	(and	recognize)	four	different	signals,	as	opposed	to	just	two—e.g.,	"high"
and	"low"—then	it	is	possible	to	encode	two	bits	into	each	clock	interval,	resulting	in	a	bit	rate	that	is	twice	the
baud	rate.	Similarly,	being	able	to	modulate	among	eight	different	signals	means	being	able	to	transmit	three
bits	per	clock	interval.

A	final	encoding	that	we	consider,	called	4B/5B,	attempts	to	address	the	inefficiency	of	the	Manchester	encoding
without	suffering	from	the	problem	of	having	extended	durations	of	high	or	low	signals.	The	idea	of	4B/5B	is	to	insert
extra	bits	into	the	bit	stream	so	as	to	break	up	long	sequences	of	0s	or	1s.	Specifically,	every	4	bits	of	actual	data	are
encoded	in	a	5-bit	code	that	is	then	transmitted	to	the	receiver;	hence,	the	name	4B/5B.	The	5-bit	codes	are	selected
in	such	a	way	that	each	one	has	no	more	than	one	leading	0	and	no	more	than	two	trailing	0s.	Thus,	when	sent	back-
to-back,	no	pair	of	5-bit	codes	results	in	more	than	three	consecutive	0s	being	transmitted.	The	resulting	5-bit	codes
are	then	transmitted	using	the	NRZI	encoding,	which	explains	why	the	code	is	only	concerned	about	consecutive	0s—
NRZI	already	solves	the	problem	of	consecutive	1s.	Note	that	the	4B/5B	encoding	results	in	80%	efficiency.

Table	1.	4B/5B	encoding.

4-bit	Data	Symbol 5-bit	Code
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0000 11110

0001 01001

0010 10100

0011 10101

0100 01010

0101 01011

0110 01110

0111 01111

1000 10010

1001 10011

1010 10110

1011 10111

1100 11010

1101 11011

1110 11100

1111 11101

Table	1	gives	the	5-bit	codes	that	correspond	to	each	of	the	16	possible	4-bit	data	symbols.	Notice	that	since	5	bits
are	enough	to	encode	32	different	codes,	and	we	are	using	only	16	of	these	for	data,	there	are	16	codes	left	over	that
we	can	use	for	other	purposes.	Of	these,	code		11111		is	used	when	the	line	is	idle,	code		00000		corresponds	to	when
the	line	is	dead,	and		00100		is	interpreted	to	mean	halt.	Of	the	remaining	13	codes,	7	of	them	are	not	valid	because
they	violate	the	"one	leading	0,	two	trailing	0s,"	rule,	and	the	other	6	represent	various	control	symbols.	Some	of	the
framing	protocols	described	later	in	this	chapter	make	use	of	these	control	symbols.
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2.3	Framing

Now	that	we	have	seen	how	to	transmit	a	sequence	of	bits	over	a	point-to-point	link—from	adaptor	to	adaptor—let's
consider	the	scenario	in	Figure	1.	Recall	from	Chapter	1	that	we	are	focusing	on	packet-switched	networks,	which
means	that	blocks	of	data	(called	frames	at	this	level),	not	bit	streams,	are	exchanged	between	nodes.	It	is	the
network	adaptor	that	enables	the	nodes	to	exchange	frames.	When	node	A	wishes	to	transmit	a	frame	to	node	B,	it
tells	its	adaptor	to	transmit	a	frame	from	the	node's	memory.	This	results	in	a	sequence	of	bits	being	sent	over	the
link.	The	adaptor	on	node	B	then	collects	together	the	sequence	of	bits	arriving	on	the	link	and	deposits	the
corresponding	frame	in	B's	memory.	Recognizing	exactly	what	set	of	bits	constitutes	a	frame—that	is,	determining
where	the	frame	begins	and	ends—is	the	central	challenge	faced	by	the	adaptor.

Figure	1.	Bits	flow	between	adaptors,	frames	between	hosts.

There	are	several	ways	to	address	the	framing	problem.	This	section	uses	three	different	protocols	to	illustrate	the
various	points	in	the	design	space.	Note	that	while	we	discuss	framing	in	the	context	of	point-to-point	links,	the
problem	is	a	fundamental	one	that	must	also	be	addressed	in	multiple-access	networks	like	Ethernet	and	Wi-Fi.

Byte-Oriented	Protocols	(PPP)
One	of	the	oldest	approaches	to	framing—it	has	its	roots	in	connecting	terminals	to	mainframes—is	to	view	each
frame	as	a	collection	of	bytes	(characters)	rather	than	a	collection	of	bits.	Early	examples	of	such	byte-oriented
protocols	are	the	Binary	Synchronous	Communication	(BISYNC)	protocol	developed	by	IBM	in	the	late	1960s,	and	the
Digital	Data	Communication	Message	Protocol	(DDCMP)	used	in	Digital	Equipment	Corporation's	DECNET.	(Once
upon	a	time,	large	computer	companies	like	IBM	and	DEC	also	built	private	networks	for	their	customers.)	The	widely
used	Point-to-Point	Protocol	(PPP)	is	a	recent	example	of	this	approach.

At	a	high	level,	there	are	two	approaches	to	byte-oriented	framing.	The	first	is	to	use	special	characters	known	as
sentinel	characters	to	indicate	where	frames	start	and	end.	The	idea	is	to	denote	the	beginning	of	a	frame	by	sending
a	special	SYN	(synchronization)	character.	The	data	portion	of	the	frame	is	then	sometimes	contained	between	two
more	special	characters:	STX	(start	of	text)	and	ETX	(end	of	text).	BISYNC	used	this	approach.	The	problem	with	the
sentinel	approach,	of	course,	is	that	one	of	the	special	characters	might	appear	in	the	data	portion	of	the	frame.	The
standard	way	to	overcome	this	problem	by	"escaping"	the	character	by	preceding	it	with	a	DLE	(data-link-escape)
character	whenever	it	appears	in	the	body	of	a	frame;	the	DLE	character	is	also	escaped	(by	preceding	it	with	an	extra
DLE)	in	the	frame	body.	(C	programmers	may	notice	that	this	is	analogous	to	the	way	a	quotation	mark	is	escaped	by
the	backslash	when	it	occurs	inside	a	string.)	This	approach	is	often	called	character	stuffing	because	extra
characters	are	inserted	in	the	data	portion	of	the	frame.

The	alternative	to	detecting	the	end	of	a	frame	with	a	sentinel	value	is	to	include	the	number	of	bytes	in	the	frame	at
the	beginning	of	the	frame,	in	the	frame	header.	DDCMP	used	this	approach.	One	danger	with	this	approach	is	that	a
transmission	error	could	corrupt	the	count	field,	in	which	case	the	end	of	the	frame	would	not	be	correctly	detected.	(A
similar	problem	exists	with	the	sentinel-based	approach	if	the	ETX	field	becomes	corrupted.)	Should	this	happen,	the
receiver	will	accumulate	as	many	bytes	as	the	bad	count	field	indicates	and	then	use	the	error	detection	field	to
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determine	that	the	frame	is	bad.	This	is	sometimes	called	a	framing	error.	The	receiver	will	then	wait	until	it	sees	the
next	SYN	character	to	start	collecting	the	bytes	that	make	up	the	next	frame.	It	is	therefore	possible	that	a	framing
error	will	cause	back-to-back	frames	to	be	incorrectly	received.

The	Point-to-Point	Protocol	(PPP),	which	is	commonly	used	to	carry	Internet	Protocol	packets	over	various	sorts	of
point-to-point	links,	uses	sentinels	and	character	stuffing.	The	format	for	a	PPP	frame	is	given	in	Figure	2.

Figure	2.	PPP	frame	format.

This	figure	is	the	first	of	many	that	you	will	see	in	this	book	that	are	used	to	illustrate	frame	or	packet	formats,	so	a	few
words	of	explanation	are	in	order.	We	show	a	packet	as	a	sequence	of	labeled	fields.	Above	each	field	is	a	number
indicating	the	length	of	that	field	in	bits.	Note	that	the	packets	are	transmitted	beginning	with	the	leftmost	field.

The	special	start-of-text	character,	denoted	as	the		Flag		field	is		01111110	.	The		Address		and		Control		fields	usually
contain	default	values	and	so	are	uninteresting.	The	(Protocol)	field	is	used	for	demultiplexing;	it	identifies	the	high-
level	protocol,	such	as	IP.	The	frame	payload	size	can	be	negotiated,	but	it	is	1500	bytes	by	default.	The		Checksum	
field	is	either	2	(by	default)	or	4	bytes	long.

The	PPP	frame	format	is	unusual	in	that	several	of	the	field	sizes	are	negotiated	rather	than	fixed.	This	negotiation	is
conducted	by	a	protocol	called	the	Link	Control	Protocol	(LCP).	PPP	and	LCP	work	in	tandem:	LCP	sends	control
messages	encapsulated	in	PPP	frames—such	messages	are	denoted	by	an	LCP	identifier	in	the	PPP	(Protocol)	field
—and	then	turns	around	and	changes	PPP's	frame	format	based	on	the	information	contained	in	those	control
messages.	LCP	is	also	involved	in	establishing	a	link	between	two	peers	when	both	sides	detect	that	communication
over	the	link	is	possible	(e.g.,	when	each	optical	receiver	detects	an	incoming	signal	from	the	fiber	to	which	it
connects).

Bit-Oriented	Protocols	(HDLC)

Unlike	byte-oriented	protocols,	a	bit-oriented	protocol	is	not	concerned	with	byte	boundaries—it	simply	views	the
frame	as	a	collection	of	bits.	These	bits	might	come	from	some	character	set,	such	as	ASCII;	they	might	be	pixel
values	in	an	image;	or	they	could	be	instructions	and	operands	from	an	executable	file.	The	Synchronous	Data	Link
Control	(SDLC)	protocol	developed	by	IBM	is	an	example	of	a	bit-oriented	protocol;	SDLC	was	later	standardized	by
the	ISO	as	the	High-Level	Data	Link	Control	(HDLC)	protocol.	In	the	following	discussion,	we	use	HDLC	as	an
example;	its	frame	format	is	given	in	Figure	3.

HDLC	denotes	both	the	beginning	and	the	end	of	a	frame	with	the	distinguished	bit	sequence		01111110	.	This
sequence	is	also	transmitted	during	any	times	that	the	link	is	idle	so	that	the	sender	and	receiver	can	keep	their	clocks
synchronized.	In	this	way,	both	protocols	essentially	use	the	sentinel	approach.	Because	this	sequence	might	appear
anywhere	in	the	body	of	the	frame—in	fact,	the	bits		01111110		might	cross	byte	boundaries—bit-oriented	protocols	use
the	analog	of	the	DLE	character,	a	technique	known	as	bit	stuffing.

Figure	3.	HDLC	frame	format.

Bit	stuffing	in	the	HDLC	protocol	works	as	follows.	On	the	sending	side,	any	time	five	consecutive	1s	have	been
transmitted	from	the	body	of	the	message	(i.e.,	excluding	when	the	sender	is	trying	to	transmit	the	distinguished
	01111110		sequence),	the	sender	inserts	a	0	before	transmitting	the	next	bit.	On	the	receiving	side,	should	five
consecutive	1s	arrive,	the	receiver	makes	its	decision	based	on	the	next	bit	it	sees	(i.e.,	the	bit	following	the	five	1s).	If
the	next	bit	is	a	0,	it	must	have	been	stuffed,	and	so	the	receiver	removes	it.	If	the	next	bit	is	a	1,	then	one	of	two
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things	is	true:	Either	this	is	the	end-of-frame	marker	or	an	error	has	been	introduced	into	the	bit	stream.	By	looking	at
the	next	bit,	the	receiver	can	distinguish	between	these	two	cases.	If	it	sees	a	0	(i.e.,	the	last	8	bits	it	has	looked	at	are
	01111110	),	then	it	is	the	end-of-frame	marker;	if	it	sees	a	1	(i.e.,	the	last	8	bits	it	has	looked	at	are		01111111	),	then
there	must	have	been	an	error	and	the	whole	frame	is	discarded.	In	the	latter	case,	the	receiver	has	to	wait	for	the
next		01111110		before	it	can	start	receiving	again,	and,	as	a	consequence,	there	is	the	potential	that	the	receiver	will
fail	to	receive	two	consecutive	frames.	Obviously,	there	are	still	ways	that	framing	errors	can	go	undetected,	such	as
when	an	entire	spurious	end-of-frame	pattern	is	generated	by	errors,	but	these	failures	are	relatively	unlikely.	Robust
ways	of	detecting	errors	are	discussed	in	a	later	section.

An	interesting	characteristic	of	bit	stuffing,	as	well	as	character	stuffing,	is	that	the	size	of	a	frame	is	dependent	on	the
data	that	is	being	sent	in	the	payload	of	the	frame.	It	is	in	fact	not	possible	to	make	all	frames	exactly	the	same	size,
given	that	the	data	that	might	be	carried	in	any	frame	is	arbitrary.	(To	convince	yourself	of	this,	consider	what	happens
if	the	last	byte	of	a	frame's	body	is	the	ETX	character.)	A	form	of	framing	that	ensures	that	all	frames	are	the	same
size	is	described	in	the	next	subsection.

Clock-Based	Framing	(SONET)

A	third	approach	to	framing	is	exemplified	by	the	Synchronous	Optical	Network	(SONET)	standard.	For	lack	of	a
widely	accepted	generic	term,	we	refer	to	this	approach	simply	as	clock-based	framing.	SONET	was	first	proposed	by
Bell	Communications	Research	(Bellcore),	and	then	developed	under	the	American	National	Standards	Institute
(ANSI)	for	digital	transmission	over	optical	fiber;	it	has	since	been	adopted	by	the	ITU-T.	SONET	has	been	for	many
years	the	dominant	standard	for	long-distance	transmission	of	data	over	optical	networks.

An	important	point	to	make	about	SONET	before	we	go	any	further	is	that	the	full	specification	is	substantially	larger
than	this	book.	Thus,	the	following	discussion	will	necessarily	cover	only	the	high	points	of	the	standard.	Also,	SONET
addresses	both	the	framing	problem	and	the	encoding	problem.	It	also	addresses	a	problem	that	is	very	important	for
phone	companies—the	multiplexing	of	several	low-speed	links	onto	one	high-speed	link.	(In	fact,	much	of	SONET's
design	reflects	the	fact	that	phone	companies	have	to	be	concerned	with	multiplexing	large	numbers	of	the	64-kbps
channels	that	traditionally	are	used	for	telephone	calls.)	We	begin	with	SONET's	approach	to	framing	and	discuss	the
other	issues	following.

As	with	the	previously	discussed	framing	schemes,	a	SONET	frame	has	some	special	information	that	tells	the
receiver	where	the	frame	starts	and	ends;	however,	that	is	about	as	far	as	the	similarities	go.	Notably,	no	bit	stuffing	is
used,	so	that	a	frame's	length	does	not	depend	on	the	data	being	sent.	So	the	question	to	ask	is	"How	does	the
receiver	know	where	each	frame	starts	and	ends?"	We	consider	this	question	for	the	lowest-speed	SONET	link,	which
is	known	as	STS-1	and	runs	at	51.84	Mbps.	An	STS-1	frame	is	shown	in	Figure	4.	It	is	arranged	as	9	rows	of	90	bytes
each,	and	the	first	3	bytes	of	each	row	are	overhead,	with	the	rest	being	available	for	data	that	is	being	transmitted
over	the	link.	The	first	2	bytes	of	the	frame	contain	a	special	bit	pattern,	and	it	is	these	bytes	that	enable	the	receiver
to	determine	where	the	frame	starts.	However,	since	bit	stuffing	is	not	used,	there	is	no	reason	why	this	pattern	will
not	occasionally	turn	up	in	the	payload	portion	of	the	frame.	To	guard	against	this,	the	receiver	looks	for	the	special	bit
pattern	consistently,	hoping	to	see	it	appearing	once	every	810	bytes,	since	each	frame	is	9	×	90	=	810	bytes	long.
When	the	special	pattern	turns	up	in	the	right	place	enough	times,	the	receiver	concludes	that	it	is	in	sync	and	can
then	interpret	the	frame	correctly.
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Figure	4.	A	SONET	STS-1	frame.

One	of	the	things	we	are	not	describing	due	to	the	complexity	of	SONET	is	the	detailed	use	of	all	the	other	overhead
bytes.	Part	of	this	complexity	can	be	attributed	to	the	fact	that	SONET	runs	across	the	carrier's	optical	network,	not
just	over	a	single	link.	(Recall	that	we	are	glossing	over	the	fact	that	the	carriers	implement	a	network,	and	we	are
instead	focusing	on	the	fact	that	we	can	lease	a	SONET	link	from	them	and	then	use	this	link	to	build	our	own	packet-
switched	network.)	Additional	complexity	comes	from	the	fact	that	SONET	provides	a	considerably	richer	set	of
services	than	just	data	transfer.	For	example,	64	kbps	of	a	SONET	link's	capacity	is	set	aside	for	a	voice	channel	that
is	used	for	maintenance.

The	overhead	bytes	of	a	SONET	frame	are	encoded	using	NRZ,	the	simple	encoding	described	in	the	previous
section	where	1s	are	high	and	0s	are	low.	However,	to	ensure	that	there	are	plenty	of	transitions	to	allow	the	receiver
to	recover	the	sender's	clock,	the	payload	bytes	are	scrambled.	This	is	done	by	calculating	the	exclusive	OR	(XOR)	of
the	data	to	be	transmitted	and	by	the	use	of	a	well-known	bit	pattern.	The	bit	pattern,	which	is	127	bits	long,	has	plenty
of	transitions	from	1	to	0,	so	that	XORing	it	with	the	transmitted	data	is	likely	to	yield	a	signal	with	enough	transitions
to	enable	clock	recovery.

SONET	supports	the	multiplexing	of	multiple	low-speed	links	in	the	following	way.	A	given	SONET	link	runs	at	one	of
a	finite	set	of	possible	rates,	ranging	from	51.84	Mbps	(STS-1)	to	39,813,120	Mbps	(STS-786).	Note	that	all	of	these
rates	are	integer	multiples	of	STS-1.	The	significance	for	framing	is	that	a	single	SONET	frame	can	contain	subframes
for	multiple	lower-rate	channels.	A	second	related	feature	is	that	each	frame	is	125	μs	long.	This	means	that	at	STS-1
rates,	a	SONET	frame	is	810	bytes	long,	while	at	STS-3	rates,	each	SONET	frame	is	2430	bytes	long.	Notice	the
synergy	between	these	two	features:	3	×	810	=	2430,	meaning	that	three	STS-1	frames	fit	exactly	in	a	single	STS-3
frame.

STS	stands	for	Synchronous	Transport	Signal,	which	is	how	SONET	talks	about	frames.	There	is	a	parallel
term—Optical	Carrier	(OC)—that	is	used	to	talk	about	the	underlying	optical	signal	that	carries	SONET	frames.
We	say	these	two	terms	are	parallel	because	STS-3	and	OC-3,	to	use	a	concrete	example,	both	imply	a
transmission	rate	of	155.52	Mbps.	Since	we're	focused	on	framing	here,	we	will	stick	with	STS,	but	it	is	more
likely	that	you	will	hear	someone	refer	to	an	optical	link	by	its	"OC"	name.

Intuitively,	the	STS-N	frame	can	be	thought	of	as	consisting	of	N	STS-1	frames,	where	the	bytes	from	these	frames
are	interleaved;	that	is,	a	byte	from	the	first	frame	is	transmitted,	then	a	byte	from	the	second	frame	is	transmitted,	and
so	on.	The	reason	for	interleaving	the	bytes	from	each	STS-N	frame	is	to	ensure	that	the	bytes	in	each	STS-1	frame
are	evenly	paced;	that	is,	bytes	show	up	at	the	receiver	at	a	smooth	51	Mbps,	rather	than	all	bunched	up	during	one

particular	1/N 	of	the	125-μs	interval.th
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Figure	5.	Three	STS-1	frames	multiplexed	onto	one	STS-3c	frame.

Although	it	is	accurate	to	view	an	STS-N	signal	as	being	used	to	multiplex	N	STS-1	frames,	the	payload	from	these
STS-1	frames	can	be	linked	together	to	form	a	larger	STS-N	payload;	such	a	link	is	denoted	STS-Nc	(for
concatenated).	One	of	the	fields	in	the	overhead	is	used	for	this	purpose.	Figure	5	schematically	depicts
concatenation	in	the	case	of	three	STS-1	frames	being	concatenated	into	a	single	STS-3c	frame.	The	significance	of	a
SONET	link	being	designated	as	STS-3c	rather	than	STS-3	is	that,	in	the	former	case,	the	user	of	the	link	can	view	it
as	a	single	155.25-Mbps	pipe,	whereas	an	STS-3	should	really	be	viewed	as	three	51.84-Mbps	links	that	happen	to
share	a	fiber.

Figure	6.	SONET	frames	out	of	phase.

Finally,	the	preceding	description	of	SONET	is	overly	simplistic	in	that	it	assumes	that	the	payload	for	each	frame	is
completely	contained	within	the	frame.	(Why	wouldn't	it	be?)	In	fact,	we	should	view	the	STS-1	frame	just	described
as	simply	a	placeholder	for	the	frame,	where	the	actual	payload	may	float	across	frame	boundaries.	This	situation	is
illustrated	in	Figure	6.	Here	we	see	both	the	STS-1	payload	floating	across	two	STS-1	frames	and	the	payload	shifted
some	number	of	bytes	to	the	right	and,	therefore,	wrapped	around.	One	of	the	fields	in	the	frame	overhead	points	to
the	beginning	of	the	payload.	The	value	of	this	capability	is	that	it	simplifies	the	task	of	synchronizing	the	clocks	used
throughout	the	carriers'	networks,	which	is	something	that	carriers	spend	a	lot	of	their	time	worrying	about.
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2.4	Error	Detection

As	discussed	in	Chapter	1,	bit	errors	are	sometimes	introduced	into	frames.	This	happens,	for	example,	because	of
electrical	interference	or	thermal	noise.	Although	errors	are	rare,	especially	on	optical	links,	some	mechanism	is
needed	to	detect	these	errors	so	that	corrective	action	can	be	taken.	Otherwise,	the	end	user	is	left	wondering	why
the	C	program	that	successfully	compiled	just	a	moment	ago	now	suddenly	has	a	syntax	error	in	it,	when	all	that
happened	in	the	interim	is	that	it	was	copied	across	a	network	file	system.

There	is	a	long	history	of	techniques	for	dealing	with	bit	errors	in	computer	systems,	dating	back	to	at	least	the	1940s.
Hamming	and	Reed-Solomon	codes	are	two	notable	examples	that	were	developed	for	use	in	punch	card	readers,
when	storing	data	on	magnetic	disks,	and	in	early	core	memories.	This	section	describes	some	of	the	error	detection
techniques	most	commonly	used	in	networking.

Detecting	errors	is	only	one	part	of	the	problem.	The	other	part	is	correcting	errors	once	detected.	Two	basic
approaches	can	be	taken	when	the	recipient	of	a	message	detects	an	error.	One	is	to	notify	the	sender	that	the
message	was	corrupted	so	that	the	sender	can	retransmit	a	copy	of	the	message.	If	bit	errors	are	rare,	then	in	all
probability	the	retransmitted	copy	will	be	error	free.	Alternatively,	some	types	of	error	detection	algorithms	allow	the
recipient	to	reconstruct	the	correct	message	even	after	it	has	been	corrupted;	such	algorithms	rely	on	error-correcting
codes,	discussed	below.

One	of	the	most	common	techniques	for	detecting	transmission	errors	is	a	technique	known	as	the	cyclic	redundancy
check	(CRC).	It	is	used	in	nearly	all	the	link-level	protocols	discussed	in	this	chapter.	This	section	outlines	the	basic
CRC	algorithm,	but	before	discussing	that	approach,	we	first	describe	the	simpler	checksum	scheme	used	by	several
Internet	protocols.

The	basic	idea	behind	any	error	detection	scheme	is	to	add	redundant	information	to	a	frame	that	can	be	used	to
determine	if	errors	have	been	introduced.	In	the	extreme,	we	could	imagine	transmitting	two	complete	copies	of	the
data.	If	the	two	copies	are	identical	at	the	receiver,	then	it	is	probably	the	case	that	both	are	correct.	If	they	differ,	then
an	error	was	introduced	into	one	(or	both)	of	them,	and	they	must	be	discarded.	This	is	a	rather	poor	error	detection
scheme	for	two	reasons.	First,	it	sends	n	redundant	bits	for	an	n-bit	message.	Second,	many	errors	will	go	undetected
—any	error	that	happens	to	corrupt	the	same	bit	positions	in	the	first	and	second	copies	of	the	message.	In	general,
the	goal	of	error	detecting	codes	is	to	provide	a	high	probability	of	detecting	errors	combined	with	a	relatively	low
number	of	redundant	bits.

Fortunately,	we	can	do	a	lot	better	than	this	simple	scheme.	In	general,	we	can	provide	quite	strong	error	detection
capability	while	sending	only	k	redundant	bits	for	an	n-bit	message,	where	k	is	much	smaller	than	n.	On	an	Ethernet,
for	example,	a	frame	carrying	up	to	12,000	bits	(1500	bytes)	of	data	requires	only	a	32-bit	CRC	code,	or	as	it	is
commonly	expressed,	uses	CRC-32.	Such	a	code	will	catch	the	overwhelming	majority	of	errors,	as	we	will	see	below.

We	say	that	the	extra	bits	we	send	are	redundant	because	they	add	no	new	information	to	the	message.	Instead,	they
are	derived	directly	from	the	original	message	using	some	well-defined	algorithm.	Both	the	sender	and	the	receiver
know	exactly	what	that	algorithm	is.	The	sender	applies	the	algorithm	to	the	message	to	generate	the	redundant	bits.
It	then	transmits	both	the	message	and	those	few	extra	bits.	When	the	receiver	applies	the	same	algorithm	to	the
received	message,	it	should	(in	the	absence	of	errors)	come	up	with	the	same	result	as	the	sender.	It	compares	the
result	with	the	one	sent	to	it	by	the	sender.	If	they	match,	it	can	conclude	(with	high	likelihood)	that	no	errors	were
introduced	in	the	message	during	transmission.	If	they	do	not	match,	it	can	be	sure	that	either	the	message	or	the
redundant	bits	were	corrupted,	and	it	must	take	appropriate	action—that	is,	discarding	the	message	or	correcting	it	if
that	is	possible.

One	note	on	the	terminology	for	these	extra	bits.	In	general,	they	are	referred	to	as	error-detecting	codes.	In	specific
cases,	when	the	algorithm	to	create	the	code	is	based	on	addition,	they	may	be	called	a	checksum.	We	will	see	that
the	Internet	checksum	is	appropriately	named:	It	is	an	error	check	that	uses	a	summing	algorithm.	Unfortunately,	the
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word	checksum	is	often	used	imprecisely	to	mean	any	form	of	error-detecting	code,	including	CRCs.	This	can	be
confusing,	so	we	urge	you	to	use	the	word	checksum	only	to	apply	to	codes	that	actually	do	use	addition	and	to	use
error-detecting	code	to	refer	to	the	general	class	of	codes	described	in	this	section.

Internet	Checksum	Algorithm

Our	first	approach	to	error	detection	is	exemplified	by	the	Internet	checksum.	Although	it	is	not	used	at	the	link	level,	it
nevertheless	provides	the	same	sort	of	functionality	as	CRCs,	so	we	discuss	it	here.

The	idea	behind	the	Internet	checksum	is	very	simple—you	add	up	all	the	words	that	are	transmitted	and	then
transmit	the	result	of	that	sum.	The	result	is	the	checksum.	The	receiver	performs	the	same	calculation	on	the
received	data	and	compares	the	result	with	the	received	checksum.	If	any	transmitted	data,	including	the	checksum
itself,	is	corrupted,	then	the	results	will	not	match,	so	the	receiver	knows	that	an	error	occurred.

You	can	imagine	many	different	variations	on	the	basic	idea	of	a	checksum.	The	exact	scheme	used	by	the	Internet
protocols	works	as	follows.	Consider	the	data	being	checksummed	as	a	sequence	of	16-bit	integers.	Add	them
together	using	16-bit	ones'	complement	arithmetic	(explained	below)	and	then	take	the	ones'	complement	of	the
result.	That	16-bit	number	is	the	checksum.

In	ones'	complement	arithmetic,	a	negative	integer	(-x)	is	represented	as	the	complement	of	x;	that	is,	each	bit	of	x	is
inverted.	When	adding	numbers	in	ones'	complement	arithmetic,	a	carryout	from	the	most	bit	needs	to	be	added	to	the
result.	Consider,	for	example,	the	addition	of	-5	and	-3	in	ones'	complement	arithmetic	on	4-bit	integers:	+5	is	0101,	so
-5	is	1010;	+3	is	0011,	so	-3	is	1100.	If	we	add	1010	and	1100,	ignoring	the	carry,	we	get	0110.	In	ones'	complement
arithmetic,	the	fact	that	this	operation	caused	a	carry	from	the	most	significant	bit	causes	us	to	increment	the	result,
giving	0111,	which	is	the	ones'	complement	representation	of	-8	(obtained	by	inverting	the	bits	in	1000),	as	we	would
expect.

The	following	routine	gives	a	straightforward	implementation	of	the	Internet's	checksum	algorithm.	The		count	
argument	gives	the	length	of		buf		measured	in	16-bit	units.	The	routine	assumes	that		buf		has	already	been	padded
with	0s	to	a	16-bit	boundary.

u_short	
cksum(u_short	*buf,	int	count)	
{
				register	u_long	sum	=	0;

				while	(count--)	
				{
								sum	+=	*buf++;
								if	(sum	&	0xFFFF0000)	
								{
												/*	carry	occurred,	so	wrap	around	*/
												sum	&=	0xFFFF;
												sum++;
								}
				}
				return	~(sum	&	0xFFFF);
}

This	code	ensures	that	the	calculation	uses	ones'	complement	arithmetic	rather	than	the	twos'	complement	that	is
used	in	most	machines.	Note	the		if		statement	inside	the		while		loop.	If	there	is	a	carry	into	the	top	16	bits	of		sum	,
then	we	increment		sum		just	as	in	the	previous	example.

Compared	to	our	repetition	code,	this	algorithm	scores	well	for	using	a	small	number	of	redundant	bits—only	16	for	a
message	of	any	length—but	it	does	not	score	extremely	well	for	strength	of	error	detection.	For	example,	a	pair	of
single-bit	errors,	one	of	which	increments	a	word	and	one	of	which	decrements	another	word	by	the	same	amount,	will

2.4	Error	Detection

58



go	undetected.	The	reason	for	using	an	algorithm	like	this	in	spite	of	its	relatively	weak	protection	against	errors
(compared	to	a	CRC,	for	example)	is	simple:	This	algorithm	is	much	easier	to	implement	in	software.	Experience	has
suggested	that	a	checksum	of	this	form	was	adequate,	but	one	reason	it	is	adequate	is	that	this	checksum	is	the	last
line	of	defense	in	an	end-to-end	protocol.	The	majority	of	errors	are	picked	up	by	stronger	error	detection	algorithms,
such	as	CRCs,	at	the	link	level.

Cyclic	Redundancy	Check

It	should	be	clear	by	now	that	a	major	goal	in	designing	error	detection	algorithms	is	to	maximize	the	probability	of
detecting	errors	using	only	a	small	number	of	redundant	bits.	Cyclic	redundancy	checks	use	some	fairly	powerful
mathematics	to	achieve	this	goal.	For	example,	a	32-bit	CRC	gives	strong	protection	against	common	bit	errors	in
messages	that	are	thousands	of	bytes	long.	The	theoretical	foundation	of	the	cyclic	redundancy	check	is	rooted	in	a
branch	of	mathematics	called	finite	fields.	While	this	may	sound	daunting,	the	basic	ideas	can	be	easily	understood.

To	start,	think	of	an	(n+1)-bit	message	as	being	represented	by	an	n	degree	polynomial,	that	is,	a	polynomial	whose

highest-order	term	is	x .	The	message	is	represented	by	a	polynomial	by	using	the	value	of	each	bit	in	the	message

as	the	coefficient	for	each	term	in	the	polynomial,	starting	with	the	most	significant	bit	to	represent	the	highest-order
term.	For	example,	an	8-bit	message	consisting	of	the	bits	10011010	corresponds	to	the	polynomial

M(x) = (1 × x ) + (0 × x ) + (0 × x ) + (1 × x ) + (1 × x ) + (0 × x ) + (1 × x ) + (0 × x )

M(x) = x + x + x + x

We	can	thus	think	of	a	sender	and	a	receiver	as	exchanging	polynomials	with	each	other.

For	the	purposes	of	calculating	a	CRC,	a	sender	and	receiver	have	to	agree	on	a	divisor	polynomial,	C(x).	C(x)	is	a

polynomial	of	degree	k.	For	example,	suppose	C(x) = x + x + 1.	In	this	case,	k = 3.	The	answer	to	the	question

"Where	did	C(x)	come	from?"	is,	in	most	practical	cases,	"You	look	it	up	in	a	book."	In	fact,	the	choice	of	C(x)	has	a
significant	impact	on	what	types	of	errors	can	be	reliably	detected,	as	we	discuss	below.	There	are	a	handful	of	divisor
polynomials	that	are	very	good	choices	for	various	environments,	and	the	exact	choice	is	normally	made	as	part	of	the
protocol	design.	For	example,	the	Ethernet	standard	uses	a	well-known	polynomial	of	degree	32.

When	a	sender	wishes	to	transmit	a	message	M(x)	that	is	n+1	bits	long,	what	is	actually	sent	is	the	(n+1)-bit
message	plus	k	bits.	We	call	the	complete	transmitted	message,	including	the	redundant	bits,	P (x).	What	we	are
going	to	do	is	contrive	to	make	the	polynomial	representing	P (x)	exactly	divisible	by	C(x);	we	explain	how	this	is
achieved	below.	If	P (x)	is	transmitted	over	a	link	and	there	are	no	errors	introduced	during	transmission,	then	the
receiver	should	be	able	to	divide	P (x)	by	C(x)	exactly,	leaving	a	remainder	of	zero.	On	the	other	hand,	if	some	error
is	introduced	into	P (x)	during	transmission,	then	in	all	likelihood	the	received	polynomial	will	no	longer	be	exactly
divisible	by	C(x),	and	thus	the	receiver	will	obtain	a	nonzero	remainder	implying	that	an	error	has	occurred.

It	will	help	to	understand	the	following	if	you	know	a	little	about	polynomial	arithmetic;	it	is	just	slightly	different	from
normal	integer	arithmetic.	We	are	dealing	with	a	special	class	of	polynomial	arithmetic	here,	where	coefficients	may
be	only	one	or	zero,	and	operations	on	the	coefficients	are	performed	using	modulo	2	arithmetic.	This	is	referred	to	as
"polynomial	arithmetic	modulo	2."	Since	this	is	a	networking	book,	not	a	mathematics	text,	let's	focus	on	the	key
properties	of	this	type	of	arithmetic	for	our	purposes	(which	we	ask	you	to	accept	on	faith):

Any	polynomial	B(x)	can	be	divided	by	a	divisor	polynomial	C(x)	if	B(x)	is	of	higher	degree	than	C(x).

Any	polynomial	B(x)	can	be	divided	once	by	a	divisor	polynomial	C(x)	if	B(x)	is	of	the	same	degree	as	C(x).

The	remainder	obtained	when	B(x)	is	divided	by	C(x)	is	obtained	by	performing	the	exclusive	OR	(XOR)
operation	on	each	pair	of	matching	coefficients.
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For	example,	the	polynomial	x + 1	can	be	divided	by	x + x + 1	(because	they	are	both	of	degree	3)	and	the

remainder	would	be	0 × x + 1 × x + 0 × x + 0 × x = x 	(obtained	by	XORing	the	coefficients	of	each	term).	In

terms	of	messages,	we	could	say	that	1001	can	be	divided	by	1101	and	leaves	a	remainder	of	0100.	You	should	be
able	to	see	that	the	remainder	is	just	the	bitwise	exclusive	OR	of	the	two	messages.

Now	that	we	know	the	basic	rules	for	dividing	polynomials,	we	are	able	to	do	long	division,	which	is	necessary	to	deal
with	longer	messages.	An	example	appears	below.

Recall	that	we	wanted	to	create	a	polynomial	for	transmission	that	is	derived	from	the	original	message	M(x),	is	k	bits
longer	than	M(x),	and	is	exactly	divisible	by	C(x).	We	can	do	this	in	the	following	way:

1.	 Multiply	M(x)	by	x ;	that	is,	add	k	zeros	at	the	end	of	the	message.	Call	this	zero-extended	message	T (x).

2.	 Divide	T (x)	by	C(x)	and	find	the	remainder.

3.	 Subtract	the	remainder	from	T (x).

It	should	be	obvious	that	what	is	left	at	this	point	is	a	message	that	is	exactly	divisible	by	C(x).	We	may	also	note	that
the	resulting	message	consists	of	M(x)	followed	by	the	remainder	obtained	in	step	2,	because	when	we	subtracted
the	remainder	(which	can	be	no	more	than	k	bits	long),	we	were	just	XORing	it	with	the	k	zeros	added	in	step	1.	This
part	will	become	clearer	with	an	example.

Consider	the	message	x + x + x + x ,	or	10011010.	We	begin	by	multiplying	by	x ,	since	our	divisor	polynomial	is

of	degree	3.	This	gives	10011010000.	We	divide	this	by	C(x),	which	corresponds	to	1101	in	this	case.	Figure	1	shows
the	polynomial	long-division	operation.	Given	the	rules	of	polynomial	arithmetic	described	above,	the	long-division
operation	proceeds	much	as	it	would	if	we	were	dividing	integers.	Thus,	in	the	first	step	of	our	example,	we	see	that
the	divisor	1101	divides	once	into	the	first	four	bits	of	the	message	(1001),	since	they	are	of	the	same	degree,	and
leaves	a	remainder	of	100	(1101	XOR	1001).	The	next	step	is	to	bring	down	a	digit	from	the	message	polynomial	until
we	get	another	polynomial	with	the	same	degree	as	C(x),	in	this	case	1001.	We	calculate	the	remainder	again	(100)
and	continue	until	the	calculation	is	complete.	Note	that	the	"result"	of	the	long	division,	which	appears	at	the	top	of
the	calculation,	is	not	really	of	much	interest—it	is	the	remainder	at	the	end	that	matters.

You	can	see	from	the	very	bottom	of	Figure	1	that	the	remainder	of	the	example	calculation	is	101.	So	we	know	that
10011010000	minus	101	would	be	exactly	divisible	by	C(x),	and	this	is	what	we	send.	The	minus	operation	in
polynomial	arithmetic	is	the	logical	XOR	operation,	so	we	actually	send	10011010101.	As	noted	above,	this	turns	out
to	be	just	the	original	message	with	the	remainder	from	the	long	division	calculation	appended	to	it.	The	recipient
divides	the	received	polynomial	by	C(x)	and,	if	the	result	is	0,	concludes	that	there	were	no	errors.	If	the	result	is
nonzero,	it	may	be	necessary	to	discard	the	corrupted	message;	with	some	codes,	it	may	be	possible	to	correct	a
small	error	(e.g.,	if	the	error	affected	only	one	bit).	A	code	that	enables	error	correction	is	called	an	error-correcting
code	(ECC).
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Figure	1.	CRC	calculation	using	polynomial	long	division.

Now	we	will	consider	the	question	of	where	the	polynomial	C(x)	comes	from.	Intuitively,	the	idea	is	to	select	this
polynomial	so	that	it	is	very	unlikely	to	divide	evenly	into	a	message	that	has	errors	introduced	into	it.	If	the	transmitted
message	is	P (x),	we	may	think	of	the	introduction	of	errors	as	the	addition	of	another	polynomial	E(x),	so	the
recipient	sees	P (x) +E(x).	The	only	way	that	an	error	could	slip	by	undetected	would	be	if	the	received	message
could	be	evenly	divided	by	C(x),	and	since	we	know	that	P (x)	can	be	evenly	divided	by	C(x),	this	could	only	happen
if	E(x)	can	be	divided	evenly	by	C(x).	The	trick	is	to	pick	C(x)	so	that	this	is	very	unlikely	for	common	types	of	errors.

One	common	type	of	error	is	a	single-bit	error,	which	can	be	expressed	as	E(x) = x 	when	it	affects	bit	position	i.	If

we	select	C(x)	such	that	the	first	and	the	last	term	(that	is,	the	x 	and	x 	terms)	are	nonzero,	then	we	already	have	a

two-term	polynomial	that	cannot	divide	evenly	into	the	one	term	E(x).	Such	a	C(x)	can,	therefore,	detect	all	single-bit
errors.	In	general,	it	is	possible	to	prove	that	the	following	types	of	errors	can	be	detected	by	a	C(x)	with	the	stated
properties:

All	single-bit	errors,	as	long	as	the	x 	and	x 	terms	have	nonzero	coefficients

All	double-bit	errors,	as	long	as	C(x)	has	a	factor	with	at	least	three	terms

Any	odd	number	of	errors,	as	long	as	C(x)	contains	the	factor	(x+ 1)

We	have	mentioned	that	it	is	possible	to	use	codes	that	not	only	detect	the	presence	of	errors	but	also	enable	errors
to	be	corrected.	Since	the	details	of	such	codes	require	yet	more	complex	mathematics	than	that	required	to
understand	CRCs,	we	will	not	dwell	on	them	here.	However,	it	is	worth	considering	the	merits	of	correction	versus
detection.

At	first	glance,	it	would	seem	that	correction	is	always	better,	since	with	detection	we	are	forced	to	throw	away	the
message	and,	in	general,	ask	for	another	copy	to	be	transmitted.	This	uses	up	bandwidth	and	may	introduce	latency
while	waiting	for	the	retransmission.	However,	there	is	a	downside	to	correction,	as	it	generally	requires	a	greater
number	of	redundant	bits	to	send	an	error-correcting	code	that	is	as	strong	(that	is,	able	to	cope	with	the	same	range
of	errors)	as	a	code	that	only	detects	errors.	Thus,	while	error	detection	requires	more	bits	to	be	sent	when	errors
occur,	error	correction	requires	more	bits	to	be	sent	all	the	time.	As	a	result,	error	correction	tends	to	be	most	useful
when	(1)	errors	are	quite	probable,	as	they	may	be,	for	example,	in	a	wireless	environment,	or	(2)	the	cost	of
retransmission	is	too	high,	for	example,	because	of	the	latency	involved	retransmitting	a	packet	over	a	satellite	link.

The	use	of	error-correcting	codes	in	networking	is	sometimes	referred	to	as	forward	error	correction	(FEC)	because
the	correction	of	errors	is	handled	"in	advance"	by	sending	extra	information,	rather	than	waiting	for	errors	to	happen
and	dealing	with	them	later	by	retransmission.	FEC	is	commonly	used	in	wireless	networks	such	as	802.11.
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Any	"burst"	error	(i.e.,	sequence	of	consecutive	errored	bits)	for	which	the	length	of	the	burst	is	less	than	k	bits
(Most	burst	errors	of	length	greater	than	k	bits	can	also	be	detected.)

Six	versions	of	C(x)	are	widely	used	in	link-level	protocols.	For	example,	Ethernet	uses	CRC-32,	which	is	defined	as
follows:

CRC-32	=	x + x + x + x + x + x + x + x + x + x + x + x + x + x+ 1

Finally,	we	note	that	the	CRC	algorithm,	while	seemingly	complex,	is	easily	implemented	in	hardware	using	a	k-bit
shift	register	and	XOR	gates.	The	number	of	bits	in	the	shift	register	equals	the	degree	of	the	generator	polynomial	(

k).	Figure	2	shows	the	hardware	that	would	be	used	for	the	generator	x + x + 1	from	our	previous	example.	The

message	is	shifted	in	from	the	left,	beginning	with	the	most	significant	bit	and	ending	with	the	string	of	k	zeros	that	is
attached	to	the	message,	just	as	in	the	long	division	example.	When	all	the	bits	have	been	shifted	in	and	appropriately
XORed,	the	register	contains	the	remainder—that	is,	the	CRC	(most	significant	bit	on	the	right).	The	position	of	the
XOR	gates	is	determined	as	follows:	If	the	bits	in	the	shift	register	are	labeled	0	through	k − 1,	left	to	right,	then	put	an

XOR	gate	in	front	of	bit	n	if	there	is	a	term	x 	in	the	generator	polynomial.	Thus,	we	see	an	XOR	gate	in	front	of

positions	0	and	2	for	the	generator	x + x + x .

Figure	2.	CRC	calculation	using	shift	register.
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2.5	Reliable	Transmission

As	we	saw	in	the	previous	section,	frames	are	sometimes	corrupted	while	in	transit,	with	an	error	code	like	CRC	used
to	detect	such	errors.	While	some	error	codes	are	strong	enough	also	to	correct	errors,	in	practice	the	overhead	is
typically	too	large	to	handle	the	range	of	bit	and	burst	errors	that	can	be	introduced	on	a	network	link.	Even	when
error-correcting	codes	are	used	(e.g.,	on	wireless	links)	some	errors	will	be	too	severe	to	be	corrected.	As	a	result,
some	corrupt	frames	must	be	discarded.	A	link-level	protocol	that	wants	to	deliver	frames	reliably	must	somehow
recover	from	these	discarded	(lost)	frames.

It's	worth	noting	that	reliability	is	a	function	that	may	be	provided	at	the	link	level,	but	many	modern	link	technologies
omit	this	function.	Furthermore,	reliable	delivery	is	frequently	provided	at	higher	levels,	including	both	transport	and
sometimes,	the	application	layer.	Exactly	where	it	should	be	provided	is	a	matter	of	some	debate	and	depends	on
many	factors.	We	describe	the	basics	of	reliable	delivery	here,	since	the	principles	are	common	across	layers,	but	you
should	be	aware	that	we're	not	just	talking	about	a	link-layer	function.

Reliable	delivery	is	usually	accomplished	using	a	combination	of	two	fundamental	mechanisms—acknowledgments
and	timeouts.	An	acknowledgment	(ACK	for	short)	is	a	small	control	frame	that	a	protocol	sends	back	to	its	peer
saying	that	it	has	received	an	earlier	frame.	By	control	frame	we	mean	a	header	without	any	data,	although	a	protocol
can	piggyback	an	ACK	on	a	data	frame	it	just	happens	to	be	sending	in	the	opposite	direction.	The	receipt	of	an
acknowledgment	indicates	to	the	sender	of	the	original	frame	that	its	frame	was	successfully	delivered.	If	the	sender
does	not	receive	an	acknowledgment	after	a	reasonable	amount	of	time,	then	it	retransmits	the	original	frame.	This
action	of	waiting	a	reasonable	amount	of	time	is	called	a	timeout.

The	general	strategy	of	using	acknowledgments	and	timeouts	to	implement	reliable	delivery	is	sometimes	called
automatic	repeat	request	(abbreviated	ARQ).	This	section	describes	three	different	ARQ	algorithms	using	generic
language;	that	is,	we	do	not	give	detailed	information	about	a	particular	protocol's	header	fields.

Stop-and-Wait

The	simplest	ARQ	scheme	is	the	stop-and-wait	algorithm.	The	idea	of	stop-and-wait	is	straightforward:	After
transmitting	one	frame,	the	sender	waits	for	an	acknowledgment	before	transmitting	the	next	frame.	If	the
acknowledgment	does	not	arrive	after	a	certain	period	of	time,	the	sender	times	out	and	retransmits	the	original	frame.
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Figure	1.	Timeline	showing	four	different	scenarios	for	the	stop-and-wait
algorithm.	(a)	The	ACK	is	received	before	the	timer	expires;	(b)	the	original

frame	is	lost;	(c)	the	ACK	is	lost;	(d)	the	timeout	fires	too	soon.

Figure	1	illustrates	timelines	for	four	different	scenarios	that	result	from	this	basic	algorithm.	The	sending	side	is
represented	on	the	left,	the	receiving	side	is	depicted	on	the	right,	and	time	flows	from	top	to	bottom.	Figure	1(a)
shows	the	situation	in	which	the	ACK	is	received	before	the	timer	expires;	(b)	and	(c)	show	the	situation	in	which	the
original	frame	and	the	ACK,	respectively,	are	lost;	and	(d)	shows	the	situation	in	which	the	timeout	fires	too	soon.
Recall	that	by	"lost"	we	mean	that	the	frame	was	corrupted	while	in	transit,	that	this	corruption	was	detected	by	an
error	code	on	the	receiver,	and	that	the	frame	was	subsequently	discarded.

The	packet	timelines	shown	in	this	section	are	examples	of	a	frequently	used	tool	in	teaching,	explaining,	and
designing	protocols.	They	are	useful	because	they	capture	visually	the	behavior	over	time	of	a	distributed	system—
something	that	can	be	quite	hard	to	analyze.	When	designing	a	protocol,	you	often	have	to	be	prepared	for	the
unexpected—a	system	crashes,	a	message	gets	lost,	or	something	that	you	expected	to	happen	quickly	turns	out	to
take	a	long	time.	These	sorts	of	diagrams	can	often	help	us	understand	what	might	go	wrong	in	such	cases	and	thus
help	a	protocol	designer	be	prepared	for	every	eventuality.

There	is	one	important	subtlety	in	the	stop-and-wait	algorithm.	Suppose	the	sender	sends	a	frame	and	the	receiver
acknowledges	it,	but	the	acknowledgment	is	either	lost	or	delayed	in	arriving.	This	situation	is	illustrated	in	timelines
(c)	and	(d)	of	Figure	1.	In	both	cases,	the	sender	times	out	and	retransmits	the	original	frame,	but	the	receiver	will
think	that	it	is	the	next	frame,	since	it	correctly	received	and	acknowledged	the	first	frame.	This	has	the	potential	to
cause	duplicate	copies	of	a	frame	to	be	delivered.	To	address	this	problem,	the	header	for	a	stop-and-wait	protocol
usually	includes	a	1-bit	sequence	number—that	is,	the	sequence	number	can	take	on	the	values	0	and	1—and	the
sequence	numbers	used	for	each	frame	alternate,	as	illustrated	in	Figure	2.	Thus,	when	the	sender	retransmits	frame
0,	the	receiver	can	determine	that	it	is	seeing	a	second	copy	of	frame	0	rather	than	the	first	copy	of	frame	1	and
therefore	can	ignore	it	(the	receiver	still	acknowledges	it,	in	case	the	first	ACK	was	lost).
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Figure	2.	Timeline	for	stop-and-wait	with	1-bit	sequence	number.

The	main	shortcoming	of	the	stop-and-wait	algorithm	is	that	it	allows	the	sender	to	have	only	one	outstanding	frame
on	the	link	at	a	time,	and	this	may	be	far	below	the	link's	capacity.	Consider,	for	example,	a	1.5-Mbps	link	with	a	45-
ms	round-trip	time.	This	link	has	a	delay	×	bandwidth	product	of	67.5	Kb,	or	approximately	8	KB.	Since	the	sender
can	send	only	one	frame	per	RTT,	and	assuming	a	frame	size	of	1	KB,	this	implies	a	maximum	sending	rate	of

Bits-Per-Frame	/	Time-Per-Frame	=	1024	x	8	/	0.045	=	182	kbps

or	about	one-eighth	of	the	link's	capacity.	To	use	the	link	fully,	then,	we'd	like	the	sender	to	be	able	to	transmit	up	to
eight	frames	before	having	to	wait	for	an	acknowledgment.

Key	Takeaway

The	significance	of	the	delay	×	bandwidth	product	is	that	it	represents	the	amount	of	data	that	could	be	in
transit.	We	would	like	to	be	able	to	send	this	much	data	without	waiting	for	the	first	acknowledgment.	The
principle	at	work	here	is	often	referred	to	as	keeping	the	pipe	full.	The	algorithms	presented	in	the	following	two
subsections	do	exactly	this.

Sliding	Window

Consider	again	the	scenario	in	which	the	link	has	a	delay	×	bandwidth	product	of	8	KB	and	frames	are	1	KB	in	size.
We	would	like	the	sender	to	be	ready	to	transmit	the	ninth	frame	at	pretty	much	the	same	moment	that	the	ACK	for
the	first	frame	arrives.	The	algorithm	that	allows	us	to	do	this	is	called	sliding	window,	and	an	illustrative	timeline	is
given	in	Figure	3.
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Figure	3.	Timeline	for	the	sliding	window	algorithm.

The	Sliding	Window	Algorithm

The	sliding	window	algorithm	works	as	follows.	First,	the	sender	assigns	a	sequence	number,	denoted		SeqNum	,	to
each	frame.	For	now,	let's	ignore	the	fact	that		SeqNum		is	implemented	by	a	finite-size	header	field	and	instead	assume
that	it	can	grow	infinitely	large.	The	sender	maintains	three	variables:	The	send	window	size,	denoted		SWS	,	gives	the
upper	bound	on	the	number	of	outstanding	(unacknowledged)	frames	that	the	sender	can	transmit;		LAR		denotes	the
sequence	number	of	the	last	acknowledgment	received;	and		LFS		denotes	the	sequence	number	of	the	last	frame
sent.	The	sender	also	maintains	the	following	invariant:

	LFS	-	LAR	<=	SWS	

This	situation	is	illustrated	in	Figure	4.

Figure	4.	Sliding	window	on	sender.

When	an	acknowledgment	arrives,	the	sender	moves		LAR		to	the	right,	thereby	allowing	the	sender	to	transmit
another	frame.	Also,	the	sender	associates	a	timer	with	each	frame	it	transmits,	and	it	retransmits	the	frame	should
the	timer	expire	before	an	ACK	is	received.	Notice	that	the	sender	has	to	be	willing	to	buffer	up	to		SWS		frames	since	it
must	be	prepared	to	retransmit	them	until	they	are	acknowledged.

The	receiver	maintains	the	following	three	variables:	The	receive	window	size,	denoted		RWS	,	gives	the	upper	bound
on	the	number	of	out-of-order	frames	that	the	receiver	is	willing	to	accept;		LAF		denotes	the	sequence	number	of	the
largest	acceptable	frame;	and		LFR		denotes	the	sequence	number	of	the	last	frame	received.	The	receiver	also
maintains	the	following	invariant:

	LAF	-	LFR	<=	RWS	

This	situation	is	illustrated	in	Figure	5.

Figure	5.	Sliding	window	on	receiver.
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When	a	frame	with	sequence	number		SeqNum		arrives,	the	receiver	takes	the	following	action.	If		SeqNum	<=	LFR		or
	SeqNum	>	LAF	,	then	the	frame	is	outside	the	receiver's	window	and	it	is	discarded.	If		LFR	<	SeqNum	<=	LAF	,	then	the
frame	is	within	the	receiver's	window	and	it	is	accepted.	Now	the	receiver	needs	to	decide	whether	or	not	to	send	an
ACK.	Let		SeqNumToAck		denote	the	largest	sequence	number	not	yet	acknowledged,	such	that	all	frames	with	sequence
numbers	less	than	or	equal	to		SeqNumToAck		have	been	received.	The	receiver	acknowledges	the	receipt	of
	SeqNumToAck	,	even	if	higher	numbered	packets	have	been	received.	This	acknowledgment	is	said	to	be	cumulative.	It
then	sets		LFR	=	SeqNumToAck		and	adjusts		LAF	=	LFR	+	RWS	.

For	example,	suppose		LFR	=	5		(i.e.,	the	last	ACK	the	receiver	sent	was	for	sequence	number	5),	and		RWS	=	4	.	This
implies	that		LAF	=	9	.	Should	frames	7	and	8	arrive,	they	will	be	buffered	because	they	are	within	the	receiver's
window.	However,	no	ACK	needs	to	be	sent	since	frame	6	has	yet	to	arrive.	Frames	7	and	8	are	said	to	have	arrived
out	of	order.	(Technically,	the	receiver	could	resend	an	ACK	for	frame	5	when	frames	7	and	8	arrive.)	Should	frame	6
then	arrive—perhaps	it	is	late	because	it	was	lost	the	first	time	and	had	to	be	retransmitted,	or	perhaps	it	was	simply
delayed—the	receiver	acknowledges	frame	8,	bumps		LFR		to	8,	and	sets		LAF		to	12.	If	frame	6	was	in	fact	lost,	then	a
timeout	will	have	occurred	at	the	sender,	causing	it	to	retransmit	frame	6.

It's	unlikely	that	a	packet	could	be	delayed	on	a	point-to-point	link,	this	same	algorithm	is	used	on	multi-hop
connections	where	such	delays	are	possible.

We	observe	that	when	a	timeout	occurs,	the	amount	of	data	in	transit	decreases,	since	the	sender	is	unable	to
advance	its	window	until	frame	6	is	acknowledged.	This	means	that	when	packet	losses	occur,	this	scheme	is	no
longer	keeping	the	pipe	full.	The	longer	it	takes	to	notice	that	a	packet	loss	has	occurred,	the	more	severe	this
problem	becomes.

Notice	that,	in	this	example,	the	receiver	could	have	sent	a	negative	acknowledgment	(NAK)	for	frame	6	as	soon	as
frame	7	arrived.	However,	this	is	unnecessary	since	the	sender's	timeout	mechanism	is	sufficient	to	catch	this
situation,	and	sending	NAKs	adds	additional	complexity	to	the	receiver.	Also,	as	we	mentioned,	it	would	have	been
legitimate	to	send	additional	acknowledgments	of	frame	5	when	frames	7	and	8	arrived;	in	some	cases,	a	sender	can
use	duplicate	ACKs	as	a	clue	that	a	frame	was	lost.	Both	approaches	help	to	improve	performance	by	allowing	early
detection	of	packet	losses.

Yet	another	variation	on	this	scheme	would	be	to	use	selective	acknowledgments.	That	is,	the	receiver	could
acknowledge	exactly	those	frames	it	has	received	rather	than	just	the	highest	numbered	frame	received	in	order.	So,
in	the	above	example,	the	receiver	could	acknowledge	the	receipt	of	frames	7	and	8.	Giving	more	information	to	the
sender	makes	it	potentially	easier	for	the	sender	to	keep	the	pipe	full	but	adds	complexity	to	the	implementation.

The	sending	window	size	is	selected	according	to	how	many	frames	we	want	to	have	outstanding	on	the	link	at	a
given	time;		SWS		is	easy	to	compute	for	a	given	delay	×	bandwidth	product.	On	the	other	hand,	the	receiver	can	set
	RWS		to	whatever	it	wants.	Two	common	settings	are		RWS	=	1	,	which	implies	that	the	receiver	will	not	buffer	any
frames	that	arrive	out	of	order,	and		RWS	=	SWS	,	which	implies	that	the	receiver	can	buffer	any	of	the	frames	the	sender
transmits.	It	makes	no	sense	to	set		RWS	>	SWS		since	it's	impossible	for	more	than		SWS		frames	to	arrive	out	of	order.

Finite	Sequence	Numbers	and	Sliding	Window

We	now	return	to	the	one	simplification	we	introduced	into	the	algorithm—our	assumption	that	sequence	numbers	can
grow	infinitely	large.	In	practice,	of	course,	a	frame's	sequence	number	is	specified	in	a	header	field	of	some	finite
size.	For	example,	a	3-bit	field	means	that	there	are	eight	possible	sequence	numbers,	0..7.	This	makes	it	necessary
to	reuse	sequence	numbers	or,	stated	another	way,	sequence	numbers	wrap	around.	This	introduces	the	problem	of
being	able	to	distinguish	between	different	incarnations	of	the	same	sequence	numbers,	which	implies	that	the
number	of	possible	sequence	numbers	must	be	larger	than	the	number	of	outstanding	frames	allowed.	For	example,
stop-and-wait	allowed	one	outstanding	frame	at	a	time	and	had	two	distinct	sequence	numbers.
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Suppose	we	have	one	more	number	in	our	space	of	sequence	numbers	than	we	have	potentially	outstanding	frames;
that	is,		SWS	<=	MaxSeqNum	-	1	,	where		MaxSeqNum		is	the	number	of	available	sequence	numbers.	Is	this	sufficient?	The
answer	depends	on		RWS	.	If		RWS	=	1	,	then		MaxSeqNum	>=	SWS	+	1		is	sufficient.	If		RWS		is	equal	to		SWS	,	then	having	a
	MaxSeqNum		just	one	greater	than	the	sending	window	size	is	not	good	enough.	To	see	this,	consider	the	situation	in
which	we	have	the	eight	sequence	numbers	0	through	7,	and		SWS	=	RWS	=	7	.	Suppose	the	sender	transmits	frames
0..6,	they	are	successfully	received,	but	the	ACKs	are	lost.	The	receiver	is	now	expecting	frames	7,	0..5,	but	the
sender	times	out	and	sends	frames	0..6.	Unfortunately,	the	receiver	is	expecting	the	second	incarnation	of	frames	0..5
but	gets	the	first	incarnation	of	these	frames.	This	is	exactly	the	situation	we	wanted	to	avoid.

It	turns	out	that	the	sending	window	size	can	be	no	more	than	half	as	big	as	the	number	of	available	sequence
numbers	when		RWS	=	SWS	,	or	stated	more	precisely,

	SWS	<	(MaxSeqNum	+	1)/	2	

Intuitively,	what	this	is	saying	is	that	the	sliding	window	protocol	alternates	between	the	two	halves	of	the	sequence
number	space,	just	as	stop-and-wait	alternates	between	sequence	numbers	0	and	1.	The	only	difference	is	that	it
continually	slides	between	the	two	halves	rather	than	discretely	alternating	between	them.

Note	that	this	rule	is	specific	to	the	situation	where		RWS	=	SWS	.	We	leave	it	as	an	exercise	to	determine	the	more
general	rule	that	works	for	arbitrary	values	of		RWS		and		SWS	.	Also	note	that	the	relationship	between	the	window	size
and	the	sequence	number	space	depends	on	an	assumption	that	is	so	obvious	that	it	is	easy	to	overlook,	namely	that
frames	are	not	reordered	in	transit.	This	cannot	happen	on	a	direct	point-to-point	link	since	there	is	no	way	for	one
frame	to	overtake	another	during	transmission.	However,	we	will	see	the	sliding	window	algorithm	used	in	a	different
environments,	and	we	will	need	to	devise	another	rule.

Implementation	of	Sliding	Window

The	following	routines	illustrate	how	we	might	implement	the	sending	and	receiving	sides	of	the	sliding	window
algorithm.	The	routines	are	taken	from	a	working	protocol	named,	appropriately	enough,	Sliding	Window	Protocol
(SWP).	So	as	not	to	concern	ourselves	with	the	adjacent	protocols	in	the	protocol	graph,	we	denote	the	protocol
sitting	above	SWP	as	the	high-level	protocol	(HLP)	and	the	protocol	sitting	below	SWP	as	the	link-level	protocol	(LLP).

We	start	by	defining	a	pair	of	data	structures.	First,	the	frame	header	is	very	simple:	It	contains	a	sequence	number
(	SeqNum	)	and	an	acknowledgment	number	(	AckNum	).	It	also	contains	a		Flags		field	that	indicates	whether	the	frame	is
an	ACK	or	carries	data.

typedef	u_char	SwpSeqno;

typedef	struct	{
				SwpSeqno			SeqNum;			/*	sequence	number	of	this	frame	*/
				SwpSeqno			AckNum;			/*	ack	of	received	frame	*/
				u_char					Flags;											/*	up	to	8	bits	worth	of	flags	*/
}	SwpHdr;

Next,	the	state	of	the	sliding	window	algorithm	has	the	following	structure.	For	the	sending	side	of	the	protocol,	this
state	includes	variables		LAR		and		LFS	,	as	described	earlier	in	this	section,	as	well	as	a	queue	that	holds	frames	that
have	been	transmitted	but	not	yet	acknowledged	(	sendQ	).	The	sending	state	also	includes	a	counting	semaphore
called		sendWindowNotFull	.	We	will	see	how	this	is	used	below,	but	generally	a	semaphore	is	a	synchronization	primitive
that	supports		semWait		and		semSignal		operations.	Every	invocation	of		semSignal		increments	the	semaphore	by	1,	and
every	invocation	of		semWait		decrements		s		by	1,	with	the	calling	process	blocked	(suspended)	should	decrementing
the	semaphore	cause	its	value	to	become	less	than	0.	A	process	that	is	blocked	during	its	call	to		semWait		will	be
allowed	to	resume	as	soon	as	enough		semSignal		operations	have	been	performed	to	raise	the	value	of	the
semaphore	above	0.
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For	the	receiving	side	of	the	protocol,	the	state	includes	the	variable		NFE	.	This	is	the	next	frame	expected,	the	frame
with	a	sequence	number	one	more	that	the	last	frame	received	(LFR),	described	earlier	in	this	section.	There	is	also	a
queue	that	holds	frames	that	have	been	received	out	of	order	(	recvQ	).	Finally,	although	not	shown,	the	sender	and
receiver	sliding	window	sizes	are	defined	by	constants		SWS		and		RWS	,	respectively.

typedef	struct	{
				/*	sender	side	state:	*/
				SwpSeqno				LAR;								/*	seqno	of	last	ACK	received	*/
				SwpSeqno				LFS;								/*	last	frame	sent	*/
				Semaphore			sendWindowNotFull;
				SwpHdr						hdr;								/*	pre-initialized	header	*/
				struct	sendQ_slot	{
								Event			timeout;				/*	event	associated	with	send-timeout	*/
								Msg					msg;
				}			sendQ[SWS];

				/*	receiver	side	state:	*/
				SwpSeqno				NFE;							/*	seqno	of	next	frame	expected	*/
				struct	recvQ_slot	{
								int					received;		/*	is	msg	valid?	*/
								Msg					msg;
				}			recvQ[RWS];
}	SwpState;

The	sending	side	of	SWP	is	implemented	by	procedure		sendSWP	.	This	routine	is	rather	simple.	First,		semWait		causes
this	process	to	block	on	a	semaphore	until	it	is	OK	to	send	another	frame.	Once	allowed	to	proceed,		sendSWP		sets	the
sequence	number	in	the	frame's	header,	saves	a	copy	of	the	frame	in	the	transmit	queue	(	sendQ	),	schedules	a
timeout	event	to	handle	the	case	in	which	the	frame	is	not	acknowledged,	and	sends	the	frame	to	the	next-lower-level
protocol,	which	we	denote	as		LINK	.

One	detail	worth	noting	is	the	call	to		store_swp_hdr		just	before	the	call	to		msgAddHdr	.	This	routine	translates	the	C
structure	that	holds	the	SWP	header	(	state->hdr	)	into	a	byte	string	that	can	be	safely	attached	to	the	front	of	the
message	(	hbuf	).	This	routine	(not	shown)	must	translate	each	integer	field	in	the	header	into	network	byte	order	and
remove	any	padding	that	the	compiler	has	added	to	the	C	structure.	The	issue	of	byte	order	is	a	non-trivial	issue,	but
for	now	it	is	enough	to	assume	that	this	routine	places	the	most	significant	bit	of	a	multiword	integer	in	the	byte	with
the	highest	address.

Another	piece	of	complexity	in	this	routine	is	the	use	of		semWait		and	the		sendWindowNotFull		semaphore.
	sendWindowNotFull		is	initialized	to	the	size	of	the	sender's	sliding	window,		SWS		(this	initialization	is	not	shown).	Each
time	the	sender	transmits	a	frame,	the		semWait		operation	decrements	this	count	and	blocks	the	sender	should	the
count	go	to	0.	Each	time	an	ACK	is	received,	the		semSignal		operation	invoked	in		deliverSWP		(see	below)	increments
this	count,	thus	unblocking	any	waiting	sender.

static	int	
sendSWP(SwpState	*state,	Msg	*frame)	
{
				struct	sendQ_slot	*slot;
				hbuf[HLEN];

				/*	wait	for	send	window	to	open	*/
				semWait(&state->sendWindowNotFull);
				state->hdr.SeqNum	=	++state->LFS;
				slot	=	&state->sendQ[state->hdr.SeqNum	%	SWS];
				store_swp_hdr(state->hdr,	hbuf);
				msgAddHdr(frame,	hbuf,	HLEN);
				msgSaveCopy(&slot->msg,	frame);
				slot->timeout	=	evSchedule(swpTimeout,	slot,	SWP_SEND_TIMEOUT);
				return	send(LINK,	frame);
}
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Before	continuing	to	the	receive	side	of	SWP,	we	need	to	reconcile	a	seeming	inconsistency.	On	the	one	hand,	we
have	been	saying	that	a	high-level	protocol	invokes	the	services	of	a	low-level	protocol	by	calling	the		send		operation,
so	we	would	expect	that	a	protocol	that	wants	to	send	a	message	via	SWP	would	call		send(SWP,	packet)	.	On	the	other
hand,	the	procedure	that	implements	SWP's	send	operation	is	called		sendSWP	,	and	its	first	argument	is	a	state	variable
(	SwpState	).	What	gives?	The	answer	is	that	the	operating	system	provides	glue	code	that	translates	the	generic	call	to
	send		into	a	protocol-specific	call	to		sendSWP	.	This	glue	code	maps	the	first	argument	to		send		(the	magic	protocol
variable		SWP	)	into	both	a	function	pointer	to		sendSWP		and	a	pointer	to	the	protocol	state	that	SWP	needs	to	do	its	job.
The	reason	we	have	the	high-level	protocol	indirectly	invoke	the	protocol-specific	function	through	the	generic	function
call	is	that	we	want	to	limit	how	much	information	the	high-level	protocol	has	coded	in	it	about	the	low-level	protocol.
This	makes	it	easier	to	change	the	protocol	graph	configuration	at	some	time	in	the	future.

Now	we	move	on	to	SWP's	protocol-specific	implementation	of	the		deliver		operation,	which	is	given	in	procedure
	deliverSWP	.	This	routine	actually	handles	two	different	kinds	of	incoming	messages:	ACKs	for	frames	sent	earlier	from
this	node	and	data	frames	arriving	at	this	node.	In	a	sense,	the	ACK	half	of	this	routine	is	the	counterpart	to	the
sender	side	of	the	algorithm	given	in		sendSWP	.	A	decision	as	to	whether	the	incoming	message	is	an	ACK	or	a	data
frame	is	made	by	checking	the		Flags		field	in	the	header.	Note	that	this	particular	implementation	does	not	support
piggybacking	ACKs	on	data	frames.

When	the	incoming	frame	is	an	ACK,		deliverSWP		simply	finds	the	slot	in	the	transmit	queue	(	sendQ	)	that	corresponds
to	the	ACK,	cancels	the	timeout	event,	and	frees	the	frame	saved	in	that	slot.	This	work	is	actually	done	in	a	loop
since	the	ACK	may	be	cumulative.	The	only	other	thing	to	notice	about	this	case	is	the	call	to	subroutine		swpInWindow	.
This	subroutine,	which	is	given	below,	ensures	that	the	sequence	number	for	the	frame	being	acknowledged	is	within
the	range	of	ACKs	that	the	sender	currently	expects	to	receive.

When	the	incoming	frame	contains	data,		deliverSWP		first	calls		msgStripHdr		and		load_swp_hdr		to	extract	the	header
from	the	frame.	Routine		load_swp_hdr		is	the	counterpart	to		store_swp_hdr		discussed	earlier;	it	translates	a	byte	string
into	the	C	data	structure	that	holds	the	SWP	header.		deliverSWP		then	calls		swpInWindow		to	make	sure	the	sequence
number	of	the	frame	is	within	the	range	of	sequence	numbers	that	it	expects.	If	it	is,	the	routine	loops	over	the	set	of
consecutive	frames	it	has	received	and	passes	them	up	to	the	higher-level	protocol	by	invoking	the		deliverHLP	
routine.	It	also	sends	a	cumulative	ACK	back	to	the	sender,	but	does	so	by	looping	over	the	receive	queue	(it	does	not
use	the		SeqNumToAck		variable	used	in	the	prose	description	given	earlier	in	this	section).

static	int	
deliverSWP(SwpState	state,	Msg	*frame)	
{
				SwpHdr			hdr;
				char					*hbuf;

				hbuf	=	msgStripHdr(frame,	HLEN);
				load_swp_hdr(&hdr,	hbuf)	
				if	(hdr->Flags	&	FLAG_ACK_VALID)	
				{
								/*	received	an	acknowledgment—do	SENDER	side	*/
								if	(swpInWindow(hdr.AckNum,	state->LAR	+	1,	state->LFS))	
								{
												do	
												{
																struct	sendQ_slot	*slot;

																slot	=	&state->sendQ[++state->LAR	%	SWS];
																evCancel(slot->timeout);
																msgDestroy(&slot->msg);
																semSignal(&state->sendWindowNotFull);
												}	while	(state->LAR	!=	hdr.AckNum);
								}
				}

				if	(hdr.Flags	&	FLAG_HAS_DATA)	
				{
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								struct	recvQ_slot	*slot;

								/*	received	data	packet—do	RECEIVER	side	*/
								slot	=	&state->recvQ[hdr.SeqNum	%	RWS];
								if	(!swpInWindow(hdr.SeqNum,	state->NFE,	state->NFE	+	RWS	-	1))	
								{
												/*	drop	the	message	*/
												return	SUCCESS;
								}
								msgSaveCopy(&slot->msg,	frame);
								slot->received	=	TRUE;
								if	(hdr.SeqNum	==	state->NFE)	
								{
												Msg	m;

												while	(slot->received)	
												{
																deliver(HLP,	&slot->msg);
																msgDestroy(&slot->msg);
																slot->received	=	FALSE;
																slot	=	&state->recvQ[++state->NFE	%	RWS];
												}
												/*	send	ACK:	*/
												prepare_ack(&m,	state->NFE	-	1);
												send(LINK,	&m);
												msgDestroy(&m);
								}
				}
				return	SUCCESS;
}

Finally,	swpInWindow		is	a	simple	subroutine	that	checks	to	see	if	a	given	sequence	number	falls	between	some
minimum	and	maximum	sequence	number.

static	bool	
swpInWindow(SwpSeqno	seqno,	SwpSeqno	min,	SwpSeqno	max)	
{
				SwpSeqno	pos,	maxpos;

				pos				=	seqno	-	min;							/*	pos	*should*	be	in	range	[0..MAX)	*/
				maxpos	=	max	-	min	+	1;					/*	maxpos	is	in	range	[0..MAX]	*/
				return	pos	<	maxpos;
}

Frame	Order	and	Flow	Control

The	sliding	window	protocol	is	perhaps	the	best	known	algorithm	in	computer	networking.	What	is	easily	confused
about	the	algorithm,	however,	is	that	it	can	be	used	to	serve	three	different	roles.	The	first	role	is	the	one	we	have
been	concentrating	on	in	this	section—to	reliably	deliver	frames	across	an	unreliable	link.	(In	general,	the	algorithm
can	be	used	to	reliably	deliver	messages	across	an	unreliable	network.)	This	is	the	core	function	of	the	algorithm.

The	second	role	that	the	sliding	window	algorithm	can	serve	is	to	preserve	the	order	in	which	frames	are	transmitted.
This	is	easy	to	do	at	the	receiver—since	each	frame	has	a	sequence	number,	the	receiver	just	makes	sure	that	it	does
not	pass	a	frame	up	to	the	next-higher-level	protocol	until	it	has	already	passed	up	all	frames	with	a	smaller	sequence
number.	That	is,	the	receiver	buffers	(i.e.,	does	not	pass	along)	out-of-order	frames.	The	version	of	the	sliding	window
algorithm	described	in	this	section	does	preserve	frame	order,	although	we	could	imagine	a	variation	in	which	the
receiver	passes	frames	to	the	next	protocol	without	waiting	for	all	earlier	frames	to	be	delivered.	A	question	we	should
ask	ourselves	is	whether	we	really	need	the	sliding	window	protocol	to	keep	the	frames	in	order	at	the	link	level,	or
whether,	instead,	this	functionality	should	be	implemented	by	a	protocol	higher	in	the	stack.
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The	third	role	that	the	sliding	window	algorithm	sometimes	plays	is	to	support	flow	control—a	feedback	mechanism	by
which	the	receiver	is	able	to	throttle	the	sender.	Such	a	mechanism	is	used	to	keep	the	sender	from	over-running	the
receiver—that	is,	from	transmitting	more	data	than	the	receiver	is	able	to	process.	This	is	usually	accomplished	by
augmenting	the	sliding	window	protocol	so	that	the	receiver	not	only	acknowledges	frames	it	has	received	but	also
informs	the	sender	of	how	many	frames	it	has	room	to	receive.	The	number	of	frames	that	the	receiver	is	capable	of
receiving	corresponds	to	how	much	free	buffer	space	it	has.	As	in	the	case	of	ordered	delivery,	we	need	to	make	sure
that	flow	control	is	necessary	at	the	link	level	before	incorporating	it	into	the	sliding	window	protocol.

Key	Takeaway

One	important	concept	to	take	away	from	this	discussion	is	the	system	design	principle	we	call	separation	of
concerns.	That	is,	you	must	be	careful	to	distinguish	between	different	functions	that	are	sometimes	rolled
together	in	one	mechanism,	and	you	must	make	sure	that	each	function	is	necessary	and	being	supported	in
the	most	effective	way.	In	this	particular	case,	reliable	delivery,	ordered	delivery,	and	flow	control	are
sometimes	combined	in	a	single	sliding	window	protocol,	and	we	should	ask	ourselves	if	this	is	the	right	thing	to
do	at	the	link	level.

Concurrent	Logical	Channels
The	data	link	protocol	used	in	the	original	ARPANET	provides	an	interesting	alternative	to	the	sliding	window	protocol,
in	that	it	is	able	to	keep	the	pipe	full	while	still	using	the	simple	stop-and-wait	algorithm.	One	important	consequence
of	this	approach	is	that	the	frames	sent	over	a	given	link	are	not	kept	in	any	particular	order.	The	protocol	also	implies
nothing	about	flow	control.

The	idea	underlying	the	ARPANET	protocol,	which	we	refer	to	as	concurrent	logical	channels,	is	to	multiplex	several
logical	channels	onto	a	single	point-to-point	link	and	to	run	the	stop-and-wait	algorithm	on	each	of	these	logical
channels.	There	is	no	relationship	maintained	among	the	frames	sent	on	any	of	the	logical	channels,	yet	because	a
different	frame	can	be	outstanding	on	each	of	the	several	logical	channels	the	sender	can	keep	the	link	full.

More	precisely,	the	sender	keeps	3	bits	of	state	for	each	channel:	a	boolean,	saying	whether	the	channel	is	currently
busy;	the	1-bit	sequence	number	to	use	the	next	time	a	frame	is	sent	on	this	logical	channel;	and	the	next	sequence
number	to	expect	on	a	frame	that	arrives	on	this	channel.	When	the	node	has	a	frame	to	send,	it	uses	the	lowest	idle
channel,	and	otherwise	it	behaves	just	like	stop-and-wait.

In	practice,	the	ARPANET	supported	8	logical	channels	over	each	ground	link	and	16	over	each	satellite	link.	In	the
ground-link	case,	the	header	for	each	frame	included	a	3-bit	channel	number	and	a	1-bit	sequence	number,	for	a	total
of	4	bits.	This	is	exactly	the	number	of	bits	the	sliding	window	protocol	requires	to	support	up	to	8	outstanding	frames
on	the	link	when		RWS	=	SWS	.
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2.6	Multi-Access	Networks

Developed	in	the	mid-1970s	by	researchers	at	the	Xerox	Palo	Alto	Research	Center	(PARC),	the	Ethernet	eventually
became	the	dominant	local	area	networking	technology,	emerging	from	a	pack	of	competing	technologies.	Today,	it
competes	mainly	with	802.11	wireless	networks	but	remains	extremely	popular	in	campus	networks	and	data	centers.
The	more	general	name	for	the	technology	behind	the	Ethernet	is	Carrier	Sense,	Multiple	Access	with	Collision	Detect
(CSMA/CD).

As	indicated	by	the	CSMA	name,	the	Ethernet	is	a	multiple-access	network,	meaning	that	a	set	of	nodes	sends	and
receives	frames	over	a	shared	link.	You	can,	therefore,	think	of	an	Ethernet	as	being	like	a	bus	that	has	multiple
stations	plugged	into	it.	The	"carrier	sense"	in	CSMA/CD	means	that	all	the	nodes	can	distinguish	between	an	idle	and
a	busy	link,	and	"collision	detect"	means	that	a	node	listens	as	it	transmits	and	can	therefore	detect	when	a	frame	it	is
transmitting	has	interfered	(collided)	with	a	frame	transmitted	by	another	node.

The	Ethernet	has	its	roots	in	an	early	packet	radio	network,	called	Aloha,	developed	at	the	University	of	Hawaii	to
support	computer	communication	across	the	Hawaiian	Islands.	Like	the	Aloha	network,	the	fundamental	problem
faced	by	the	Ethernet	is	how	to	mediate	access	to	a	shared	medium	fairly	and	efficiently	(in	Aloha,	the	medium	was
the	atmosphere,	while	in	the	Ethernet	the	medium	was	originally	a	coax	cable).	The	core	idea	in	both	Aloha	and	the
Ethernet	is	an	algorithm	that	controls	when	each	node	can	transmit.

Interestingly,	modern	Ethernet	links	are	now	largely	point	to	point;	that	is,	they	connect	one	host	to	an	Ethernet	switch,
or	they	interconnect	switches.	As	a	consequence,	the	"multiple	access"	algorithm	is	not	used	much	in	today's	wired
Ethernets,	but	it	is	now	used	in	wireless	networks,	such	as	802.11	networks	(also	known	as	Wi-Fi).	Due	to	the
enormous	influence	of	Ethernet,	we	chose	to	describe	its	classic	algorithm	here,	and	then	explain	how	it	has	been
adapted	to	Wi-Fi	in	the	next	section.	We	will	also	discuss	Ethernet	switches	elsewhere.	For	now,	we'll	focus	on	how	a
single	Ethernet	link	works.

Digital	Equipment	Corporation	and	Intel	Corporation	joined	Xerox	to	define	a	10-Mbps	Ethernet	standard	in	1978.	This
standard	then	formed	the	basis	for	IEEE	standard	802.3,	which	additionally	defines	a	much	wider	collection	of
physical	media	over	which	an	Ethernet	can	operate,	including	100-Mbps,	1-Gbps,	10-Gbps,	40-Gbps,	and	100-Gbps
versions.

Physical	Properties
Ethernet	segments	were	originally	implemented	using	coaxial	cable	of	length	up	to	500	m.	(Modern	Ethernets	use
twisted	copper	pairs,	usually	a	particular	type	known	as	"Category	5,"	or	optical	fibers,	and	in	some	cases	can	be	quite
a	lot	longer	than	500	m.)	This	cable	was	similar	to	the	type	used	for	cable	TV.	Hosts	connected	to	an	Ethernet
segment	by	tapping	into	it.	A	transceiver,	a	small	device	directly	attached	to	the	tap,	detected	when	the	line	was	idle
and	drove	the	signal	when	the	host	was	transmitting.	It	also	received	incoming	signals.	The	transceiver,	in	turn,
connected	to	an	Ethernet	adaptor,	which	was	plugged	into	the	host.	This	configuration	is	shown	in	Figure	1.
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Figure	1.	Ethernet	transceiver	and	adaptor.

Multiple	Ethernet	segments	can	be	joined	together	by	repeaters.	A	repeater	is	a	device	that	forwards	digital	signals,
much	like	an	amplifier	forwards	analog	signals;	repeaters	do	not	understand	bits	or	frames.	No	more	than	four
repeaters	could	be	positioned	between	any	pair	of	hosts,	meaning	that	a	classical	Ethernet	had	a	total	reach	of	only
2500	m.	For	example,	using	just	two	repeaters	between	any	pair	of	hosts	supports	a	configuration	similar	to	the	one
illustrated	in	Figure	2—that	is,	a	segment	running	down	the	spine	of	a	building	with	a	segment	on	each	floor.

Figure	2.	Ethernet	repeater.

It's	also	possible	to	create	a	multiway	repeater,	sometimes	called	a	hub,	as	illustrated	in	Figure	3.	Like	a	repeater,	a
hub	just	repeats	whatever	signals	it	hears	on	one	port	out	all	its	other	ports.	The	important	thing	about	hubs	is	that
they	can	be	used	to	connect	node	to	a	shared	Ethernet	without	using	a	tap,	meaning	the	link	can	be	implemented	in
fiber	or	twisted	pair	copper,	and	not	a	coax	cable.	This	is	necessary	to	achieve	the	higher	Ethernet	performance
levels.

Any	signal	placed	on	the	Ethernet	by	a	host	is	broadcast	over	the	entire	network;	that	is,	the	signal	is	propagated	in
both	directions,	and	repeaters	and	hubs	forward	the	signal	on	all	outgoing	segments.	Terminators	attached	to	the	end
of	each	segment	absorb	the	signal	and	keep	it	from	bouncing	back	and	interfering	with	trailing	signals.	The	original
Ethernet	specifications	used	the	Manchester	encoding	scheme	described	in	an	earlier	section,	while	4B/5B	encoding
(or	the	similar	8B/10B)	scheme	is	used	today	on	higher	speed	Ethernets.
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Figure	3.	Ethernet	hub.

It	is	important	to	understand	that	whether	a	given	Ethernet	spans	a	single	segment,	a	linear	sequence	of	segments
connected	by	repeaters,	or	multiple	segments	connected	in	a	star	configuration	by	a	hub,	data	transmitted	by	any	one
host	on	that	Ethernet	reaches	all	the	other	hosts.	This	is	the	good	news.	The	bad	news	is	that	all	these	hosts	are
competing	for	access	to	the	same	link,	and,	as	a	consequence,	they	are	said	to	be	in	the	same	collision	domain.	The
multi-access	part	of	the	Ethernet	is	all	about	dealing	with	the	competition	for	the	link	that	arises	in	a	collision	domain.

Access	Protocol

We	now	turn	our	attention	to	the	algorithm	that	controls	access	to	a	shared	Ethernet	link.	This	algorithm	is	commonly
called	the	Ethernet's	media	access	control	(MAC).	It	is	typically	implemented	in	hardware	on	the	network	adaptor.	We
will	not	describe	the	hardware	per	se,	but	instead	focus	on	the	algorithm	it	implements.	First,	however,	we	describe
the	Ethernet's	frame	format	and	addresses.

Frame	Format

Each	Ethernet	frame	is	defined	by	the	format	given	in	Figure	4.	The	64-bit	preamble	allows	the	receiver	to
synchronize	with	the	signal;	it	is	a	sequence	of	alternating	0s	and	1s.	Both	the	source	and	destination	hosts	are
identified	with	a	48-bit	address.	The	packet	type	field	serves	as	the	demultiplexing	key;	it	identifies	to	which	of	possibly
many	higher-level	protocols	this	frame	should	be	delivered.	Each	frame	contains	up	to	1500	bytes	of	data.	Minimally,
a	frame	must	contain	at	least	46	bytes	of	data,	even	if	this	means	the	host	has	to	pad	the	frame	before	transmitting	it.
The	reason	for	this	minimum	frame	size	is	that	the	frame	must	be	long	enough	to	detect	a	collision;	we	discuss	this
more	below.	Finally,	each	frame	includes	a	32-bit	CRC.	Like	the	HDLC	protocol	described	in	an	earlier	section,	the
Ethernet	is	a	bit-oriented	framing	protocol.	Note	that	from	the	host's	perspective,	an	Ethernet	frame	has	a	14-byte
header:	two	6-byte	addresses	and	a	2-byte	type	field.	The	sending	adaptor	attaches	the	preamble	and	CRC	before
transmitting,	and	the	receiving	adaptor	removes	them.

Figure	4.	Ethernet	frame	format.

Addresses

Each	host	on	an	Ethernet—in	fact,	every	Ethernet	host	in	the	world—has	a	unique	Ethernet	address.	Technically,	the
address	belongs	to	the	adaptor,	not	the	host;	it	is	usually	burned	into	ROM.	Ethernet	addresses	are	typically	printed	in
a	form	humans	can	read	as	a	sequence	of	six	numbers	separated	by	colons.	Each	number	corresponds	to	1	byte	of
the	6-byte	address	and	is	given	by	a	pair	of	hexadecimal	digits,	one	for	each	of	the	4-bit	nibbles	in	the	byte;	leading	0s
are	dropped.	For	example,		8:0:2b:e4:b1:2		is	the	human-readable	representation	of	Ethernet	address
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00001000		00000000		00101011		11100100		10110001		00000010

To	ensure	that	every	adaptor	gets	a	unique	address,	each	manufacturer	of	Ethernet	devices	is	allocated	a	different
prefix	that	must	be	prepended	to	the	address	on	every	adaptor	they	build.	For	example,	Advanced	Micro	Devices	has
been	assigned	the	24-bit	prefix		080020		(or		8:0:20	).	A	given	manufacturer	then	makes	sure	the	address	suffixes	it
produces	are	unique.

Each	frame	transmitted	on	an	Ethernet	is	received	by	every	adaptor	connected	to	that	Ethernet.	Each	adaptor
recognizes	those	frames	addressed	to	its	address	and	passes	only	those	frames	on	to	the	host.	(An	adaptor	can	also
be	programmed	to	run	in	promiscuous	mode,	in	which	case	it	delivers	all	received	frames	to	the	host,	but	this	is	not
the	normal	mode.)	In	addition	to	these	unicast	addresses,	an	Ethernet	address	consisting	of	all	1s	is	treated	as	a
broadcast	address;	all	adaptors	pass	frames	addressed	to	the	broadcast	address	up	to	the	host.	Similarly,	an	address
that	has	the	first	bit	set	to	1	but	is	not	the	broadcast	address	is	called	a	multicast	address.	A	given	host	can	program
its	adaptor	to	accept	some	set	of	multicast	addresses.	Multicast	addresses	are	used	to	send	messages	to	some
subset	of	the	hosts	on	an	Ethernet	(e.g.,	all	file	servers).	To	summarize,	an	Ethernet	adaptor	receives	all	frames	and
accepts

Frames	addressed	to	its	own	address

Frames	addressed	to	the	broadcast	address

Frames	addressed	to	a	multicast	address,	if	it	has	been	instructed	to	listen	to	that	address

All	frames,	if	it	has	been	placed	in	promiscuous	mode

It	passes	to	the	host	only	the	frames	that	it	accepts.

Transmitter	Algorithm

As	we	have	just	seen,	the	receiver	side	of	the	Ethernet	protocol	is	simple;	the	real	smarts	are	implemented	at	the
sender's	side.	The	transmitter	algorithm	is	defined	as	follows.

When	the	adaptor	has	a	frame	to	send	and	the	line	is	idle,	it	transmits	the	frame	immediately;	there	is	no	negotiation
with	the	other	adaptors.	The	upper	bound	of	1500	bytes	in	the	message	means	that	the	adaptor	can	occupy	the	line
for	only	a	fixed	length	of	time.

When	an	adaptor	has	a	frame	to	send	and	the	line	is	busy,	it	waits	for	the	line	to	go	idle	and	then	transmits
immediately.	(To	be	more	precise,	all	adaptors	wait	9.6	μs	after	the	end	of	one	frame	before	beginning	to	transmit	the
next	frame.	This	is	true	for	both	the	sender	of	the	first	frame	as	well	as	those	nodes	listening	for	the	line	to	become
idle.)	The	Ethernet	is	said	to	be	a	1-persistent	protocol	because	an	adaptor	with	a	frame	to	send	transmits	with
probability	1	whenever	a	busy	line	goes	idle.	In	general,	a	p-persistent	algorithm	transmits	with	probability	0 ≤ p ≤ 1

after	a	line	becomes	idle	and	defers	with	probability	q = 1 − p.	The	reasoning	behind	choosing	a	p < 1	is	that	there
might	be	multiple	adaptors	waiting	for	the	busy	line	to	become	idle,	and	we	don't	want	all	of	them	to	begin	transmitting
at	the	same	time.	If	each	adaptor	transmits	immediately	with	a	probability	of,	say,	33%,	then	up	to	three	adaptors	can
be	waiting	to	transmit	and	the	odds	are	that	only	one	will	begin	transmitting	when	the	line	becomes	idle.	Despite	this
reasoning,	an	Ethernet	adaptor	always	transmits	immediately	after	noticing	that	the	network	has	become	idle	and	has
been	very	effective	in	doing	so.

To	complete	the	story	about	p-persistent	protocols	for	the	case	when	p < 1,	you	might	wonder	how	long	a	sender	that
loses	the	coin	flip	(i.e.,	decides	to	defer)	has	to	wait	before	it	can	transmit.	The	answer	for	the	Aloha	network,	which
originally	developed	this	style	of	protocol,	was	to	divide	time	into	discrete	slots,	with	each	slot	corresponding	to	the
length	of	time	it	takes	to	transmit	a	full	frame.	Whenever	a	node	has	a	frame	to	send	and	it	senses	an	empty	(idle)
slot,	it	transmits	with	probability	p	and	defers	until	the	next	slot	with	probability	q = 1 − p.	If	that	next	slot	is	also	empty,
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the	node	again	decides	to	transmit	or	defer,	with	probabilities	p	and	q,	respectively.	If	that	next	slot	is	not	empty—that
is,	some	other	station	has	decided	to	transmit—then	the	node	simply	waits	for	the	next	idle	slot	and	the	algorithm
repeats.

Returning	to	our	discussion	of	the	Ethernet,	because	there	is	no	centralized	control	it	is	possible	for	two	(or	more)
adaptors	to	begin	transmitting	at	the	same	time,	either	because	both	found	the	line	to	be	idle	or	because	both	had
been	waiting	for	a	busy	line	to	become	idle.	When	this	happens,	the	two	(or	more)	frames	are	said	to	collide	on	the
network.	Each	sender,	because	the	Ethernet	supports	collision	detection,	is	able	to	determine	that	a	collision	is	in
progress.	At	the	moment	an	adaptor	detects	that	its	frame	is	colliding	with	another,	it	first	makes	sure	to	transmit	a	32-
bit	jamming	sequence	and	then	stops	the	transmission.	Thus,	a	transmitter	will	minimally	send	96	bits	in	the	case	of	a
collision:	64-bit	preamble	plus	32-bit	jamming	sequence.

One	way	that	an	adaptor	will	send	only	96	bits—which	is	sometimes	called	a	runt	frame—is	if	the	two	hosts	are	close
to	each	other.	Had	the	two	hosts	been	farther	apart,	they	would	have	had	to	transmit	longer,	and	thus	send	more	bits,
before	detecting	the	collision.	In	fact,	the	worst-case	scenario	happens	when	the	two	hosts	are	at	opposite	ends	of	the
Ethernet.	To	know	for	sure	that	the	frame	it	just	sent	did	not	collide	with	another	frame,	the	transmitter	may	need	to
send	as	many	as	512	bits.	Not	coincidentally,	every	Ethernet	frame	must	be	at	least	512	bits	(64	bytes)	long:	14	bytes
of	header	plus	46	bytes	of	data	plus	4	bytes	of	CRC.

Why	512	bits?	The	answer	is	related	to	another	question	you	might	ask	about	an	Ethernet:	Why	is	its	length	limited	to
only	2500	m?	Why	not	10	or	1000	km?	The	answer	to	both	questions	has	to	do	with	the	fact	that	the	farther	apart	two
nodes	are,	the	longer	it	takes	for	a	frame	sent	by	one	to	reach	the	other,	and	the	network	is	vulnerable	to	a	collision
during	this	time.

Figure	5.	Worst-case	scenario:	(a)	A	sends	a	frame	at	time	t;	(b)	A's	frame
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arrives	at	B	at	time	t+d;	(c)	B	begins	transmitting	at	time	t+d	and	collides
with	A's	frame;	(d)	B's	runt	(32-bit)	frame	arrives	at	A	at	time	t+2d.

Figure	5	illustrates	the	worst-case	scenario,	where	hosts	A	and	B	are	at	opposite	ends	of	the	network.	Suppose	host
A	begins	transmitting	a	frame	at	time	t,	as	shown	in	(a).	It	takes	it	one	link	latency	(let's	denote	the	latency	as	d)	for
the	frame	to	reach	host	B.	Thus,	the	first	bit	of	A's	frame	arrives	at	B	at	time	t+d,	as	shown	in	(b).	Suppose	an	instant
before	host	A's	frame	arrives	(i.e.,	B	still	sees	an	idle	line),	host	B	begins	to	transmit	its	own	frame.	B's	frame	will
immediately	collide	with	A's	frame,	and	this	collision	will	be	detected	by	host	B	(c).	Host	B	will	send	the	32-bit	jamming
sequence,	as	described	above.	(B's	frame	will	be	a	runt.)	Unfortunately,	host	A	will	not	know	that	the	collision
occurred	until	B's	frame	reaches	it,	which	will	happen	one	link	latency	later,	at	time	t+2×d,	as	shown	in	(d).	Host	A
must	continue	to	transmit	until	this	time	in	order	to	detect	the	collision.	In	other	words,	host	A	must	transmit	for	2×d	to
be	sure	that	it	detects	all	possible	collisions.	Considering	that	a	maximally	configured	Ethernet	is	2500	m	long,	and
that	there	may	be	up	to	four	repeaters	between	any	two	hosts,	the	round-trip	delay	has	been	determined	to	be	51.2	
μs,	which	on	a	10-Mbps	Ethernet	corresponds	to	512	bits.	The	other	way	to	look	at	this	situation	is	that	we	need	to
limit	the	Ethernet's	maximum	latency	to	a	fairly	small	value	(e.g.,	51.2	μs)	for	the	access	algorithm	to	work;	hence,	an
Ethernet's	maximum	length	must	be	something	on	the	order	of	2500	m.

Once	an	adaptor	has	detected	a	collision	and	stopped	its	transmission,	it	waits	a	certain	amount	of	time	and	tries
again.	Each	time	it	tries	to	transmit	but	fails,	the	adaptor	doubles	the	amount	of	time	it	waits	before	trying	again.	This
strategy	of	doubling	the	delay	interval	between	each	retransmission	attempt	is	a	general	technique	known	as
exponential	backoff.	More	precisely,	the	adaptor	first	delays	either	0	or	51.2	μs,	selected	at	random.	If	this	effort	fails,
it	then	waits	0,	51.2,	102.4,	or	153.6	μs	(selected	randomly)	before	trying	again;	this	is	k	×	51.2	for	k=0..3.	After	the

third	collision,	it	waits	k×51.2	for	k=0.2 -1,	again	selected	at	random.	In	general,	the	algorithm	randomly	selects	a	k

between	0	and	2 -1	and	waits	k×51.2μs,	where	n	is	the	number	of	collisions	experienced	so	far.	The	adaptor	gives	up

after	a	given	number	of	tries	and	reports	a	transmit	error	to	the	host.	Adaptors	typically	retry	up	to	16	times,	although
the	backoff	algorithm	caps	n	in	the	above	formula	at	10.

Longevity	of	Ethernet

Ethernet	has	been	the	dominant	local	area	network	technology	for	over	30	years.	Today	it	is	typically	deployed	point-
to-point	rather	than	tapping	into	a	coax	cable,	it	often	runs	at	speeds	of	1	or	10	Gbps	rather	than	10	Mbps,	and	it
allows	jumbo	packets	with	up	to	9000	bytes	of	data	rather	than	1500	bytes.	But,	it	remains	backwards	compatible	with
the	original	standard.	This	makes	it	worth	saying	a	few	words	about	why	Ethernets	have	been	so	successful,	so	that
we	can	understand	the	properties	we	should	emulate	with	any	technology	that	tries	to	replace	it.

First,	an	Ethernet	is	extremely	easy	to	administer	and	maintain:	There	is	no	routing	or	configuration	tables	to	be	kept
up-to-date,	and	it	is	easy	to	add	a	new	host	to	the	network.	It	is	hard	to	imagine	a	simpler	network	to	administer.
Second,	it	is	inexpensive:	cable/fiber	is	relatively	cheap,	and	the	only	other	cost	is	the	network	adaptor	on	each	host.
Ethernet	became	deeply	entrenched	for	these	reasons,	and	any	switch-based	approach	that	aspired	to	displace	it
required	additional	investment	in	infrastructure	(the	switches),	on	top	of	the	cost	of	each	adaptor.	The	switch-based
variant	of	Ethernet	did	eventually	succeed	in	replacing	multi-access	Ethernet,	but	this	is	in	part	because	it	could	be
deployed	incrementally—with	some	hosts	connected	by	point-to-point	links	to	switches	while	others	remained	tapped
into	coax—all	the	while	retaining	the	simplicity	of	network	administration.
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2.7	Wireless	Networks

Wireless	technologies	differ	from	wired	links	in	some	important	ways,	while	at	the	same	time	sharing	many	common
properties.	Like	wired	links,	issues	of	bit	errors	are	of	great	concern—typically	even	more	so	due	to	the	unpredictable
noise	environment	of	most	wireless	links.	Framing	and	reliability	also	have	to	be	addressed.	Unlike	wired	links,	power
is	a	big	issue	for	wireless,	especially	because	wireless	links	are	often	used	by	small	mobile	devices	(like	phones	and
sensors)	that	have	limited	access	to	power	(e.g.,	a	small	battery).	Furthermore,	you	can't	go	blasting	away	at
arbitrarily	high	power	with	a	radio	transmitter—there	are	concerns	about	interference	with	other	devices	and	usually
regulations	about	how	much	power	a	device	may	emit	at	any	given	frequency.

Wireless	media	are	also	inherently	multi-access;	it's	difficult	to	direct	your	radio	transmission	to	just	a	single	receiver
or	to	avoid	receiving	radio	signals	from	any	transmitter	with	enough	power	in	your	neighborhood.	Hence,	media
access	control	is	a	central	issue	for	wireless	links.	And,	because	it's	hard	to	control	who	receives	your	signal	when
you	transmit	over	the	air,	issues	of	eavesdropping	may	also	have	to	be	addressed.

There	is	a	baffling	assortment	of	different	wireless	technologies,	each	of	which	makes	different	tradeoffs	in	various
dimensions.	One	simple	way	to	categorize	the	different	technologies	is	by	the	data	rates	they	provide	and	how	far
apart	communicating	nodes	can	be.	Other	important	differences	include	which	part	of	the	electromagnetic	spectrum
they	use	(including	whether	it	requires	a	license)	and	how	much	power	they	consume.	In	this	section,	we	discuss	two
prominent	wireless	technologies:	Wi-Fi	(more	formally	known	as	802.11),	and	Bluetooth.	The	next	section	discusses
cellular	networks	in	the	context	of	ISP	access	services.	Table	1	gives	an	overview	of	these	technologies	and	how	they
compare	to	each	other.

Table	1.	Overview	of	Leading	Wireless	Technologies

Bluetooth	(802.15.1) Wi-Fi	(802.11) 4G	Cellular

Typical	link	length 10	m 100	m Tens	of	kilometers

Typical	data	rate 2	Mbps	(shared) 54	Mbps	(shared) 1-5	Mbps	(per	connection)

Typical	use Link	a	peripheral	to	a
computer

Link	a	computer	to	a
wired	base

Link	mobile	phone	to	a
wired	tower

Wired	technology
analogy USB Ethernet PON

You	may	recall	that	bandwidth	sometimes	means	the	width	of	a	frequency	band	in	hertz	and	sometimes	the	data	rate
of	a	link.	Because	both	these	concepts	come	up	in	discussions	of	wireless	networks,	we're	going	to	use	bandwidth
here	in	its	stricter	sense—width	of	a	frequency	band—and	use	the	term	data	rate	to	describe	the	number	of	bits	per
second	that	can	be	sent	over	the	link,	as	in	Table	1.

Basic	Issues

Because	wireless	links	all	share	the	same	medium,	the	challenge	is	to	share	that	medium	efficiently,	without	unduly
interfering	with	each	other.	Most	of	this	sharing	is	accomplished	by	dividing	it	up	along	the	dimensions	of	frequency
and	space.	Exclusive	use	of	a	particular	frequency	in	a	particular	geographic	area	may	be	allocated	to	an	individual
entity	such	as	a	corporation.	It	is	feasible	to	limit	the	area	covered	by	an	electromagnetic	signal	because	such	signals
weaken,	or	attenuate,	with	the	distance	from	their	origin.	To	reduce	the	area	covered	by	your	signal,	reduce	the	power
of	your	transmitter.
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These	allocations	are	typically	determined	by	government	agencies,	such	as	the	Federal	Communications
Commission	(FCC)	in	the	United	States.	Specific	bands	(frequency	ranges)	are	allocated	to	certain	uses.	Some	bands
are	reserved	for	government	use.	Other	bands	are	reserved	for	uses	such	as	AM	radio,	FM	radio,	television,	satellite
communication,	and	cellular	phones.	Specific	frequencies	within	these	bands	are	then	licensed	to	individual
organizations	for	use	within	certain	geographical	areas.	Finally,	several	frequency	bands	are	set	aside	for	license-
exempt	usage—bands	in	which	a	license	is	not	needed.

Devices	that	use	license-exempt	frequencies	are	still	subject	to	certain	restrictions	to	make	that	otherwise
unconstrained	sharing	work.	Most	important	of	these	is	a	limit	on	transmission	power.	This	limits	the	range	of	a	signal,
making	it	less	likely	to	interfere	with	another	signal.	For	example,	a	cordless	phone	(a	common	unlicensed	device)
might	have	a	range	of	about	100	feet.

One	idea	that	shows	up	a	lot	when	spectrum	is	shared	among	many	devices	and	applications	is	spread	spectrum.
The	idea	behind	spread	spectrum	is	to	spread	the	signal	over	a	wider	frequency	band,	so	as	to	minimize	the	impact	of
interference	from	other	devices.	(Spread	spectrum	was	originally	designed	for	military	use,	so	these	"other	devices"
were	often	attempting	to	jam	the	signal.)	For	example,	frequency	hopping	is	a	spread	spectrum	technique	that
involves	transmitting	the	signal	over	a	random	sequence	of	frequencies;	that	is,	first	transmitting	at	one	frequency,
then	a	second,	then	a	third,	and	so	on.	The	sequence	of	frequencies	is	not	truly	random	but	is	instead	computed
algorithmically	by	a	pseudorandom	number	generator.	The	receiver	uses	the	same	algorithm	as	the	sender	and
initializes	it	with	the	same	seed;	hence,	it	is	able	to	hop	frequencies	in	sync	with	the	transmitter	to	correctly	receive	the
frame.	This	scheme	reduces	interference	by	making	it	unlikely	that	two	signals	would	be	using	the	same	frequency	for
more	than	the	infrequent	isolated	bit.

A	second	spread	spectrum	technique,	called	direct	sequence,	adds	redundancy	for	greater	tolerance	of	interference.
Each	bit	of	data	is	represented	by	multiple	bits	in	the	transmitted	signal	so	that,	if	some	of	the	transmitted	bits	are
damaged	by	interference,	there	is	usually	enough	redundancy	to	recover	the	original	bit.	For	each	bit	the	sender
wants	to	transmit,	it	actually	sends	the	exclusive-OR	of	that	bit	and	n	random	bits.	As	with	frequency	hopping,	the
sequence	of	random	bits	is	generated	by	a	pseudorandom	number	generator	known	to	both	the	sender	and	the
receiver.	The	transmitted	values,	known	as	an	n-bit	chipping	code,	spread	the	signal	across	a	frequency	band	that	is	n
times	wider	than	the	frame	would	have	otherwise	required.	Figure	1	gives	an	example	of	a	4-bit	chipping	sequence.

Figure	1.	Example	4-bit	chipping	sequence.

Different	parts	of	the	electromagnetic	spectrum	have	different	properties,	making	some	better	suited	to
communication,	and	some	less	so.	For	example,	some	can	penetrate	buildings	and	some	cannot.	Governments
regulate	only	the	prime	communication	portion:	the	radio	and	microwave	ranges.	As	demand	for	prime	spectrum
increases,	there	is	great	interest	in	the	spectrum	that	is	becoming	available	as	analog	television	is	phased	out	in	favor
of	digital.

In	many	wireless	networks	today	we	observe	that	there	are	two	different	classes	of	endpoints.	One	endpoint,
sometimes	described	as	the	base	station,	usually	has	no	mobility	but	has	a	wired	(or	at	least	high-bandwidth)
connection	to	the	Internet	or	other	networks,	as	shown	in	Figure	2.	The	node	at	the	other	end	of	the	link—shown	here
as	a	client	node—is	often	mobile	and	relies	on	its	link	to	the	base	station	for	all	of	its	communication	with	other	nodes.

Observe	that	in	Figure	2	we	have	used	a	wavy	pair	of	lines	to	represent	the	wireless	"link"	abstraction	provided
between	two	devices	(e.g.,	between	a	base	station	and	one	of	its	client	nodes).	One	of	the	interesting	aspects	of
wireless	communication	is	that	it	naturally	supports	point-to-multipoint	communication,	because	radio	waves	sent	by
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one	device	can	be	simultaneously	received	by	many	devices.	However,	it	is	often	useful	to	create	a	point-to-point	link
abstraction	for	higher	layer	protocols,	and	we	will	see	examples	of	how	this	works	later	in	this	section.

Note	that	in	Figure	2	communication	between	non-base	(client)	nodes	is	routed	via	the	base	station.	This	is	in	spite	of
the	fact	that	radio	waves	emitted	by	one	client	node	may	well	be	received	by	other	client	nodes—the	common	base
station	model	does	not	permit	direct	communication	between	the	client	nodes.

Figure	2.	A	wireless	network	using	a	base	station.

This	topology	implies	three	qualitatively	different	levels	of	mobility.	The	first	level	is	no	mobility,	such	as	when	a
receiver	must	be	in	a	fixed	location	to	receive	a	directional	transmission	from	the	base	station.	The	second	level	is
mobility	within	the	range	of	a	base,	as	is	the	case	with	Bluetooth.	The	third	level	is	mobility	between	bases,	as	is	the
case	with	cell	phones	and	Wi-Fi.

Figure	3.	A	wireless	ad	hoc	or	mesh	network.

An	alternative	topology	that	is	seeing	increasing	interest	is	the	mesh	or	ad	hoc	network.	In	a	wireless	mesh,	nodes	are
peers;	that	is,	there	is	no	special	base	station	node.	Messages	may	be	forwarded	via	a	chain	of	peer	nodes	as	long	as
each	node	is	within	range	of	the	preceding	node.	This	is	illustrated	in	Figure	3.	This	allows	the	wireless	portion	of	a
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network	to	extend	beyond	the	limited	range	of	a	single	radio.	From	the	point	of	view	of	competition	between
technologies,	this	allows	a	shorter-range	technology	to	extend	its	range	and	potentially	compete	with	a	longer-range
technology.	Meshes	also	offer	fault	tolerance	by	providing	multiple	routes	for	a	message	to	get	from	point	A	to	point	B.
A	mesh	network	can	be	extended	incrementally,	with	incremental	costs.	On	the	other	hand,	a	mesh	network	requires
non-base	nodes	to	have	a	certain	level	of	sophistication	in	their	hardware	and	software,	potentially	increasing	per-unit
costs	and	power	consumption,	a	critical	consideration	for	battery-powered	devices.	Wireless	mesh	networks	are	of
considerable	research	interest,	but	they	are	still	in	their	relative	infancy	compared	to	networks	with	base	stations.
Wireless	sensor	networks,	another	hot	emerging	technology,	often	form	wireless	meshes.

Now	that	we	have	covered	some	of	the	common	wireless	issues,	let's	take	a	look	at	the	details	of	two	common
wireless	technologies.

802.11/Wi-Fi

Most	readers	will	have	used	a	wireless	network	based	on	the	IEEE	802.11	standards,	often	referred	to	as	Wi-Fi.	Wi-Fi
is	technically	a	trademark,	owned	by	a	trade	group	called	the	Wi-Fi	Alliance,	which	certifies	product	compliance	with
802.11.	Like	Ethernet,	802.11	is	designed	for	use	in	a	limited	geographical	area	(homes,	office	buildings,	campuses),
and	its	primary	challenge	is	to	mediate	access	to	a	shared	communication	medium—in	this	case,	signals	propagating
through	space.

Physical	Properties

802.11	defines	a	number	of	different	physical	layers	that	operate	in	various	frequency	bands	and	provide	a	range	of
different	data	rates.	At	the	time	of	writing,	802.11n	provides	the	highest	maximum	data	rate,	topping	out	at	600	Mbps.

The	original	802.11	standard	defined	two	radio-based	physical	layers	standards,	one	using	frequency	hopping	(over
79	1-MHz-wide	frequency	bandwidths)	and	the	other	using	direct	sequence	spread	spectrum	(with	an	11-bit	chipping
sequence).	Both	provided	data	rates	in	the	2	Mbps	range.	The	physical	layer	standard	802.11b	was	added
subsequently.	Using	a	variant	of	direct	sequence,	802.11b	provides	up	to	11	Mbps.	These	three	standards	all
operated	in	the	license-exempt	2.4-GHz	frequency	band	of	the	electromagnetic	spectrum.	Then	came	802.11a,	which
delivers	up	to	54	Mbps	using	a	variant	of	FDM	called	orthogonal	frequency	division	multiplexing	(OFDM);	802.11a
runs	in	the	license-exempt	5-GHz	band.	On	one	hand,	this	band	is	less	used,	so	there	is	less	interference.	On	the
other	hand,	there	is	more	absorption	of	the	signal	and	it	is	limited	to	almost	line	of	sight.	802.11g	followed;	802.11g
also	uses	OFDM,	delivers	up	to	54	Mbps,	and	is	backward	compatible	with	802.11b	(and	returns	to	the	2.4-GHz
band).

Most	recently	802.11n	has	appeared	on	the	scene,	with	a	standard	that	was	approved	in	2009	(although	pre-standard
products	also	existed).	802.11n	achieves	considerable	advances	in	maximum	possible	data	rate	using	multiple
antennas	and	allowing	greater	wireless	channel	bandwidths.	The	use	of	multiple	antennas	is	often	called	MIMO	for
multiple-input,	multiple-output.

It	is	common	for	commercial	products	to	support	more	than	one	flavor	of	802.11;	some	base	stations	support	all	four
variants	(a,b,	g,	and	n).	This	not	only	ensures	compatibility	with	any	device	that	supports	any	one	of	the	standards	but
also	makes	it	possible	for	two	such	products	to	choose	the	highest	bandwidth	option	for	a	particular	environment.

It	is	worth	noting	that	while	all	the	802.11	standards	define	a	maximum	bit	rate	that	can	be	supported,	they	mostly
support	lower	bit	rates	as	well;	for	example,	802.11a	allows	for	bit	rates	of	6,	9,	12,	18,	24,	36,	48,	and	54	Mbps.	At
lower	bit	rates,	it	is	easier	to	decode	transmitted	signals	in	the	presence	of	noise.	Different	modulation	schemes	are
used	to	achieve	the	various	bit	rates;	in	addition,	the	amount	of	redundant	information	in	the	form	of	error-correcting
codes	is	varied.	More	redundant	information	means	higher	resilience	to	bit	errors	at	the	cost	of	lowering	the	effective
data	rate	(since	more	of	the	transmitted	bits	are	redundant).
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The	systems	try	to	pick	an	optimal	bit	rate	based	on	the	noise	environment	in	which	they	find	themselves;	the
algorithms	for	bit	rate	selection	can	be	quite	complex.	Interestingly,	the	802.11	standards	do	not	specify	a	particular
approach	but	leave	the	algorithms	to	the	various	vendors.	The	basic	approach	to	picking	a	bit	rate	is	to	estimate	the
bit	error	rate	either	by	directly	measuring	the	signal-to-noise	ratio	(SNR)	at	the	physical	layer	or	by	estimating	the	SNR
by	measuring	how	often	packets	are	successfully	transmitted	and	acknowledged.	In	some	approaches,	a	sender	will
occasionally	probe	a	higher	bit	rate	by	sending	one	or	more	packets	at	that	rate	to	see	if	it	succeeds.

Collision	Avoidance

At	first	glance,	it	might	seem	that	a	wireless	protocol	would	follow	the	same	algorithm	as	the	Ethernet—wait	until	the
link	becomes	idle	before	transmitting	and	back	off	should	a	collision	occur—and,	to	a	first	approximation,	this	is	what
802.11	does.	The	additional	complication	for	wireless	is	that,	while	a	node	on	an	Ethernet	receives	every	other	node's
transmissions	and	can	transmit	and	receive	at	the	same	time,	neither	of	these	conditions	holds	for	wireless	nodes.
This	makes	detection	of	collisions	rather	more	complex.	The	reason	why	wireless	nodes	cannot	usually	transmit	and
receive	at	the	same	time	(on	the	same	frequency)	is	that	the	power	generated	by	the	transmitter	is	much	higher	than
any	received	is	likely	to	be	and	so	swamps	the	receiving	circuitry.	The	reason	why	a	node	may	not	receive
transmissions	from	another	node	is	because	that	node	may	be	too	far	away	or	blocked	by	an	obstacle.	This	situation
is	a	bit	more	complex	than	it	first	appears,	as	the	following	discussion	will	illustrate.

Figure	4.	The	hidden	node	problem.	Although	A	and	C	are	hidden	from
each	other,	their	signals	can	collide	at	B.	(B's	reach	is	not	shown.)

Consider	the	situation	depicted	in	Figure	4,	where	A	and	C	are	both	within	range	of	B	but	not	each	other.	Suppose
both	A	and	C	want	to	communicate	with	B	and	so	they	each	send	it	a	frame.	A	and	C	are	unaware	of	each	other	since
their	signals	do	not	carry	that	far.	These	two	frames	collide	with	each	other	at	B,	but	unlike	an	Ethernet,	neither	A	nor
C	is	aware	of	this	collision.	A	and	C	are	said	to	be	hidden	nodes	with	respect	to	each	other.
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Figure	5.	The	exposed	node	problem.	Although	B	and	C	are	exposed	to
each	other's	signals,	there	is	no	interference	if	B	transmits	to	A	while	C

transmits	to	D.	(A	and	D's	reaches	are	not	shown.)

A	related	problem,	called	the	exposed	node	problem,	occurs	under	the	circumstances	illustrated	in	Figure	5,	where
each	of	the	four	nodes	is	able	to	send	and	receive	signals	that	reach	just	the	nodes	to	its	immediate	left	and	right.	For
example,	B	can	exchange	frames	with	A	and	C	but	it	cannot	reach	D,	while	C	can	reach	B	and	D	but	not	A.	Suppose
B	is	sending	to	A.	Node	C	is	aware	of	this	communication	because	it	hears	B's	transmission.	It	would	be	a	mistake,
however,	for	C	to	conclude	that	it	cannot	transmit	to	anyone	just	because	it	can	hear	B's	transmission.	For	example,
suppose	C	wants	to	transmit	to	node	D.	This	is	not	a	problem	since	C's	transmission	to	D	will	not	interfere	with	A's
ability	to	receive	from	B.	(It	would	interfere	with	A	sending	to	B,	but	B	is	transmitting	in	our	example.)

802.11	addresses	these	problems	by	using	CSMA/CA,	where	the	CA	stands	for	collision	avoidance,	in	contrast	to	the
collision	detection	of	CSMA/CD	used	on	Ethernets.	There	are	a	few	pieces	to	make	this	work.

The	Carrier	Sense	part	seems	simple	enough:	Before	sending	a	packet,	the	transmitter	checks	if	it	can	hear	any	other
transmissions;	if	not,	it	sends.	However,	because	of	the	hidden	node	problem,	just	waiting	for	the	absence	of	signals
from	other	transmitters	does	not	guarantee	that	a	collision	will	not	occur	from	the	perspective	of	the	receiver.	For	this
reason,	one	part	of	CSMA/CA	is	an	explicit	ACK	from	the	receiver	to	the	sender.	If	the	packet	was	successfully
decoded	and	passed	its	CRC	at	the	receiver,	the	receiver	sends	an	ACK	back	to	the	sender.

Note	that	if	a	collision	does	occur,	it	will	render	the	entire	packet	useless.	For	this	reason,	802.11	adds	an	optional
mechanism	called	RTS-CTS	(Ready	to	Send-Clear	to	Send).	This	goes	some	way	toward	addressing	the	hidden	node
problem.	The	sender	sends	an	RTS—a	short	packet—to	the	intended	receiver,	and	if	that	packet	is	received
successfully	the	receiver	responds	with	another	short	packet,	the	CTS.	Even	though	the	RTS	may	not	have	been
heard	by	a	hidden	node,	the	CTS	probably	will	be.	This	effectively	tells	the	nodes	within	range	of	the	receiver	that	they
should	not	send	anything	for	a	while—the	amount	of	time	of	the	intended	transmission	is	included	in	the	RTS	and	CTS
packets.	After	that	time	plus	a	small	interval	has	passed,	the	carrier	can	be	assumed	to	be	available	again,	and
another	node	is	free	to	try	to	send.

Of	course,	two	nodes	might	detect	an	idle	link	and	try	to	transmit	an	RTS	frame	at	the	same	time,	causing	their	RTS
frames	to	collide	with	each	other.	The	senders	realize	the	collision	has	happened	when	they	do	not	receive	the	CTS
frame	after	a	period	of	time,	in	which	case	they	each	wait	a	random	amount	of	time	before	trying	again.	The	amount	of
time	a	given	node	delays	is	defined	by	an	exponential	backoff	algorithm	very	much	like	that	used	on	the	Ethernet.

After	a	successful	RTS-CTS	exchange,	the	sender	sends	its	data	packet	and,	if	all	goes	well,	receives	an	ACK	for	that
packet.	In	the	absence	of	a	timely	ACK,	the	sender	will	try	again	to	request	usage	of	the	channel	again,	using	the
same	process	described	above.	By	this	time,	of	course,	other	nodes	may	again	be	trying	to	get	access	to	the	channel
as	well.
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Distribution	System

As	described	so	far,	802.11	would	be	suitable	for	a	network	with	a	mesh	(ad	hoc)	topology,	and	development	of	an
802.11s	standard	for	mesh	networks	is	nearing	completion.	At	the	current	time,	however,	nearly	all	802.11	networks
use	a	base-station-oriented	topology.

Instead	of	all	nodes	being	created	equal,	some	nodes	are	allowed	to	roam	(e.g.,	your	laptop)	and	some	are	connected
to	a	wired	network	infrastructure.	802.11	calls	these	base	stations	access	points	(APs),	and	they	are	connected	to
each	other	by	a	so-called	distribution	system.	Figure	6	illustrates	a	distribution	system	that	connects	three	access
points,	each	of	which	services	the	nodes	in	some	region.	Each	access	point	operates	on	some	channel	in	the
appropriate	frequency	range,	and	each	AP	will	typically	be	on	a	different	channel	than	its	neighbors.

Figure	6.	Access	points	connected	to	a	distribution	system.

The	details	of	the	distribution	system	are	not	important	to	this	discussion—it	could	be	an	Ethernet,	for	example.	The
only	important	point	is	that	the	distribution	network	operates	at	the	link	layer,	the	same	protocol	layer	as	the	wireless
links.	In	other	words,	it	does	not	depend	on	any	higher-level	protocols	(such	as	the	network	layer).

Although	two	nodes	can	communicate	directly	with	each	other	if	they	are	within	reach	of	each	other,	the	idea	behind
this	configuration	is	that	each	node	associates	itself	with	one	access	point.	For	node	A	to	communicate	with	node	E,
for	example,	A	first	sends	a	frame	to	its	access	point	(AP-1),	which	forwards	the	frame	across	the	distribution	system
to	AP-3,	which	finally	transmits	the	frame	to	E.	How	AP-1	knew	to	forward	the	message	to	AP-3	is	beyond	the	scope
of	802.11;	it	may	have	used	a	bridging	protocol.	What	802.11	does	specify	is	how	nodes	select	their	access	points
and,	more	interestingly,	how	this	algorithm	works	in	light	of	nodes	moving	from	one	cell	to	another.

The	technique	for	selecting	an	AP	is	called	scanning	and	involves	the	following	four	steps:

1.	 The	node	sends	a		Probe		frame.

2.	 All	APs	within	reach	reply	with	a		Probe	Response		frame.

3.	 The	node	selects	one	of	the	access	points	and	sends	that	AP	an		Association	Request		frame.

4.	 The	AP	replies	with	an		Association	Response		frame.

A	node	engages	this	protocol	whenever	it	joins	the	network,	as	well	as	when	it	becomes	unhappy	with	its	current	AP.
This	might	happen,	for	example,	because	the	signal	from	its	current	AP	has	weakened	due	to	the	node	moving	away
from	it.	Whenever	a	node	acquires	a	new	AP,	the	new	AP	notifies	the	old	AP	of	the	change	(this	happens	in	step	4)
via	the	distribution	system.
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Figure	7.	Node	mobility.

Consider	the	situation	shown	in	Figure	7,	where	node	C	moves	from	the	cell	serviced	by	AP-1	to	the	cell	serviced	by
AP-2.	As	it	moves,	it	sends		Probe		frames,	which	eventually	result	in		Probe	Response		frames	from	AP-2.	At	some	point,
C	prefers	AP-2	over	AP-1,	and	so	it	associates	itself	with	that	access	point.

The	mechanism	just	described	is	called	active	scanning	since	the	node	is	actively	searching	for	an	access	point.	APs
also	periodically	send	a		Beacon		frame	that	advertises	the	capabilities	of	the	access	point;	these	include	the
transmission	rates	supported	by	the	AP.	This	is	called	passive	scanning,	and	a	node	can	change	to	this	AP	based	on
the		Beacon		frame	simply	by	sending	an		Association	Request		frame	back	to	the	access	point.

Frame	Format

Most	of	the	802.11	frame	format,	which	is	depicted	in	Figure	8,	is	exactly	what	we	would	expect.	The	frame	contains
the	source	and	destination	node	addresses,	each	of	which	is	48	bits	long;	up	to	2312	bytes	of	data;	and	a	32-bit	CRC.
The		Control		field	contains	three	subfields	of	interest	(not	shown):	a	6-bit		Type		field	that	indicates	whether	the	frame
carries	data,	is	an	RTS	or	CTS	frame,	or	is	being	used	by	the	scanning	algorithm,	and	a	pair	of	1-bit	fields—called
	ToDS		and		FromDS	—that	are	described	below.

Figure	8.	802.11	frame	format.

The	peculiar	thing	about	the	802.11	frame	format	is	that	it	contains	four,	rather	than	two,	addresses.	How	these
addresses	are	interpreted	depends	on	the	settings	of	the		ToDS		and		FromDS		bits	in	the	frame's		Control		field.	This	is	to
account	for	the	possibility	that	the	frame	had	to	be	forwarded	across	the	distribution	system,	which	would	mean	that
the	original	sender	is	not	necessarily	the	same	as	the	most	recent	transmitting	node.	Similar	reasoning	applies	to	the
destination	address.	In	the	simplest	case,	when	one	node	is	sending	directly	to	another,	both	the		DS		bits	are	0,
	Addr1		identifies	the	target	node,	and		Addr2		identifies	the	source	node.	In	the	most	complex	case,	both		DS		bits	are
set	to	1,	indicating	that	the	message	went	from	a	wireless	node	onto	the	distribution	system,	and	then	from	the
distribution	system	to	another	wireless	node.	With	both	bits	set,		Addr1		identifies	the	ultimate	destination,		Addr2	
identifies	the	immediate	sender	(the	one	that	forwarded	the	frame	from	the	distribution	system	to	the	ultimate
destination),		Addr3		identifies	the	intermediate	destination	(the	one	that	accepted	the	frame	from	a	wireless	node	and
forwarded	it	across	the	distribution	system),	and		Addr4		identifies	the	original	source.	In	terms	of	the	example	given	in
Figure	6,		Addr1		corresponds	to	E,		Addr2		identifies	AP-3,		Addr3		corresponds	to	AP-1,	and		Addr4		identifies	A.

Security	of	Wireless	Links
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One	of	the	fairly	obvious	problems	of	wireless	links	compared	to	wires	or	fibers	is	that	you	can't	be	too	sure	where
your	data	has	gone.	You	can	probably	figure	out	if	it	was	received	by	the	intended	receiver,	but	there	is	no	telling	how
many	other	receivers	might	have	also	picked	up	your	transmission.	So,	if	you	are	concerned	about	the	privacy	of	your
data,	wireless	networks	present	a	challenge.

Even	if	you	are	not	concerned	about	data	privacy—or	perhaps	have	taken	care	of	it	in	some	other	way—you	may	be
concerned	about	an	unauthorized	user	injecting	data	into	your	network.	If	nothing	else,	such	a	user	might	be	able	to
consume	resources	that	you	would	prefer	to	consume	yourself,	such	as	the	finite	bandwidth	between	your	house	and
your	ISP.

For	these	reasons,	wireless	networks	typically	come	with	some	sort	of	mechanism	to	control	access	to	both	the	link
itself	and	the	transmitted	data.	These	mechanisms	are	often	categorized	as	wireless	security.	The	widely	adopted
WPA2	is	described	in	Chapter	8.

Bluetooth	(802.15.1)
Bluetooth	fills	the	niche	of	very	short	range	communication	between	mobile	phones,	PDAs,	notebook	computers,	and
other	personal	or	peripheral	devices.	For	example,	Bluetooth	can	be	used	to	connect	a	mobile	phone	to	a	headset	or
a	notebook	computer	to	a	keyboard.	Roughly	speaking,	Bluetooth	is	a	more	convenient	alternative	to	connecting	two
devices	with	a	wire.	In	such	applications,	it	is	not	necessary	to	provide	much	range	or	bandwidth.	This	means	that
Bluetooth	radios	can	use	quite	low	power	transmission,	since	transmission	power	is	one	of	the	main	factors	affecting
bandwidth	and	range	of	wireless	links.	This	matches	the	target	applications	for	Bluetooth-enabled	devices—most	of
them	are	battery	powered	(such	as	the	ubiquitous	phone	headset)	and	hence	it	is	important	that	they	not	consume
much	power.

Bluetooth	operates	in	the	license-exempt	band	at	2.45	GHz.	Bluetooth	links	have	typical	bandwidths	around	1	to	3
Mbps	and	a	range	of	about	10	m.	For	this	reason,	and	because	the	communicating	devices	typically	belong	to	one
individual	or	group,	Bluetooth	is	sometimes	categorized	as	a	Personal	Area	Network	(PAN).

Bluetooth	is	specified	by	an	industry	consortium	called	the	Bluetooth	Special	Interest	Group.	It	specifies	an	entire	suite
of	protocols,	going	beyond	the	link	layer	to	define	application	protocols,	which	it	calls	profiles,	for	a	range	of
applications.	For	example,	there	is	a	profile	for	synchronizing	a	PDA	with	a	personal	computer.	Another	profile	gives	a
mobile	computer	access	to	a	wired	LAN	in	the	manner	of	802.11,	although	this	was	not	Bluetooth's	original	goal.	The
IEEE	802.15.1	standard	is	based	on	Bluetooth	but	excludes	the	application	protocols.

The	basic	Bluetooth	network	configuration,	called	a	piconet,	consists	of	a	master	device	and	up	to	seven	slave
devices,	as	shown	in	Figure	9.	Any	communication	is	between	the	master	and	a	slave;	the	slaves	do	not	communicate
directly	with	each	other.	Because	slaves	have	a	simpler	role,	their	Bluetooth	hardware	and	software	can	be	simpler
and	cheaper.
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Figure	9.	A	Bluetooth	piconet.

Since	Bluetooth	operates	in	an	license-exempt	band,	it	is	required	to	use	a	spread	spectrum	technique	to	deal	with
possible	interference	in	the	band.	It	uses	frequency-hopping	with	79	channels	(frequencies),	using	each	for	625	μs	at
a	time.	This	provides	a	natural	time	slot	for	Bluetooth	to	use	for	synchronous	time	division	multiplexing.	A	frame	takes
up	1,	3,	or	5	consecutive	time	slots.	Only	the	master	can	start	to	transmit	in	odd-numbered	slots.	A	slave	can	start	to
transmit	in	an	even-numbered	slot—but	only	in	response	to	a	request	from	the	master	during	the	previous	slot,
thereby	preventing	any	contention	between	the	slave	devices.

A	slave	device	can	be	parked;	that	is,	it	is	set	to	an	inactive,	low-power	state.	A	parked	device	cannot	communicate
on	the	piconet;	it	can	only	be	reactivated	by	the	master.	A	piconet	can	have	up	to	255	parked	devices	in	addition	to	its
active	slave	devices.

In	the	realm	of	very	low-power,	short-range	communication	there	are	a	few	other	technologies	besides	Bluetooth.	One
of	these	is	ZigBee,	devised	by	the	ZigBee	alliance	and	standardized	as	IEEE	802.15.4.	It	is	designed	for	situations
where	the	bandwidth	requirements	are	low	and	power	consumption	must	be	very	low	to	give	very	long	battery	life.	It	is
also	intended	to	be	simpler	and	cheaper	than	Bluetooth,	making	it	feasible	to	incorporate	in	cheaper	devices	such	as
sensors.	Sensors	are	becoming	an	increasingly	important	class	of	networked	device,	as	technology	advances	to	the
point	where	very	cheap	small	devices	can	be	deployed	in	large	quantities	to	monitor	things	like	temperature,	humidity,
and	energy	consumption	in	a	building.
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2.8	Access	Networks

In	addition	to	the	Ethernet	and	Wi-Fi	connections	we	typically	use	to	connect	to	the	Internet	at	home,	at	work,	at
school,	and	in	many	public	spaces,	most	of	us	connect	to	the	Internet	over	an	access	or	broadband	service	that	we
buy	from	an	ISP.	This	section	describes	two	such	technologies:	Passive	Optical	Networks	(PON),	commonly	referred
to	as	fiber-to-the-home,	and	Cellular	Networks	that	connect	our	mobile	devices.	In	both	cases,	the	networks	are	multi-
access	(like	Ethernet	and	Wi-Fi),	but	as	we	will	see,	their	approach	to	mediating	access	is	quite	different.

To	set	a	little	more	context,	ISPs	(often	a	Telco	or	Cable	company)	often	operate	a	national	backbone,	and	connected
to	the	periphery	of	that	backbone	are	hundreds	or	thousands	of	edge	sites,	each	of	which	serves	a	city	or
neighborhood.	These	edge	sites	are	commonly	called	Central	Offices	in	the	Telco	world	and	Head	Ends	in	the	cable
world,	but	despite	their	names	implying	"centralized"	and	"root	of	the	hierarchy"	these	sites	are	at	the	very	edge	of	the
ISP's	network;	the	ISP-side	of	the	last-mile	that	directly	connects	to	customers.	PON	and	Cellular	access	networks	are
anchored	in	these	facilities.

DSL	is	the	legacy,	copper-based	counterpart	to	PON.	DSL	links	are	also	terminated	in	Telco	Central	Offices,
but	we	do	not	describe	this	technology	since	it	is	being	phased	out.

Passive	Optical	Network
PON	is	the	technology	most	commonly	used	to	deliver	fiber-based	broadband	to	homes	and	businesses.	PON	adopts
a	point-to-multipoint	design,	which	means	the	network	is	structured	as	a	tree,	with	a	single	point	starting	in	the	ISP's
network	and	then	fanning	out	to	reach	up	to	1024	homes.	PON	gets	its	name	from	the	fact	that	the	splitters	are
passive:	they	forward	optical	signals	downstream	and	upstream	without	actively	storing-and-forwarding	frames.	In	this
way,	they	are	the	optical	variant	of	repeaters	used	in	the	classic	Ethernet.	Framing	then	happens	at	the	source	in	the
ISP's	premises,	in	a	device	called	an	Optical	Line	Terminal	(OLT),	and	at	the	end-points	in	individual	homes,	in	a
device	called	an	Optical	Network	Unit	(ONU).

Figure	1	shows	an	example	PON,	simplified	to	depict	just	one	ONU	and	one	OLT.	In	practice,	a	Central	Office	would
include	multiple	OLTs	connecting	to	thousands	of	customer	homes.	For	completeness,	Figure	1	also	includes	two
other	details	about	how	the	PON	is	connected	to	the	ISP's	backbone	(and	hence,	to	the	rest	of	the	Internet).	The	Agg
Switch	aggregates	traffic	from	a	set	of	OLTs,	and	the	BNG	(Broadband	Network	Gateway)	is	a	piece	of	Telco
equipment	that,	among	many	other	things,	meters	Internet	traffic	for	the	sake	of	billing.	As	its	name	implies,	the	BNG
is	effectively	the	gateway	between	the	access	network	(everything	to	the	left	of	the	BNG)	and	the	Internet	(everything
to	the	right	of	the	BNG).

Figure	1.	An	example	PON	that	connects	OLTs	in	the	Central	Office	to
ONUs	in	homes	and	businesses.
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Because	the	splitters	are	passive,	PON	has	to	implement	some	form	of	multi-access	protocol.	The	approach	it	adopts
can	be	summarized	as	follows.	First,	upstream	and	downstream	traffic	are	transmitted	on	two	different	optical
wavelengths,	so	they	are	completely	independent	of	each	other.	Downstream	traffic	starts	at	the	OLT	and	the	signal	is
propagated	down	every	link	in	the	PON.	As	a	consequence,	every	frame	reaches	every	ONU.	This	device	then	looks
at	a	unique	identifier	in	the	individual	frames	sent	over	the	wavelength,	and	either	keeps	the	frame	(if	the	identifier	is
for	it)	or	drops	it	(if	not).	Encryption	is	used	to	keep	ONUs	from	eavesdropping	on	their	neighbors'	traffic.

Upstream	traffic	is	then	time-division	multiplexed	on	the	upstream	wavelength,	with	each	ONU	periodically	getting	a
turn	to	transmit.	Because	the	ONUs	are	distributed	over	a	fairly	wide	area	(measured	in	kilometers)	and	at	different
distances	from	the	OLT,	it	is	not	practical	for	them	to	transmit	based	on	synchronized	clocks,	as	in	SONET.	Instead,
the	ONT	transmits	grants	to	the	individual	ONUs,	giving	them	a	time	interval	during	which	they	can	transmit.	In	other
words,	the	single	OLT	is	responsible	for	centrally	implementing	the	round-robin	sharing	of	the	shared	PON.	This
includes	the	possibility	that	the	OLT	can	grant	each	ONU	a	different	share	of	time,	effectively	implementing	different
levels	of	service.

PON	is	similar	to	Ethernet	in	the	sense	that	it	defines	a	sharing	algorithm	that	has	evolved	over	time	to	accommodate
higher	and	higher	bandwidths.	G-PON	(Gigabit-PON)	is	the	most	widely	deployed	today,	supporting	a	bandwidth	of
2.25-Gbps.	XGS-PON	(10	Gigabit-PON)	is	just	now	starting	to	be	deployed.

Cellular	Network
While	cellular	telephone	technology	had	its	roots	in	analog	voice	communication,	data	services	based	on	cellular
standards	are	now	the	norm,	thanks	in	no	small	part	to	the	increasing	capabilities	of	smartphones.	Like	Wi-Fi,	cellular
networks	transmit	data	at	certain	bandwidths	in	the	radio	spectrum.	Unlike	Wi-Fi,	which	permits	anyone	to	use	a
channel	at	either	2.4	or	5	GHz	(all	you	have	to	do	is	set	up	a	base	station,	as	many	of	us	do	in	our	homes),	exclusive
use	of	various	frequency	bands	have	been	auctioned	off	and	licensed	to	service	providers,	who	in	turn	sell	mobile
access	service	to	their	subscribers.

The	frequency	bands	that	are	used	for	cellular	networks	vary	around	the	world,	and	are	complicated	by	the	fact	that
ISPs	often	simultaneously	support	both	old/legacy	technologies	and	new/next-generation	technologies,	each	of	which
occupies	a	different	frequency	band.	The	high-level	summary	is	that	traditional	cellular	technologies	range	from	700-
MHz	to	2400-MHz,	with	new	mid-spectrum	allocations	now	happening	at	6-GHz	and	millimeter-wave	(mmWave)
allocations	opening	above	24-GHz.	One	interesting	footnote	is	that	there	is	also	an	unlicensed	band	at	3.5-GHz	set
aside	in	North	America,	called	Citizens	Broadband	Radio	Service	(CBRS),	that	anyone	with	a	cellular	radio	can	use.
This	opens	the	door	for	setting	up	private	cellular	networks.

Like	802.11,	cellular	technology	relies	on	the	use	of	base	stations	that	are	connected	to	a	wired	network.	In	the	case
of	the	cellular	network,	the	base	stations	are	often	called	Broadband	Base	Units	(BBU),	the	mobile	devices	that
connect	to	them	are	usually	referred	to	as	User	Equipment	(UE),	and	the	set	of	BBUs	are	anchored	at	an	Evolved
Packet	Core	(EPC)	hosted	in	a	Central	Office.	The	wireless	network	served	by	the	EPC	is	often	called	a	Radio	Access
Network	(RAN).

BBUs	currently	go	by	another	name—Evolved	NodeB,	often	abbreviated	eNodeB	or	eNB—where	NodeB	is
what	the	radio	unit	was	called	in	an	early	incarnation	of	cellular	networks	(and	has	since	evolved).	Given	that
the	cellular	world	continues	to	evolve	at	a	rapid	pace	and	there's	good	reason	to	believe	eNB	will	be	out-of-date
before	long,	we	have	decided	to	use	the	more	generic	and	less	cryptic	BBU.

Figure	2	depicts	one	possible	configuration	of	the	end-to-end	scenario,	with	a	few	additional	bits	of	detail.	The	EPC
has	multiple	subcomponents,	including	an	MME	(Mobility	Management	Entity),	an	HSS	(Home	Subscriber	Server),
and	an	S/PGW	(Session/Packet	Gateway)	pair;	the	first	tracks	and	manages	the	movement	of	UEs	throughout	the
RAN,	the	second	is	a	database	that	contains	subscriber-related	information,	and	the	Gateway	pair	processes	and
forwards	packets	between	the	RAN	and	the	Internet	(it	forms	the	EPC's	user	plane).	We	say	"one	possible
configuration"	because	the	cellular	standards	allow	wide	variability	in	how	many	S/PGWs	a	given	MME	is	responsible
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for,	making	is	possible	for	a	single	MME	to	manage	mobility	across	a	wide	geographic	area	that	is	served	by	multiple
Central	Offices.	Finally,	while	not	explicitly	spelled	out	in	Figure	2,	it	is	sometimes	the	case	that	the	ISP's	PON
network	is	used	to	connect	the	remote	BBUs	back	to	the	Central	Office.

Figure	2.	A	Radio	Access	Network	(RAN)	connecting	a	set	of	cellular
devices	(UEs)	to	an	Evolved	Packet	Core	(EPC)	hosted	in	a	Central	Office.

The	geographic	area	served	by	a	BBU's	antenna	is	called	a	cell.	A	BBU	could	serve	a	single	cell	or	use	multiple
directional	antennas	to	serve	multiple	cells.	Cells	don't	have	crisp	boundaries,	and	they	overlap.	Where	they	overlap,
an	UE	could	potentially	communicate	with	multiple	BBUs.	At	any	time,	however,	the	UE	is	in	communication	with,	and
under	the	control	of,	just	one	BBU.	As	the	device	begins	to	leave	a	cell,	it	moves	into	an	area	of	overlap	with	one	or
more	other	cells.	The	current	BBU	senses	the	weakening	signal	from	the	phone	and	gives	control	of	the	device	to
whichever	base	station	is	receiving	the	strongest	signal	from	it.	If	the	device	is	involved	in	a	call	or	other	network
session	at	the	time,	the	session	must	be	transferred	to	the	new	base	station	in	what	is	called	a	handoff.	The	decision
making	process	for	handoffs	is	under	the	purview	of	the	MME,	which	has	historically	been	a	proprietary	aspect	of	the
cellular	equipment	vendors	(although	open	source	MME	implementations	are	now	starting	to	be	available).

There	have	been	multiple	generations	of	protocols	implementing	the	cellular	network,	colloquially	known	as	1G,	2G,
3G,	and	so	on.	The	first	two	generations	supported	only	voice,	with	3G	defining	the	transition	to	broadband	access,
supporting	data	rates	measured	in	hundreds	of	kilobits-per-second.	Today,	the	industry	is	at	4G	(supporting	data	rates
typically	measured	in	the	few	megabits-per-second)	and	is	in	the	process	of	transitioning	to	5G	(with	the	promise	of	a
tenfold	increase	in	data	rates).

As	of	3G,	the	generational	designation	actually	corresponds	to	a	standard	defined	by	the	3GPP	(3rd	Generation
Partnership	Project).	Even	though	its	name	has	"3G"	in	it,	the	3GPP	continues	to	define	the	standard	for	4G	and	5G,
each	of	which	corresponds	to	a	release	of	the	standard.	Release	15,	which	is	now	published,	is	considered	the
demarcation	point	between	4G	and	5G.	By	another	name,	this	sequence	of	releases	and	generations	is	called	LTE,
which	stands	for	Long-Term	Evolution.	The	main	takeaway	is	that	while	standards	are	published	as	a	sequence	of
discrete	releases,	the	industry	as	a	whole	is	now	on	a	fairly	well-defined	evolutionary	path	known	as	LTE.

The	main	innovation	of	LTE's	air	interface	for	5G	is	the	flexibility	it	provides.	5G	uses	a	hybrid	multiplexing	scheme
called	OFDMA	(Orthogonal	Frequency	Division	Multiple	Access),	which	intuitively	combines	frequency-division
multiplexing	(carving	the	frequency	band	into	multiple	overlapping	sub-channels)	and	time-division	multiplexing
(allocating	one	or	more	sub-channels	to	a	given	UE	for	a	certain	slot	of	time).	OFDMA	also	uses	a	coding	scheme
known	as	LDPC	(Low	Density	Parity	Check)	that	ensures	the	probability	of	inter-symbol	interference	for	transmissions
on	adjacent	sub-channels	is	zero.	Another	way	of	thinking	about	LDPC	is	that	the	way	it	encodes	bits	onto	signals
includes	enough	redundancy	(i.e.,	a	form	of	FEC)	to	ensure	the	receiver	is	able	recover	the	original	data	even	when
signals	overlap.	In	addition,	BBUs	also	have	the	ability	to	increase/decrease	the	power	they	use	to	transmit,	effectively
allowing	them	to	dynamically	change	cell	size.	This	makes	it	possible	to	move	UEs	from	one	cell	to	another	on	the	fly.
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Taken	all	together,	this	gives	the	RAN	three	degrees	of	freedom	(frequency,	time,	power),	which	improves	its	ability	to
squeeze	the	most	capacity	out	of	the	limited	spectrum.	More	importantly,	this	flexibility	provides	opportunities	for	ISPs
to	offer	new	services	to	their	subscribers,	supporting	applications	that	range	from	bandwidth-hungry	video	and
virtual/augmented	reality	to	latency-sensitive	autonomous	cars	and	Internet-of-Things.	The	challenge	of	5G	is	how	to
control	and	best	take	advantage	of	this	flexibility.
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2.9	Broader	Perspective

Race	to	the	Edge

As	we	start	to	explore	how	softwarization	is	transforming	the	network,	we	should	recognize	that	it	is	the	access
network	that	connects	homes,	businesses,	and	mobile	users	to	the	Internet	that	is	undergoing	the	most	radical
change.	The	fiber-to-the-home	and	cellular	networks	described	in	Section	2.8	are	currently	constructed	from	complex
hardware	appliances	(e.g.,	OLTs,	BNGs,	BBUs,	EPCs).	Not	only	have	these	devices	historically	been	closed	and
proprietary,	but	the	vendors	that	sell	them	have	typically	bundled	a	broad	and	diverse	collection	of	functionality	in
each.	As	a	consequence,	they	have	become	expensive	to	build,	complicated	to	operate,	and	slow	to	change.

In	response,	network	operators	are	actively	transitioning	from	these	purpose-built	appliances	to	open	software	running
on	commodity	servers,	switches,	and	access	devices.	This	initiative	is	often	called	CORD,	which	is	an	acronym	for
Central	Office	Re-architected	as	a	Datacenter,	and	as	the	name	suggests,	the	idea	is	to	build	the	Telco	Central	Office
(or	the	Cable	Head	End,	resulting	in	the	acronym	HERD)	using	exactly	the	same	technologies	as	in	the	large
datacenters	that	make	up	the	cloud.

The	motivation	for	operators	to	do	this	is	in	part	to	benefit	from	the	cost	savings	that	come	from	replacing	purpose-
built	appliances	with	commodity	hardware,	but	it	is	mostly	driven	by	the	need	to	accelerate	the	pace	of	innovation.
Their	goal	is	to	enable	new	classes	of	edge	services—e.g.,	Public	Safety,	Autonomous	Vehicles,	Automated
Factories,	Internet-of-Things	(IoT),	Immersive	User	Interfaces—that	benefit	from	low	latency	connectivity	to	end	users,
and	more	importantly,	to	the	increasing	number	of	devices	those	users	surround	themselves	with.	This	results	in	a
multi-tier	cloud	similar	to	the	one	shown	in	Figure	1.

Figure	1.	Emerging	multi-tier	cloud	includes	datacenter-based	public
clouds,	IXP-hosted	distributed	clouds,	and	access-based	edge	clouds,
such	as	CORD.	While	there	are	on	the	order	of	150	IXP-hosted	clouds

worldwide,	we	can	expect	there	to	be	thousands	or	even	tens	of	thousands
of	edge	clouds.

This	is	all	part	of	the	growing	trend	to	move	functionality	out	of	the	datacenter	and	closer	to	the	network	edge,	a	trend
that	puts	cloud	providers	and	network	operators	on	a	collision	course.	Cloud	providers,	in	pursuit	of	low-latency/high-
bandwidth	applications,	are	moving	out	of	the	datacenter	and	towards	the	edge	at	the	same	time	network	operators
are	adopting	the	best	practices	and	technologies	of	the	cloud	to	the	edge	that	already	exists	and	implements	the
access	network.	It’s	impossible	to	say	how	this	will	all	play	out	over	time;	both	industries	have	their	particular
advantages.

On	the	one	hand,	cloud	providers	believe	that	by	saturating	metro	areas	with	edge	clusters	and	abstracting	away	the
access	network,	they	can	build	an	edge	presence	with	low	enough	latency	and	high	enough	bandwidth	to	serve	the
next	generation	of	edge	applications.	In	this	scenario,	the	access	network	remains	a	dumb	bit-pipe,	allowing	cloud
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providers	to	excel	at	what	they	do	best:	run	scalable	cloud	services	on	commodity	hardware.

On	the	other	hand,	network	operators	believe	that	by	building	the	next	generation	access	network	using	cloud
technology,	they	will	be	able	to	co-locate	edge	applications	in	the	access	network.	This	scenario	comes	with	built-in
advantages:	an	existing	and	widely	distributed	physical	footprint,	existing	operational	support,	and	native	support	for
both	mobility	and	guaranteed	service.

While	acknowledging	both	of	these	possibilities,	there	is	a	third	outcome	that	is	not	only	worth	considering,	but	also
worth	working	towards:	the	democratization	of	the	network	edge.	The	idea	is	to	make	the	access-edge	cloud
accessible	to	anyone,	and	not	strictly	the	domain	of	incumbent	cloud	providers	or	network	operators.	There	are	three
reasons	to	be	optimistic	about	this	possibility:

1.	 Hardware	and	software	for	the	access	network	is	becoming	commoditized	and	open.	This	is	a	key	enabler	that
we	were	just	talking	about.	If	it	helps	Telcos	and	CableCos	be	agile,	then	it	can	provide	the	same	value	to
anyone.

2.	 There	is	demand.	Enterprises	in	the	automotive,	factory,	and	warehouse	space	increasingly	want	to	deploy
private	5G	networks	for	a	variety	of	physical	automation	use	cases	(e.g.,	a	garage	where	a	remote	valet	parks
your	car	or	a	factory	floor	making	use	of	automation	robots).

3.	 Spectrum	is	becoming	available.	5G	is	opening	up	for	use	in	an	unlicensed	or	lightly	licensed	model	in	the	US
and	Germany	as	two	prime	examples,	with	other	countries	soon	to	follow.	This	means	5G	should	have	around
100-200	MHz	of	spectrum	available	for	private	use.

In	short,	the	access	network	has	historically	been	the	purview	of	the	Telcos,	CableCos,	and	the	vendors	that	sell	them
proprietary	boxes,	but	the	softwarization	and	virtualization	of	the	access	network	opens	the	door	for	anyone	(from
smart	cities	to	underserved	rural	areas	to	apartment	complexes	to	manufacturing	plants)	to	establish	an	access-edge
cloud	and	connect	it	to	the	public	Internet.	We	expect	it	to	become	as	easy	to	do	this	as	it	is	today	to	deploy	a	WiFi
router.	Doing	so	not	only	brings	the	access-edge	into	new	(edgier)	environments,	but	also	has	the	potential	to	open
the	access	network	to	developers	that	instinctively	go	where	there	are	opportunities	to	innovate.

Broader	Perspective

To	continue	reading	about	the	cloudification	of	the	Internet,	see	Virtual	Networks	All	the	Way	Down.

To	learn	more	about	the	transformation	taking	place	in	access	networks,	we	recommend:

CORD:	Central	Office	Re-architected	as	a	Datacenter.	IEEE	Communications,	October	2016.
Democratizing	the	Network	Edge.	SIGCOMM	CCR,	April	2019.
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Chapter	3:	Internetworking

Nature	seems	...	to	reach	many	of	her	ends	by	long	circuitous	routes.	—Rudolph	Lotze

Problem:	Not	All	Networks	are	Directly	Connected

As	we	have	seen,	there	are	many	technologies	that	can	be	used	to	build	last-mile	links	or	to	connect	a	modest
number	of	nodes	together,	but	how	do	we	build	networks	of	global	scale?	A	single	Ethernet	can	interconnect	no	more
than	1024	hosts;	a	point-to-point	link	connects	only	two.	Wireless	networks	are	limited	by	the	range	of	their	radios.	To
build	a	global	network,	we	need	a	way	to	interconnect	these	different	types	of	links	and	multi-access	networks.	The
concept	of	interconnecting	different	types	of	networks	to	build	a	large,	global	network	is	the	core	idea	of	the	Internet
and	is	often	referred	to	as	internetworking.

We	can	divide	the	internetworking	problem	up	into	a	few	subproblems.	First	of	all,	we	need	a	way	to	interconnect
links.	Devices	that	interconnect	links	of	the	same	type	are	often	called	switches,	or	sometimes	Layer	2	(L2)	switches.
These	devices	are	the	first	topic	of	this	chapter.	A	particularly	important	class	of	L2	switches	in	use	today	are	those
used	to	interconnect	Ethernet	segments.	These	switches	are	also	sometimes	called	bridges.

The	core	job	of	a	switch	is	to	take	packets	that	arrive	on	an	input	and	forward	(or	switch)	them	to	the	right	output	so
that	they	will	reach	their	appropriate	destination.	There	are	a	variety	of	ways	that	the	switch	can	determine	the	"right"
output	for	a	packet,	which	can	be	broadly	categorized	as	connectionless	and	connection-oriented	approaches.	These
two	approaches	have	both	found	important	application	areas	over	the	years.

Given	the	enormous	diversity	of	network	types,	we	also	need	a	way	to	interconnect	disparate	networks	and	links	(i.e.,
deal	with	heterogeneity).	Devices	that	perform	this	task,	once	called	gateways,	are	now	mostly	known	as	routers,	or
alternatively,	Layer	3	(L3)	switches.	The	protocol	that	was	invented	to	deal	with	interconnection	of	disparate	network
types,	the	Internet	Protocol	(IP),	is	the	topic	of	our	second	section.

Once	we	interconnect	a	whole	lot	of	links	and	networks	with	switches	and	routers,	there	are	likely	to	be	many	different
possible	ways	to	get	from	one	point	to	another.	Finding	a	suitable	path	or	route	through	a	network	is	one	of	the
fundamental	problems	of	networking.	Such	paths	should	be	efficient	(e.g.,	no	longer	than	necessary),	loop	free,	and
able	to	respond	to	the	fact	that	networks	are	not	static—nodes	may	fail	or	reboot,	links	may	break,	and	new	nodes	or
links	may	be	added.	Our	third	section	looks	at	some	of	the	algorithms	and	protocols	that	have	been	developed	to
address	these	issues.

Once	we	understand	the	problems	of	switching	and	routing,	we	need	some	devices	to	perform	those	functions.	This
chapter	concludes	with	some	discussion	of	the	ways	switches	and	routers	are	implemented.	While	many	packet
switches	and	routers	are	quite	similar	to	a	general-purpose	computer,	there	are	many	situations	where	more
specialized	designs	are	used.	This	is	particularly	the	case	at	the	high	end,	where	there	seems	to	be	a	never-ending
need	for	more	switching	capacity	that	can	handle	the	ever-increasing	traffic	load	in	the	Internet's	core.
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3.1	Switching	and	Bridging

In	the	simplest	terms,	a	switch	is	a	mechanism	that	allows	us	to	interconnect	links	to	form	a	larger	network.	A	switch	is
a	multi-input,	multi-output	device	that	transfers	packets	from	an	input	to	one	or	more	outputs.	Thus,	a	switch	adds	the
star	topology	(see	Figure	1)	to	the	set	of	possible	network	structures.	A	star	topology	has	several	attractive	properties:

Even	though	a	switch	has	a	fixed	number	of	inputs	and	outputs,	which	limits	the	number	of	hosts	that	can	be
connected	to	a	single	switch,	large	networks	can	be	built	by	interconnecting	a	number	of	switches.

We	can	connect	switches	to	each	other	and	to	hosts	using	point-to-point	links,	which	typically	means	that	we	can
build	networks	of	large	geographic	scope.

Adding	a	new	host	to	the	network	by	connecting	it	to	a	switch	does	not	necessarily	reduce	the	performance	of	the
network	for	other	hosts	already	connected.

Figure	1.	A	switch	provides	a	star	topology.

This	last	claim	cannot	be	made	for	the	shared-media	networks	discussed	in	the	last	chapter.	For	example,	it	is
impossible	for	two	hosts	on	the	same	10-Mbps	Ethernet	segment	to	transmit	continuously	at	10	Mbps	because	they
share	the	same	transmission	medium.	Every	host	on	a	switched	network	has	its	own	link	to	the	switch,	so	it	may	be
entirely	possible	for	many	hosts	to	transmit	at	the	full	link	speed	(bandwidth),	provided	that	the	switch	is	designed	with
enough	aggregate	capacity.	Providing	high	aggregate	throughput	is	one	of	the	design	goals	for	a	switch;	we	return	to
this	topic	later.	In	general,	switched	networks	are	considered	more	scalable	(i.e.,	more	capable	of	growing	to	large
numbers	of	nodes)	than	shared-media	networks	because	of	this	ability	to	support	many	hosts	at	full	speed.

A	switch	is	connected	to	a	set	of	links	and,	for	each	of	these	links,	runs	the	appropriate	data	link	protocol	to
communicate	with	the	node	at	the	other	end	of	the	link.	A	switch's	primary	job	is	to	receive	incoming	packets	on	one	of
its	links	and	to	transmit	them	on	some	other	link.	This	function	is	sometimes	referred	to	as	either	switching	or
forwarding,	and	in	terms	of	the	Open	Systems	Interconnection	(OSI)	architecture,	it	is	the	main	function	of	the	network
layer,	otherwise	known	as	Layer	2.
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The	question,	then,	is	how	does	the	switch	decide	which	output	link	to	place	each	packet	on?	The	general	answer	is
that	it	looks	at	the	header	of	the	packet	for	an	identifier	that	it	uses	to	make	the	decision.	The	details	of	how	it	uses
this	identifier	vary,	but	there	are	two	common	approaches.	The	first	is	the	datagram	or	connectionless	approach.	The
second	is	the	virtual	circuit	or	connection-oriented	approach.	A	third	approach,	source	routing,	is	less	common	than
these	other	two,	but	it	does	have	some	useful	applications.

One	thing	that	is	common	to	all	networks	is	that	we	need	to	have	a	way	to	identify	the	end	nodes.	Such	identifiers	are
usually	called	addresses.	We	have	already	seen	examples	of	addresses,	such	as	the	48-bit	address	used	for
Ethernet.	The	only	requirement	for	Ethernet	addresses	is	that	no	two	nodes	on	a	network	have	the	same	address.
This	is	accomplished	by	making	sure	that	all	Ethernet	cards	are	assigned	a	globally	unique	identifier.	For	the	following
discussion,	we	assume	that	each	host	has	a	globally	unique	address.	Later	on,	we	consider	other	useful	properties
that	an	address	might	have,	but	global	uniqueness	is	adequate	to	get	us	started.

Another	assumption	that	we	need	to	make	is	that	there	is	some	way	to	identify	the	input	and	output	ports	of	each
switch.	There	are	at	least	two	sensible	ways	to	identify	ports:	One	is	to	number	each	port,	and	the	other	is	to	identify
the	port	by	the	name	of	the	node	(switch	or	host)	to	which	it	leads.	For	now,	we	use	numbering	of	the	ports.

Datagrams
The	idea	behind	datagrams	is	incredibly	simple:	You	just	include	in	every	packet	enough	information	to	enable	any
switch	to	decide	how	to	get	it	to	its	destination.	That	is,	every	packet	contains	the	complete	destination	address.
Consider	the	example	network	illustrated	in	Figure	2,	in	which	the	hosts	have	addresses	A,	B,	C,	and	so	on.	To	decide
how	to	forward	a	packet,	a	switch	consults	a	forwarding	table	(sometimes	called	a	routing	table),	an	example	of	which
is	depicted	in	Table	1.	This	particular	table	shows	the	forwarding	information	that	switch	2	needs	to	forward	datagrams
in	the	example	network.	It	is	pretty	easy	to	figure	out	such	a	table	when	you	have	a	complete	map	of	a	simple	network
like	that	depicted	here;	we	could	imagine	a	network	operator	configuring	the	tables	statically.	It	is	a	lot	harder	to	create
the	forwarding	tables	in	large,	complex	networks	with	dynamically	changing	topologies	and	multiple	paths	between
destinations.	That	harder	problem	is	known	as	routing	and	is	the	topic	of	a	later	section.	We	can	think	of	routing	as	a
process	that	takes	place	in	the	background	so	that,	when	a	data	packet	turns	up,	we	will	have	the	right	information	in
the	forwarding	table	to	be	able	to	forward,	or	switch,	the	packet.

Figure	2.	Datagram	forwarding:	an	example	network.
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Table	1.	Forwarding	Table	for	Switch	2.

Destination Port

A 3

B 0

C 3

D 3

E 2

F 1

G 0

H 0

Datagram	networks	have	the	following	characteristics:

A	host	can	send	a	packet	anywhere	at	any	time,	since	any	packet	that	turns	up	at	a	switch	can	be	immediately
forwarded	(assuming	a	correctly	populated	forwarding	table).	For	this	reason,	datagram	networks	are	often	called
connectionless;	this	contrasts	with	the	connection-oriented	networks	described	below,	in	which	some	connection
state	needs	to	be	established	before	the	first	data	packet	is	sent.

When	a	host	sends	a	packet,	it	has	no	way	of	knowing	if	the	network	is	capable	of	delivering	it	or	if	the	destination
host	is	even	up	and	running.

Each	packet	is	forwarded	independently	of	previous	packets	that	might	have	been	sent	to	the	same	destination.
Thus,	two	successive	packets	from	host	A	to	host	B	may	follow	completely	different	paths	(perhaps	because	of	a
change	in	the	forwarding	table	at	some	switch	in	the	network).

A	switch	or	link	failure	might	not	have	any	serious	effect	on	communication	if	it	is	possible	to	find	an	alternate
route	around	the	failure	and	to	update	the	forwarding	table	accordingly.

This	last	fact	is	particularly	important	to	the	history	of	datagram	networks.	One	of	the	important	design	goals	of	the
Internet	is	robustness	to	failures,	and	history	has	shown	it	to	be	quite	effective	at	meeting	this	goal.

Virtual	Circuit	Switching
A	second	technique	for	packet	switching,	which	differs	significantly	from	the	datagram	model,	uses	the	concept	of	a
virtual	circuit	(VC).	This	approach,	which	is	also	referred	to	as	a	connection-oriented	model,	requires	setting	up	a
virtual	connection	from	the	source	host	to	the	destination	host	before	any	data	is	sent.	To	understand	how	this	works,
consider	Figure	3,	where	host	A	again	wants	to	send	packets	to	host	B.	We	can	think	of	this	as	a	two-stage	process.
The	first	stage	is	"connection	setup."	The	second	is	data	transfer.	We	consider	each	in	turn.
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Figure	3.	An	example	of	a	virtual	circuit	network.

In	the	connection	setup	phase,	it	is	necessary	to	establish	a	"connection	state"	in	each	of	the	switches	between	the
source	and	destination	hosts.	The	connection	state	for	a	single	connection	consists	of	an	entry	in	a	"VC	table"	in	each
switch	through	which	the	connection	passes.	One	entry	in	the	VC	table	on	a	single	switch	contains:

A	virtual	circuit	identifier	(VCI)	that	uniquely	identifies	the	connection	at	this	switch	and	which	will	be	carried	inside
the	header	of	the	packets	that	belong	to	this	connection

An	incoming	interface	on	which	packets	for	this	VC	arrive	at	the	switch

An	outgoing	interface	in	which	packets	for	this	VC	leave	the	switch

A	potentially	different	VCI	that	will	be	used	for	outgoing	packets

The	semantics	of	one	such	entry	is	as	follows:	If	a	packet	arrives	on	the	designated	incoming	interface	and	that
packet	contains	the	designated	VCI	value	in	its	header,	then	that	packet	should	be	sent	out	the	specified	outgoing
interface	with	the	specified	outgoing	VCI	value	having	been	first	placed	in	its	header.

Note	that	the	combination	of	the	VCI	of	packets	as	they	are	received	at	the	switch	and	the	interface	on	which	they	are
received	uniquely	identifies	the	virtual	connection.	There	may	of	course	be	many	virtual	connections	established	in	the
switch	at	one	time.	Also,	we	observe	that	the	incoming	and	outgoing	VCI	values	are	generally	not	the	same.	Thus,	the
VCI	is	not	a	globally	significant	identifier	for	the	connection;	rather,	it	has	significance	only	on	a	given	link	(i.e.,	it	has
link-local	scope).

Whenever	a	new	connection	is	created,	we	need	to	assign	a	new	VCI	for	that	connection	on	each	link	that	the
connection	will	traverse.	We	also	need	to	ensure	that	the	chosen	VCI	on	a	given	link	is	not	currently	in	use	on	that	link
by	some	existing	connection.

There	are	two	broad	approaches	to	establishing	connection	state.	One	is	to	have	a	network	administrator	configure
the	state,	in	which	case	the	virtual	circuit	is	"permanent."	Of	course,	it	can	also	be	deleted	by	the	administrator,	so	a
permanent	virtual	circuit	(PVC)	might	best	be	thought	of	as	a	long-lived	or	administratively	configured	VC.
Alternatively,	a	host	can	send	messages	into	the	network	to	cause	the	state	to	be	established.	This	is	referred	to	as
signalling,	and	the	resulting	virtual	circuits	are	said	to	be	switched.	The	salient	characteristic	of	a	switched	virtual
circuit	(SVC)	is	that	a	host	may	set	up	and	delete	such	a	VC	dynamically	without	the	involvement	of	a	network
administrator.	Note	that	an	SVC	should	more	accurately	be	called	a	signalled	VC,	since	it	is	the	use	of	signalling	(not
switching)	that	distinguishes	an	SVC	from	a	PVC.

Let's	assume	that	a	network	administrator	wants	to	manually	create	a	new	virtual	connection	from	host	A	to	host	B.
First,	the	administrator	needs	to	identify	a	path	through	the	network	from	A	to	B.	In	the	example	network	of	Figure	3,
there	is	only	one	such	path,	but	in	general,	this	may	not	be	the	case.	The	administrator	then	picks	a	VCI	value	that	is
currently	unused	on	each	link	for	the	connection.	For	the	purposes	of	our	example,	let's	suppose	that	the	VCI	value	5
is	chosen	for	the	link	from	host	A	to	switch	1,	and	that	11	is	chosen	for	the	link	from	switch	1	to	switch	2.	In	that	case,
switch	1	needs	to	have	an	entry	in	its	VC	table	configured	as	shown	in	Table	2.

Table	2.	Example	Virtual	Circuit	Table	Entry	for	Switch	1.

Incoming	Interface Incoming	VCI Outgoing	Interface Outgoing	VCI

2 5 1 11

Similarly,	suppose	that	the	VCI	of	7	is	chosen	to	identify	this	connection	on	the	link	from	switch	2	to	switch	3	and	that
a	VCI	of	4	is	chosen	for	the	link	from	switch	3	to	host	B.	In	that	case,	switches	2	and	3	need	to	be	configured	with	VC
table	entries	as	shown	in	Table	3.	Note	that	the	"outgoing"	VCI	value	at	one	switch	is	the	"incoming"	VCI	value	at	the
next	switch.

Table	3.	Virtual	Circuit	Table	Entries	for	Switches	2	and	3.
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VC	Table	Entry	at	Switch	2:

Incoming	Interface Incoming	VCI Outgoing	Interface Outgoing	VCI

3 11 2 7

VC	Table	Entry	at	Switch	3:

Incoming	Interface Incoming	VCI Outgoing	Interface Outgoing	VCI

0 7 1 4

Figure	4.	A	packet	is	sent	into	a	virtual	circuit	network.

Once	the	VC	tables	have	been	set	up,	the	data	transfer	phase	can	proceed,	as	illustrated	in	Figure	4.	For	any	packet
that	it	wants	to	send	to	host	B,	A	puts	the	VCI	value	of	5	in	the	header	of	the	packet	and	sends	it	to	switch	1.	Switch	1
receives	any	such	packet	on	interface	2,	and	it	uses	the	combination	of	the	interface	and	the	VCI	in	the	packet	header
to	find	the	appropriate	VC	table	entry.	As	shown	in	Table	2,	the	table	entry	in	this	case	tells	switch	1	to	forward	the
packet	out	of	interface	1	and	to	put	the	VCI	value	11	in	the	header	when	the	packet	is	sent.	Thus,	the	packet	will
arrive	at	switch	2	on	interface	3	bearing	VCI	11.	Switch	2	looks	up	interface	3	and	VCI	11	in	its	VC	table	(as	shown	in
Table	3)	and	sends	the	packet	on	to	switch	3	after	updating	the	VCI	value	in	the	packet	header	appropriately,	as
shown	in	Figure	5.	This	process	continues	until	it	arrives	at	host	B	with	the	VCI	value	of	4	in	the	packet.	To	host	B,	this
identifies	the	packet	as	having	come	from	host	A.

In	real	networks	of	reasonable	size,	the	burden	of	configuring	VC	tables	correctly	in	a	large	number	of	switches	would
quickly	become	excessive	using	the	above	procedures.	Thus,	either	a	network	management	tool	or	some	sort	of
signalling	(or	both)	is	almost	always	used,	even	when	setting	up	"permanent"	VCs.	In	the	case	of	PVCs,	signalling	is
initiated	by	the	network	administrator,	while	SVCs	are	usually	set	up	using	signalling	by	one	of	the	hosts.	We	consider
now	how	the	same	VC	just	described	could	be	set	up	by	signalling	from	the	host.

Figure	5.	A	packet	makes	its	way	through	a	virtual	circuit	network.

To	start	the	signalling	process,	host	A	sends	a	setup	message	into	the	network—that	is,	to	switch	1.	The	setup
message	contains,	among	other	things,	the	complete	destination	address	of	host	B.	The	setup	message	needs	to	get
all	the	way	to	B	to	create	the	necessary	connection	state	in	every	switch	along	the	way.	We	can	see	that	getting	the
setup	message	to	B	is	a	lot	like	getting	a	datagram	to	B,	in	that	the	switches	have	to	know	which	output	to	send	the
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setup	message	to	so	that	it	eventually	reaches	B.	For	now,	let's	just	assume	that	the	switches	know	enough	about	the
network	topology	to	figure	out	how	to	do	that,	so	that	the	setup	message	flows	on	to	switches	2	and	3	before	finally
reaching	host	B.

When	switch	1	receives	the	connection	request,	in	addition	to	sending	it	on	to	switch	2,	it	creates	a	new	entry	in	its
virtual	circuit	table	for	this	new	connection.	This	entry	is	exactly	the	same	as	shown	previously	in	Table	2.	The	main
difference	is	that	now	the	task	of	assigning	an	unused	VCI	value	on	the	interface	is	performed	by	the	switch	for	that
port.	In	this	example,	the	switch	picks	the	value	5.	The	virtual	circuit	table	now	has	the	following	information:	"When
packets	arrive	on	port	2	with	identifier	5,	send	them	out	on	port	1."	Another	issue	is	that,	somehow,	host	A	will	need	to
learn	that	it	should	put	the	VCI	value	of	5	in	packets	that	it	wants	to	send	to	B;	we	will	see	how	that	happens	below.

When	switch	2	receives	the	setup	message,	it	performs	a	similar	process;	in	this	example,	it	picks	the	value	11	as	the
incoming	VCI	value.	Similarly,	switch	3	picks	7	as	the	value	for	its	incoming	VCI.	Each	switch	can	pick	any	number	it
likes,	as	long	as	that	number	is	not	currently	in	use	for	some	other	connection	on	that	port	of	that	switch.	As	noted
above,	VCIs	have	link-local	scope;	that	is,	they	have	no	global	significance.

Finally,	the	setup	message	arrives	as	host	B.	Assuming	that	B	is	healthy	and	willing	to	accept	a	connection	from	host
A,	it	too	allocates	an	incoming	VCI	value,	in	this	case	4.	This	VCI	value	can	be	used	by	B	to	identify	all	packets
coming	from	host	A.

Now,	to	complete	the	connection,	everyone	needs	to	be	told	what	their	downstream	neighbor	is	using	as	the	VCI	for
this	connection.	Host	B	sends	an	acknowledgment	of	the	connection	setup	to	switch	3	and	includes	in	that	message
the	VCI	that	it	chose	(4).	Now	switch	3	can	complete	the	virtual	circuit	table	entry	for	this	connection,	since	it	knows
the	outgoing	value	must	be	4.	Switch	3	sends	the	acknowledgment	on	to	switch	2,	specifying	a	VCI	of	7.	Switch	2
sends	the	message	on	to	switch	1,	specifying	a	VCI	of	11.	Finally,	switch	1	passes	the	acknowledgment	on	to	host	A,
telling	it	to	use	the	VCI	of	5	for	this	connection.

At	this	point,	everyone	knows	all	that	is	necessary	to	allow	traffic	to	flow	from	host	A	to	host	B.	Each	switch	has	a
complete	virtual	circuit	table	entry	for	the	connection.	Furthermore,	host	A	has	a	firm	acknowledgment	that	everything
is	in	place	all	the	way	to	host	B.	At	this	point,	the	connection	table	entries	are	in	place	in	all	three	switches	just	as	in
the	administratively	configured	example	above,	but	the	whole	process	happened	automatically	in	response	to	the
signalling	message	sent	from	A.	The	data	transfer	phase	can	now	begin	and	is	identical	to	that	used	in	the	PVC	case.

When	host	A	no	longer	wants	to	send	data	to	host	B,	it	tears	down	the	connection	by	sending	a	teardown	message	to
switch	1.	The	switch	removes	the	relevant	entry	from	its	table	and	forwards	the	message	on	to	the	other	switches	in
the	path,	which	similarly	delete	the	appropriate	table	entries.	At	this	point,	if	host	A	were	to	send	a	packet	with	a	VCI
of	5	to	switch	1,	it	would	be	dropped	as	if	the	connection	had	never	existed.

There	are	several	things	to	note	about	virtual	circuit	switching:

Since	host	A	has	to	wait	for	the	connection	request	to	reach	the	far	side	of	the	network	and	return	before	it	can
send	its	first	data	packet,	there	is	at	least	one	round-trip	time	(RTT)	of	delay	before	data	is	sent.

While	the	connection	request	contains	the	full	address	for	host	B	(which	might	be	quite	large,	being	a	global
identifier	on	the	network),	each	data	packet	contains	only	a	small	identifier,	which	is	only	unique	on	one	link.
Thus,	the	per-packet	overhead	caused	by	the	header	is	reduced	relative	to	the	datagram	model.	More
importantly,	the	lookup	is	fast	because	the	virtual	circuit	number	can	be	treated	as	an	index	into	a	table	rather
than	as	a	key	that	has	to	be	looked	up.

If	a	switch	or	a	link	in	a	connection	fails,	the	connection	is	broken	and	a	new	one	will	need	to	be	established.
Also,	the	old	one	needs	to	be	torn	down	to	free	up	table	storage	space	in	the	switches.

The	issue	of	how	a	switch	decides	which	link	to	forward	the	connection	request	on	has	been	glossed	over.	In
essence,	this	is	the	same	problem	as	building	up	the	forwarding	table	for	datagram	forwarding,	which	requires
some	sort	of	routing	algorithm.	Routing	is	described	in	a	later	section,	and	the	algorithms	described	there	are
generally	applicable	to	routing	setup	requests	as	well	as	datagrams.
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One	of	the	nice	aspects	of	virtual	circuits	is	that	by	the	time	the	host	gets	the	go-ahead	to	send	data,	it	knows	quite	a
lot	about	the	network—for	example,	that	there	really	is	a	route	to	the	receiver	and	that	the	receiver	is	willing	and	able
to	receive	data.	It	is	also	possible	to	allocate	resources	to	the	virtual	circuit	at	the	time	it	is	established.	For	example,
X.25	(an	early	and	now	largely	obsolete	virtual-circuit-based	networking	technology)	employed	the	following	three-part
strategy:

1.	 Buffers	are	allocated	to	each	virtual	circuit	when	the	circuit	is	initialized.

2.	 The	sliding	window	protocol	is	run	between	each	pair	of	nodes	along	the	virtual	circuit,	and	this	protocol	is
augmented	with	flow	control	to	keep	the	sending	node	from	over-running	the	buffers	allocated	at	the	receiving
node.

3.	 The	circuit	is	rejected	by	a	given	node	if	not	enough	buffers	are	available	at	that	node	when	the	connection
request	message	is	processed.

In	doing	these	three	things,	each	node	is	ensured	of	having	the	buffers	it	needs	to	queue	the	packets	that	arrive	on
that	circuit.	This	basic	strategy	is	usually	called	hop-by-hop	flow	control.

By	comparison,	a	datagram	network	has	no	connection	establishment	phase,	and	each	switch	processes	each	packet
independently,	making	it	less	obvious	how	a	datagram	network	would	allocate	resources	in	a	meaningful	way.
Instead,	each	arriving	packet	competes	with	all	other	packets	for	buffer	space.	If	there	are	no	free	buffers,	the
incoming	packet	must	be	discarded.	We	observe,	however,	that	even	in	a	datagram-based	network	a	source	host
often	sends	a	sequence	of	packets	to	the	same	destination	host.	It	is	possible	for	each	switch	to	distinguish	among
the	set	of	packets	it	currently	has	queued,	based	on	the	source/destination	pair,	and	thus	for	the	switch	to	ensure	that
the	packets	belonging	to	each	source/destination	pair	are	receiving	a	fair	share	of	the	switch's	buffers.

In	the	virtual	circuit	model,	we	could	imagine	providing	each	circuit	with	a	different	quality	of	service	(QoS).	In	this
setting,	the	term	quality	of	service	is	usually	taken	to	mean	that	the	network	gives	the	user	some	kind	of	performance-
related	guarantee,	which	in	turn	implies	that	switches	set	aside	the	resources	they	need	to	meet	this	guarantee.	For
example,	the	switches	along	a	given	virtual	circuit	might	allocate	a	percentage	of	each	outgoing	link's	bandwidth	to
that	circuit.	As	another	example,	a	sequence	of	switches	might	ensure	that	packets	belonging	to	a	particular	circuit	not
be	delayed	(queued)	for	more	than	a	certain	amount	of	time.

There	have	been	a	number	of	successful	examples	of	virtual	circuit	technologies	over	the	years,	notably	X.25,	Frame
Relay,	and	Asynchronous	Transfer	Mode	(ATM).	With	the	success	of	the	Internet's	connectionless	model,	however,
none	of	them	enjoys	great	popularity	today.	One	of	the	most	common	applications	of	virtual	circuits	for	many	years
was	the	construction	of	virtual	private	networks	(VPNs),	a	subject	discussed	in	a	later	section.	Even	that	application	is
now	mostly	supported	using	Internet-based	technologies	today.

Asynchronous	Transfer	Mode	(ATM)

Asynchronous	Transfer	Mode	(ATM)	is	probably	the	most	well-known	virtual	circuit-based	networking	technology,
although	it	is	now	well	past	its	peak	in	terms	of	deployment.	ATM	became	an	important	technology	in	the	1980s	and
early	1990s	for	a	variety	of	reasons,	not	the	least	of	which	is	that	it	was	embraced	by	the	telephone	industry,	which	at
that	point	in	time	was	less	active	in	computer	networks	(other	than	as	a	supplier	of	links	from	which	other	people	built
networks).	ATM	also	happened	to	be	in	the	right	place	at	the	right	time,	as	a	high-speed	switching	technology	that
appeared	on	the	scene	just	when	shared	media	like	Ethernet	and	token	rings	were	starting	to	look	a	bit	too	slow	for
many	users	of	computer	networks.	In	some	ways	ATM	was	a	competing	technology	with	Ethernet	switching,	and	it
was	seen	by	many	as	a	competitor	to	IP	as	well.

Figure	6.	ATM	cell	format	at	the	UNI.
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The	approach	ATM	takes	has	some	interesting	properties,	which	makes	it	worth	examining	a	bit	further.	The	picture	of
the	ATM	packet	format—more	commonly	called	an	ATM	cell—in	Figure	6	will	illustrate	the	main	points.	We'll	skip	the
generic	flow	control	(GFC)	bits,	which	never	saw	much	use,	and	start	with	the	24	bits	that	are	labelled	VPI	(virtual	path
identifier—8	bits)	and	VCI	(virtual	circuit	identifier—16	bits).	If	you	consider	these	bits	together	as	a	single	24-bit	field,
they	correspond	to	the	virtual	circuit	identifier	introduced	above.	The	reason	for	breaking	the	field	into	two	parts	was	to
allow	for	a	level	of	hierarchy:	All	the	circuits	with	the	same	VPI	could,	in	some	cases,	be	treated	as	a	group	(a	virtual
path)	and	could	all	be	switched	together	looking	only	at	the	VPI,	simplifying	the	work	of	a	switch	that	could	ignore	all
the	VCI	bits	and	reducing	the	size	of	the	VC	table	considerably.

Skipping	to	the	last	header	byte	we	find	an	8-bit	cyclic	redundancy	check	(CRC),	known	as	the	header	error	check
(	HEC	).	It	uses	CRC-8	and	provides	error	detection	and	single-bit	error	correction	capability	on	the	cell	header	only.
Protecting	the	cell	header	is	particularly	important	because	an	error	in	the		VCI		will	cause	the	cell	to	be	misdelivered.

Probably	the	most	significant	thing	to	notice	about	the	ATM	cell,	and	the	reason	it	is	called	a	cell	and	not	a	packet,	is
that	it	comes	in	only	one	size:	53	bytes.	What	was	the	reason	for	this?	One	big	reason	was	to	facilitate	the
implementation	of	hardware	switches.	When	ATM	was	being	created	in	the	mid-	and	late	1980s,	10-Mbps	Ethernet
was	the	cutting-edge	technology	in	terms	of	speed.	To	go	much	faster,	most	people	thought	in	terms	of	hardware.
Also,	in	the	telephone	world,	people	think	big	when	they	think	of	switches—telephone	switches	often	serve	tens	of
thousands	of	customers.	Fixed-length	packets	turn	out	to	be	a	very	helpful	thing	if	you	want	to	build	fast,	highly
scalable	switches.	There	are	two	main	reasons	for	this:

1.	 It	is	easier	to	build	hardware	to	do	simple	jobs,	and	the	job	of	processing	packets	is	simpler	when	you	already
know	how	long	each	one	will	be.

2.	 If	all	packets	are	the	same	length,	then	you	can	have	lots	of	switching	elements	all	doing	much	the	same	thing	in
parallel,	each	of	them	taking	the	same	time	to	do	its	job.

This	second	reason,	the	enabling	of	parallelism,	greatly	improves	the	scalability	of	switch	designs.	It	would	be
overstating	the	case	to	say	that	fast	parallel	hardware	switches	can	only	be	built	using	fixed-length	cells.	However,	it	is
certainly	true	that	cells	ease	the	task	of	building	such	hardware	and	that	there	was	a	lot	of	knowledge	available	about
how	to	build	cell	switches	in	hardware	at	the	time	the	ATM	standards	were	being	defined.	As	it	turns	out,	this	same
principle	is	still	applied	in	many	switches	and	routers	today,	even	if	they	deal	in	variable	length	packets—they	cut
those	packets	into	some	sort	of	cell	in	order	to	forward	them	from	input	port	to	output	port,	but	this	is	all	internal	to	the
switch.

There	is	another	good	argument	in	favor	of	small	ATM	cells,	having	to	do	with	end-to-end	latency.	ATM	was	designed
to	carry	both	voice	phone	calls	(the	dominant	use	case	at	the	time)	and	data.	Because	voice	is	low-bandwidth	but	has
strict	delay	requirements,	the	last	thing	you	want	is	for	a	small	voice	packet	queued	behind	a	large	data	packet	at	a
switch.	If	you	force	all	packets	to	be	small	(i.e.,	cell-sized),	then	large	data	packets	can	still	be	supported	by
reassembling	a	set	of	cells	into	a	packet,	and	you	get	the	benefit	of	being	able	to	interleave	the	forwarding	of	voice
cells	and	data	cells	at	every	switch	along	the	path	from	source	to	destination.	This	idea	of	using	small	cells	to	improve
end-to-end	latency	is	alive	and	well	today	in	cellular	access	networks.

Having	decided	to	use	small,	fixed-length	packets,	the	next	question	was	what	is	the	right	length	to	fix	them	at?	If	you
make	them	too	short,	then	the	amount	of	header	information	that	needs	to	be	carried	around	relative	to	the	amount	of
data	that	fits	in	one	cell	gets	larger,	so	the	percentage	of	link	bandwidth	that	is	actually	used	to	carry	data	goes	down.
Even	more	seriously,	if	you	build	a	device	that	processes	cells	at	some	maximum	number	of	cells	per	second,	then	as
cells	get	shorter	the	total	data	rate	drops	in	direct	proportion	to	cell	size.	An	example	of	such	a	device	might	be	a
network	adaptor	that	reassembles	cells	into	larger	units	before	handing	them	up	to	the	host.	The	performance	of	such
a	device	depends	directly	on	cell	size.	On	the	other	hand,	if	you	make	the	cells	too	big,	then	there	is	a	problem	of
wasted	bandwidth	caused	by	the	need	to	pad	transmitted	data	to	fill	a	complete	cell.	If	the	cell	payload	size	is	48	bytes
and	you	want	to	send	1	byte,	you'll	need	to	send	47	bytes	of	padding.	If	this	happens	a	lot,	then	the	utilization	of	the
link	will	be	very	low.	The	combination	of	relatively	high	header-to-payload	ratio	plus	the	frequency	of	sending	partially
filled	cells	did	actually	lead	to	some	noticeable	inefficiency	in	ATM	networks	that	some	detractors	called	the	cell	tax.
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As	it	turns	out,	48	bytes	was	picked	for	the	ATM	cell	payload	as	a	compromise.	There	were	good	arguments	for	both
larger	and	smaller	cells,	and	48	made	almost	no	one	happy—a	power	of	two	would	certainly	have	been	better	for
computers	to	process.

Source	Routing

A	third	approach	to	switching	that	uses	neither	virtual	circuits	nor	conventional	datagrams	is	known	as	source	routing.
The	name	derives	from	the	fact	that	all	the	information	about	network	topology	that	is	required	to	switch	a	packet
across	the	network	is	provided	by	the	source	host.

There	are	various	ways	to	implement	source	routing.	One	would	be	to	assign	a	number	to	each	output	of	each	switch
and	to	place	that	number	in	the	header	of	the	packet.	The	switching	function	is	then	very	simple:	For	each	packet	that
arrives	on	an	input,	the	switch	would	read	the	port	number	in	the	header	and	transmit	the	packet	on	that	output.
However,	since	there	will	in	general	be	more	than	one	switch	in	the	path	between	the	sending	and	the	receiving	host,
the	header	for	the	packet	needs	to	contain	enough	information	to	allow	every	switch	in	the	path	to	determine	which
output	the	packet	needs	to	be	placed	on.	One	way	to	do	this	would	be	to	put	an	ordered	list	of	switch	ports	in	the
header	and	to	rotate	the	list	so	that	the	next	switch	in	the	path	is	always	at	the	front	of	the	list.	Figure	7	illustrates	this
idea.

Figure	7.	Source	routing	in	a	switched	network	(where	the	switch	reads	the
rightmost	number).

In	this	example,	the	packet	needs	to	traverse	three	switches	to	get	from	host	A	to	host	B.	At	switch	1,	it	needs	to	exit
on	port	1,	at	the	next	switch	it	needs	to	exit	at	port	0,	and	at	the	third	switch	it	needs	to	exit	at	port	3.	Thus,	the	original
header	when	the	packet	leaves	host	A	contains	the	list	of	ports	(3,	0,	1),	where	we	assume	that	each	switch	reads	the
rightmost	element	of	the	list.	To	make	sure	that	the	next	switch	gets	the	appropriate	information,	each	switch	rotates
the	list	after	it	has	read	its	own	entry.	Thus,	the	packet	header	as	it	leaves	switch	1	enroute	to	switch	2	is	now	(1,	3,
0);	switch	2	performs	another	rotation	and	sends	out	a	packet	with	(0,	1,	3)	in	the	header.	Although	not	shown,	switch
3	performs	yet	another	rotation,	restoring	the	header	to	what	it	was	when	host	A	sent	it.

There	are	several	things	to	note	about	this	approach.	First,	it	assumes	that	host	A	knows	enough	about	the	topology
of	the	network	to	form	a	header	that	has	all	the	right	directions	in	it	for	every	switch	in	the	path.	This	is	somewhat
analogous	to	the	problem	of	building	the	forwarding	tables	in	a	datagram	network	or	figuring	out	where	to	send	a
setup	packet	in	a	virtual	circuit	network.	In	practice,	however,	it	is	the	first	switch	at	the	ingress	to	the	network	(as
opposed	to	the	end	host	connected	to	that	switch)	that	appends	the	source	route.

Second,	observe	that	we	cannot	predict	how	big	the	header	needs	to	be,	since	it	must	be	able	to	hold	one	word	of
information	for	every	switch	on	the	path.	This	implies	that	headers	are	probably	of	variable	length	with	no	upper
bound,	unless	we	can	predict	with	absolute	certainty	the	maximum	number	of	switches	through	which	a	packet	will
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ever	need	to	pass.

Third,	there	are	some	variations	on	this	approach.	For	example,	rather	than	rotate	the	header,	each	switch	could	just
strip	the	first	element	as	it	uses	it.	Rotation	has	an	advantage	over	stripping,	however:	Host	B	gets	a	copy	of	the
complete	header,	which	may	help	it	figure	out	how	to	get	back	to	host	A.	Yet	another	alternative	is	to	have	the	header
carry	a	pointer	to	the	current	"next	port"	entry,	so	that	each	switch	just	updates	the	pointer	rather	than	rotating	the
header;	this	may	be	more	efficient	to	implement.	We	show	these	three	approaches	in	Figure	8.	In	each	case,	the	entry
that	this	switch	needs	to	read	is		A	,	and	the	entry	that	the	next	switch	needs	to	read	is		B	.

Figure	8.	Three	ways	to	handle	headers	for	source	routing:	(a)	rotation;	(b)
stripping;	(c)	pointer.	The	labels	are	read	right	to	left.

Source	routing	can	be	used	in	both	datagram	networks	and	virtual	circuit	networks.	For	example,	the	Internet
Protocol,	which	is	a	datagram	protocol,	includes	a	source	route	option	that	allows	selected	packets	to	be	source
routed,	while	the	majority	are	switched	as	conventional	datagrams.	Source	routing	is	also	used	in	some	virtual	circuit
networks	as	the	means	to	get	the	initial	setup	request	along	the	path	from	source	to	destination.

Source	routes	are	sometimes	categorized	as	strict	or	loose.	In	a	strict	source	route,	every	node	along	the	path	must
be	specified,	whereas	a	loose	source	route	only	specifies	a	set	of	nodes	to	be	traversed,	without	saying	exactly	how
to	get	from	one	node	to	the	next.	A	loose	source	route	can	be	thought	of	as	a	set	of	waypoints	rather	than	a
completely	specified	route.	The	loose	option	can	be	helpful	to	limit	the	amount	of	information	that	a	source	must
obtain	to	create	a	source	route.	In	any	reasonably	large	network,	it	is	likely	to	be	hard	for	a	host	to	get	the	complete
path	information	it	needs	to	construct	correct	a	strict	source	route	to	any	destination.	But	both	types	of	source	routes
do	find	application	in	certain	scenarios,	as	we	will	see	in	later	chapters.

Bridges	and	L2	Switches
Having	discussed	some	of	the	basic	ideas	behind	switching,	we	now	focus	more	closely	on	some	specific	switching
technologies.	We	begin	by	considering	a	class	of	switch	that	is	used	to	forward	packets	between	LANs	(local	area
networks)	such	as	Ethernets.	Such	switches	are	today	known	as	L2	switches;	historically,	they	have	also	been
referred	to	as	bridges,	and	they	are	very	widely	used	in	campus	and	enterprise	networks.

Suppose	you	have	a	pair	of	Ethernets	that	you	want	to	interconnect.	One	approach	you	might	try	is	to	put	a	repeater
between	them.	This	would	not	be	a	workable	solution,	however,	if	doing	so	exceeded	the	physical	limitations	of	the
Ethernet.	(Recall	that	no	more	than	two	repeaters	between	any	pair	of	hosts	and	no	more	than	a	total	of	2500	m	in
length	are	allowed.)	An	alternative	would	be	to	put	a	node	with	a	pair	of	Ethernet	adaptors	between	the	two	Ethernets
and	have	the	node	forward	frames	from	one	Ethernet	to	the	other.	This	node	would	differ	from	a	repeater,	which
operates	on	bits,	not	frames,	and	just	blindly	copies	the	bits	received	on	one	interface	to	another.	Instead,	this	node
would	fully	implement	the	Ethernet's	collision	detection	and	media	access	protocols	on	each	interface.	Hence,	the
length	and	number-of-host	restrictions	of	the	Ethernet,	which	are	all	about	managing	collisions,	would	not	apply	to	the
combined	pair	of	Ethernets	connected	in	this	way.	This	device	operates	in	promiscuous	mode,	accepting	all	frames
transmitted	on	either	of	the	Ethernets,	and	forwarding	them	to	the	other.

3.1	Switching	and	Bridging

105



The	node	we	have	just	described	is	typically	called	a	bridge,	and	a	collection	of	LANs	connected	by	one	or	more
bridges	is	usually	said	to	form	an	extended	LAN.	In	their	simplest	variants,	bridges	simply	accept	LAN	frames	on	their
inputs	and	forward	them	out	on	all	other	outputs.	This	simple	strategy	was	used	by	early	bridges	but	has	some	pretty
serious	limitations	as	we'll	see	below.	A	number	of	refinements	have	been	added	over	the	years	to	make	bridges	an
effective	mechanism	for	interconnecting	a	set	of	LANs.	The	rest	of	this	section	fills	in	the	more	interesting	details.

Note	that	a	bridge	meets	our	definition	of	a	switch	from	the	previous	section:	a	multi-input,	multi-output	device,	which
transfers	packets	from	an	input	to	one	or	more	outputs.	And	recall	that	this	provides	a	way	to	increase	the	total
bandwidth	of	a	network.	For	example,	while	a	single	Ethernet	segment	might	carry	only	100	Mbps	of	total	traffic,	an
Ethernet	bridge	can	carry	as	much	as	100n	Mbps,	where	n	is	the	number	of	ports	(inputs	and	outputs)	on	the	bridge.

Learning	Bridges

The	first	optimization	we	can	make	to	a	bridge	is	to	observe	that	it	need	not	forward	all	frames	that	it	receives.
Consider	the	bridge	in	Figure	9.	Whenever	a	frame	from	host	A	that	is	addressed	to	host	B	arrives	on	port	1,	there	is
no	need	for	the	bridge	to	forward	the	frame	out	over	port	2.	The	question,	then,	is	how	does	a	bridge	come	to	learn	on
which	port	the	various	hosts	reside?

Figure	9.	Illustration	of	a	learning	bridge.

One	option	would	be	to	have	a	human	download	a	table	into	the	bridge	similar	to	the	one	given	in	Table	4.	Then,
whenever	the	bridge	receives	a	frame	on	port	1	that	is	addressed	to	host	A,	it	would	not	forward	the	frame	out	on	port
2;	there	would	be	no	need	because	host	A	would	have	already	directly	received	the	frame	on	the	LAN	connected	to
port	1.	Anytime	a	frame	addressed	to	host	A	was	received	on	port	2,	the	bridge	would	forward	the	frame	out	on	port	1.

Table	4.	Forwarding	Table	Maintained	by	a	Bridge.

Host Port

A 1

B 1

C 1

X 2

Y 2

Z 2
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No	one	actually	builds	bridges	in	which	the	table	is	configured	by	hand.	Having	a	human	maintain	this	table	is	too
burdensome,	and	there	is	a	simple	trick	by	which	a	bridge	can	learn	this	information	for	itself.	The	idea	is	for	each
bridge	to	inspect	the	source	address	in	all	the	frames	it	receives.	Thus,	when	host	A	sends	a	frame	to	a	host	on	either
side	of	the	bridge,	the	bridge	receives	this	frame	and	records	the	fact	that	a	frame	from	host	A	was	just	received	on
port	1.	In	this	way,	the	bridge	can	build	a	table	just	like	Table	4.

Note	that	a	bridge	using	such	a	table	implements	a	version	of	the	datagram	(or	connectionless)	model	of	forwarding
described	earlier.	Each	packet	carries	a	global	address,	and	the	bridge	decides	which	output	to	send	a	packet	on	by
looking	up	that	address	in	a	table.

When	a	bridge	first	boots,	this	table	is	empty;	entries	are	added	over	time.	Also,	a	timeout	is	associated	with	each
entry,	and	the	bridge	discards	the	entry	after	a	specified	period	of	time.	This	is	to	protect	against	the	situation	in	which
a	host—and,	as	a	consequence,	its	LAN	address—is	moved	from	one	network	to	another.	Thus,	this	table	is	not
necessarily	complete.	Should	the	bridge	receive	a	frame	that	is	addressed	to	a	host	not	currently	in	the	table,	it	goes
ahead	and	forwards	the	frame	out	on	all	the	other	ports.	In	other	words,	this	table	is	simply	an	optimization	that	filters
out	some	frames;	it	is	not	required	for	correctness.

Implementation

The	code	that	implements	the	learning	bridge	algorithm	is	quite	simple,	and	we	sketch	it	here.	Structure		BridgeEntry	
defines	a	single	entry	in	the	bridge's	forwarding	table;	these	are	stored	in	a		Map		structure	(which	supports		mapCreate	,
	mapBind	,	and		mapResolve		operations)	to	enable	entries	to	be	efficiently	located	when	packets	arrive	from	sources
already	in	the	table.	The	constant		MAX_TTL		specifies	how	long	an	entry	is	kept	in	the	table	before	it	is	discarded.

#define	BRIDGE_TAB_SIZE			1024		/*	max	size	of	bridging	table	*/
#define	MAX_TTL											120			/*	time	(in	seconds)	before	an	entry	is	flushed	*/

typedef	struct	{
				MacAddr					destination;				/*	MAC	address	of	a	node	*/
				int									ifnumber;							/*	interface	to	reach	it	*/
				u_short					TTL;												/*	time	to	live	*/
				Binding					binding;								/*	binding	in	the	Map	*/
}	BridgeEntry;

int					numEntries	=	0;
Map					bridgeMap	=	mapCreate(BRIDGE_TAB_SIZE,	sizeof(BridgeEntry));

The	routine	that	updates	the	forwarding	table	when	a	new	packet	arrives	is	given	by		updateTable	.	The	arguments
passed	are	the	source	media	access	control	(MAC)	address	contained	in	the	packet	and	the	interface	number	on
which	it	was	received.	Another	routine,	not	shown	here,	is	invoked	at	regular	intervals,	scans	the	entries	in	the
forwarding	table,	and	decrements	the		TTL		(time	to	live)	field	of	each	entry,	discarding	any	entries	whose		TTL		has
reached	0.	Note	that	the		TTL		is	reset	to		MAX_TTL		every	time	a	packet	arrives	to	refresh	an	existing	table	entry	and	that
the	interface	on	which	the	destination	can	be	reached	is	updated	to	reflect	the	most	recently	received	packet.

void	
updateTable	(MacAddr	src,	int	inif)	
{
				BridgeEntry							*b;

				if	(mapResolve(bridgeMap,	&src,	(void	**)&b)	==	FALSE	)	
				{
								/*	this	address	is	not	in	the	table,	so	try	to	add	it	*/
								if	(numEntries	<	BRIDGE_TAB_SIZE)	
								{
												b	=	NEW(BridgeEntry);
												b->binding	=	mapBind(	bridgeMap,	&src,	b);
												/*	use	source	address	of	packet	as	dest.	address	in	table	*/
												b->destination	=	src;
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												numEntries++;
								}
								else	
								{
												/*	can`t	fit	this	address	in	the	table	now,	so	give	up	*/
												return;
								}
				}
				/*	reset	TTL	and	use	most	recent	input	interface	*/
				b->TTL	=	MAX_TTL;
				b->ifnumber	=	inif;
}

Note	that	this	implementation	adopts	a	simple	strategy	in	the	case	where	the	bridge	table	has	become	full	to	capacity
—it	simply	fails	to	add	the	new	address.	Recall	that	completeness	of	the	bridge	table	is	not	necessary	for	correct
forwarding;	it	just	optimizes	performance.	If	there	is	some	entry	in	the	table	that	is	not	currently	being	used,	it	will
eventually	time	out	and	be	removed,	creating	space	for	a	new	entry.	An	alternative	approach	would	be	to	invoke	some
sort	of	cache	replacement	algorithm	on	finding	the	table	full;	for	example,	we	might	locate	and	remove	the	entry	with
the	smallest	TTL	to	accommodate	the	new	entry.

Figure	10.	Extended	LAN	with	loops.

Spanning	Tree	Algorithm

The	preceding	strategy	works	just	fine	until	the	extended	LAN	has	a	loop	in	it,	in	which	case	it	fails	in	a	horrible	way—
frames	potentially	loop	through	the	extended	LAN	forever.	This	is	easy	to	see	in	the	example	depicted	in	Figure	10,
where,	for	example,	bridges	B1,	B4,	and	B6	form	a	loop.	Suppose	that	a	packet	enters	bridge	B4	from	Ethernet	J	and
that	the	destination	address	is	one	not	yet	in	any	bridge's	forwarding	table:	B4	sends	a	copy	of	the	packet	out	to
Ethernets	H	and	I.	Now	bridge	B6	forwards	the	packet	to	Ethernet	G,	where	B1	would	see	it	and	forward	it	back	to
Ethernet	H;	B4	still	doesn't	have	this	destination	in	its	table,	so	it	forwards	the	packet	back	to	Ethernets	I	and	J.	There
is	nothing	to	stop	this	cycle	from	repeating	endlessly,	with	packets	looping	in	both	directions	among	B1,	B4,	and	B6.

Why	would	an	extended	LAN	come	to	have	a	loop	in	it?	One	possibility	is	that	the	network	is	managed	by	more	than
one	administrator,	for	example,	because	it	spans	multiple	departments	in	an	organization.	In	such	a	setting,	it	is
possible	that	no	single	person	knows	the	entire	configuration	of	the	network,	meaning	that	a	bridge	that	closes	a	loop
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might	be	added	without	anyone	knowing.	A	second,	more	likely	scenario	is	that	loops	are	built	into	the	network	on
purpose—to	provide	redundancy	in	case	of	failure.	After	all,	a	network	with	no	loops	needs	only	one	link	failure	to
become	split	into	two	separate	partitions.

Whatever	the	cause,	bridges	must	be	able	to	correctly	handle	loops.	This	problem	is	addressed	by	having	the	bridges
run	a	distributed	spanning	tree	algorithm.	If	you	think	of	the	extended	LAN	as	being	represented	by	a	graph	that
possibly	has	loops	(cycles),	then	a	spanning	tree	is	a	subgraph	of	this	graph	that	covers	(spans)	all	the	vertices	but
contains	no	cycles.	That	is,	a	spanning	tree	keeps	all	of	the	vertices	of	the	original	graph	but	throws	out	some	of	the
edges.	For	example,	Figure	11	shows	a	cyclic	graph	on	the	left	and	one	of	possibly	many	spanning	trees	on	the	right.

Figure	11.	Example	of	(a)	a	cyclic	graph;	(b)	a	corresponding	spanning
tree.

The	idea	of	a	spanning	tree	is	simple	enough:	It's	a	subset	of	the	actual	network	topology	that	has	no	loops	and	that
reaches	all	the	LANs	in	the	extended	LAN.	The	hard	part	is	how	all	of	the	bridges	coordinate	their	decisions	to	arrive
at	a	single	view	of	the	spanning	tree.	After	all,	one	topology	is	typically	able	to	be	covered	by	multiple	spanning	trees.
The	answer	lies	in	the	spanning	tree	protocol,	which	we'll	describe	now.

The	spanning	tree	algorithm,	which	was	developed	by	Radia	Perlman,	then	at	the	Digital	Equipment	Corporation,	is	a
protocol	used	by	a	set	of	bridges	to	agree	upon	a	spanning	tree	for	a	particular	extended	LAN.	(The	IEEE	802.1
specification	for	LAN	bridges	is	based	on	this	algorithm.)	In	practice,	this	means	that	each	bridge	decides	the	ports
over	which	it	is	and	is	not	willing	to	forward	frames.	In	a	sense,	it	is	by	removing	ports	from	the	topology	that	the
extended	LAN	is	reduced	to	an	acyclic	tree.	It	is	even	possible	that	an	entire	bridge	will	not	participate	in	forwarding
frames,	which	seems	kind	of	strange	at	first	glance.	The	algorithm	is	dynamic,	however,	meaning	that	the	bridges	are
always	prepared	to	reconfigure	themselves	into	a	new	spanning	tree	should	some	bridge	fail,	and	so	those	unused
ports	and	bridges	provide	the	redundant	capacity	needed	to	recover	from	failures.

Representing	an	extended	LAN	as	an	abstract	graph	is	a	bit	awkward.	Basically,	you	let	both	the	bridges	and
the	LANs	correspond	to	the	vertices	of	the	graph	and	the	ports	correspond	to	the	graph's	edges.	However,	the
spanning	tree	we	are	going	to	compute	for	this	graph	needs	to	span	only	those	nodes	that	correspond	to
networks.	It	is	possible	that	nodes	corresponding	to	bridges	will	be	disconnected	from	the	rest	of	the	graph.
This	corresponds	to	a	situation	in	which	all	the	ports	connecting	a	bridge	to	various	networks	get	removed	by
the	algorithm.

The	main	idea	of	the	spanning	tree	is	for	the	bridges	to	select	the	ports	over	which	they	will	forward	frames.	The
algorithm	selects	ports	as	follows.	Each	bridge	has	a	unique	identifier;	for	our	purposes,	we	use	the	labels	B1,	B2,	B3,
and	so	on.	The	algorithm	first	elects	the	bridge	with	the	smallest	ID	as	the	root	of	the	spanning	tree;	exactly	how	this
election	takes	place	is	described	below.	The	root	bridge	always	forwards	frames	out	over	all	of	its	ports.	Next,	each
bridge	computes	the	shortest	path	to	the	root	and	notes	which	of	its	ports	is	on	this	path.	This	port	is	also	selected	as
the	bridge's	preferred	path	to	the	root.	Finally,	all	the	bridges	connected	to	a	given	LAN	elect	a	single	designated
bridge	that	will	be	responsible	for	forwarding	frames	toward	the	root	bridge.	Each	LAN's	designated	bridge	is	the	one
that	is	closest	to	the	root.	If	two	or	more	bridges	are	equally	close	to	the	root,	then	the	bridges`	identifiers	are	used	to
break	ties,	and	the	smallest	ID	wins.	Of	course,	each	bridge	is	connected	to	more	than	one	LAN,	so	it	participates	in
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the	election	of	a	designated	bridge	for	each	LAN	it	is	connected	to.	In	effect,	this	means	that	each	bridge	decides	if	it
is	the	designated	bridge	relative	to	each	of	its	ports.	The	bridge	forwards	frames	over	those	ports	for	which	it	is	the
designated	bridge.

Figure	12.	Spanning	tree	with	some	ports	not	selected.

Figure	12	shows	the	spanning	tree	that	corresponds	to	the	extended	LAN	shown	in	Figure	10.	In	this	example,	B1	is
the	root	bridge,	since	it	has	the	smallest	ID.	Notice	that	both	B3	and	B5	are	connected	to	LAN	A,	but	B5	is	the
designated	bridge	since	it	is	closer	to	the	root.	Similarly,	both	B5	and	B7	are	connected	to	LAN	B,	but	in	this	case	B5
is	the	designated	bridge	since	it	has	the	smaller	ID;	both	are	an	equal	distance	from	B1.

While	it	is	possible	for	a	human	to	look	at	the	extended	LAN	given	in	Figure	10	and	to	compute	the	spanning	tree
given	in	the	Figure	12	according	to	the	rules	given	above,	the	bridges	in	an	extended	LAN	do	not	have	the	luxury	of
being	able	to	see	the	topology	of	the	entire	network,	let	alone	peek	inside	other	bridges	to	see	their	ID.	Instead,	the
bridges	have	to	exchange	configuration	messages	with	each	other	and	then	decide	whether	or	not	they	are	the	root	or
a	designated	bridge	based	on	these	messages.

Specifically,	the	configuration	messages	contain	three	pieces	of	information:

1.	 The	ID	for	the	bridge	that	is	sending	the	message.

2.	 The	ID	for	what	the	sending	bridge	believes	to	be	the	root	bridge.

3.	 The	distance,	measured	in	hops,	from	the	sending	bridge	to	the	root	bridge.

Each	bridge	records	the	current	best	configuration	message	it	has	seen	on	each	of	its	ports	("best"	is	defined	below),
including	both	messages	it	has	received	from	other	bridges	and	messages	that	it	has	itself	transmitted.

Initially,	each	bridge	thinks	it	is	the	root,	and	so	it	sends	a	configuration	message	out	on	each	of	its	ports	identifying
itself	as	the	root	and	giving	a	distance	to	the	root	of	0.	Upon	receiving	a	configuration	message	over	a	particular	port,
the	bridge	checks	to	see	if	that	new	message	is	better	than	the	current	best	configuration	message	recorded	for	that
port.	The	new	configuration	message	is	considered	better	than	the	currently	recorded	information	if	any	of	the
following	is	true:

It	identifies	a	root	with	a	smaller	ID.
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It	identifies	a	root	with	an	equal	ID	but	with	a	shorter	distance.

The	root	ID	and	distance	are	equal,	but	the	sending	bridge	has	a	smaller	ID

If	the	new	message	is	better	than	the	currently	recorded	information,	the	bridge	discards	the	old	information	and
saves	the	new	information.	However,	it	first	adds	1	to	the	distance-to-root	field	since	the	bridge	is	one	hop	farther
away	from	the	root	than	the	bridge	that	sent	the	message.

When	a	bridge	receives	a	configuration	message	indicating	that	it	is	not	the	root	bridge—that	is,	a	message	from	a
bridge	with	a	smaller	ID—the	bridge	stops	generating	configuration	messages	on	its	own	and	instead	only	forwards
configuration	messages	from	other	bridges,	after	first	adding	1	to	the	distance	field.	Likewise,	when	a	bridge	receives
a	configuration	message	that	indicates	it	is	not	the	designated	bridge	for	that	port—that	is,	a	message	from	a	bridge
that	is	closer	to	the	root	or	equally	far	from	the	root	but	with	a	smaller	ID—the	bridge	stops	sending	configuration
messages	over	that	port.	Thus,	when	the	system	stabilizes,	only	the	root	bridge	is	still	generating	configuration
messages,	and	the	other	bridges	are	forwarding	these	messages	only	over	ports	for	which	they	are	the	designated
bridge.	At	this	point,	a	spanning	tree	has	been	built,	and	all	the	bridges	are	in	agreement	on	which	ports	are	in	use	for
the	spanning	tree.	Only	those	ports	may	be	used	for	forwarding	data	packets	in	the	extended	LAN.

Let's	see	how	this	works	with	an	example.	Consider	what	would	happen	in	Figure	12	if	the	power	had	just	been
restored	to	the	building	housing	this	network,	so	that	all	the	bridges	boot	at	about	the	same	time.	All	the	bridges	would
start	off	by	claiming	to	be	the	root.	We	denote	a	configuration	message	from	node	X	in	which	it	claims	to	be	distance	d
from	root	node	Y	as	(Y,d,X).	Focusing	on	the	activity	at	node	B3,	a	sequence	of	events	would	unfold	as	follows:

1.	 B3	receives	(B2,	0,	B2).

2.	 Since	2	<	3,	B3	accepts	B2	as	root.

3.	 B3	adds	one	to	the	distance	advertised	by	B2	(0)	and	thus	sends	(B2,	1,	B3)	toward	B5.

4.	 Meanwhile,	B2	accepts	B1	as	root	because	it	has	the	lower	ID,	and	it	sends	(B1,	1,	B2)	toward	B3.

5.	 B5	accepts	B1	as	root	and	sends	(B1,	1,	B5)	toward	B3.

6.	 B3	accepts	B1	as	root,	and	it	notes	that	both	B2	and	B5	are	closer	to	the	root	than	it	is;	thus,	B3	stops	forwarding
messages	on	both	its	interfaces.

This	leaves	B3	with	both	ports	not	selected,	as	shown	in	Figure	12.

Even	after	the	system	has	stabilized,	the	root	bridge	continues	to	send	configuration	messages	periodically,	and	the
other	bridges	continue	to	forward	these	messages	as	described	in	the	previous	paragraph.	Should	a	particular	bridge
fail,	the	downstream	bridges	will	not	receive	these	configuration	messages,	and	after	waiting	a	specified	period	of	time
they	will	once	again	claim	to	be	the	root,	and	the	algorithm	just	described	will	kick	in	again	to	elect	a	new	root	and	new
designated	bridges.

One	important	thing	to	notice	is	that	although	the	algorithm	is	able	to	reconfigure	the	spanning	tree	whenever	a	bridge
fails,	it	is	not	able	to	forward	frames	over	alternative	paths	for	the	sake	of	routing	around	a	congested	bridge.

Broadcast	and	Multicast

The	preceding	discussion	has	focused	on	how	bridges	forward	unicast	frames	from	one	LAN	to	another.	Since	the
goal	of	a	bridge	is	to	transparently	extend	a	LAN	across	multiple	networks,	and	since	most	LANs	support	both
broadcast	and	multicast,	then	bridges	must	also	support	these	two	features.	Broadcast	is	simple—each	bridge
forwards	a	frame	with	a	destination	broadcast	address	out	on	each	active	(selected)	port	other	than	the	one	on	which
the	frame	was	received.

Multicast	can	be	implemented	in	exactly	the	same	way,	with	each	host	deciding	for	itself	whether	or	not	to	accept	the
message.	This	is	exactly	what	is	done	in	practice.	Notice,	however,	that	since	not	all	the	LANs	in	an	extended	LAN
necessarily	have	a	host	that	is	a	member	of	a	particular	multicast	group,	it	is	possible	to	do	better.	Specifically,	the
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spanning	tree	algorithm	can	be	extended	to	prune	networks	over	which	multicast	frames	need	not	be	forwarded.
Consider	a	frame	sent	to	group	M	by	a	host	on	LAN	A	in	Figure	12.	If	there	is	no	host	on	LAN	J	that	belongs	to	group
M,	then	there	is	no	need	for	bridge	B4	to	forward	the	frames	over	that	network.	On	the	other	hand,	not	having	a	host
on	LAN	H	that	belongs	to	group	M	does	not	necessarily	mean	that	bridge	B1	can	avoid	forwarding	multicast	frames
onto	LAN	H.	It	all	depends	on	whether	or	not	there	are	members	of	group	M	on	LANs	I	and	J.

How	does	a	given	bridge	learn	whether	it	should	forward	a	multicast	frame	over	a	given	port?	It	learns	exactly	the
same	way	that	a	bridge	learns	whether	it	should	forward	a	unicast	frame	over	a	particular	port—by	observing	the
source	addresses	that	it	receives	over	that	port.	Of	course,	groups	are	not	typically	the	source	of	frames,	so	we	have
to	cheat	a	little.	In	particular,	each	host	that	is	a	member	of	group	M	must	periodically	send	a	frame	with	the	address
for	group	M	in	the	source	field	of	the	frame	header.	This	frame	would	have	as	its	destination	address	the	multicast
address	for	the	bridges.

Note	that,	although	the	multicast	extension	just	described	was	once	proposed,	it	was	not	widely	adopted.	Instead,
multicast	is	implemented	in	exactly	the	same	way	as	broadcast	on	today's	extended	LANs.

Limitations	of	Bridges

The	bridge-based	solution	just	described	is	meant	to	be	used	in	only	a	fairly	limited	setting—to	connect	a	handful	of
similar	LANs.	The	main	limitations	of	bridges	become	apparent	when	we	consider	the	issues	of	scale	and
heterogeneity.

On	the	issue	of	scale,	it	is	not	realistic	to	connect	more	than	a	few	LANs	by	means	of	bridges,	where	in	practice	few
typically	means	"tens	of."	One	reason	for	this	is	that	the	spanning	tree	algorithm	scales	linearly;	that	is,	there	is	no
provision	for	imposing	a	hierarchy	on	the	extended	LAN.	A	second	reason	is	that	bridges	forward	all	broadcast
frames.	While	it	is	reasonable	for	all	hosts	within	a	limited	setting	(say,	a	department)	to	see	each	other's	broadcast
messages,	it	is	unlikely	that	all	the	hosts	in	a	larger	environment	(say,	a	large	company	or	university)	would	want	to
have	to	be	bothered	by	each	other's	broadcast	messages.	Said	another	way,	broadcast	does	not	scale,	and	as	a
consequence	extended	LANs	do	not	scale.

One	approach	to	increasing	the	scalability	of	extended	LANs	is	the	virtual	LAN	(VLAN).	VLANs	allow	a	single
extended	LAN	to	be	partitioned	into	several	seemingly	separate	LANs.	Each	virtual	LAN	is	assigned	an	identifier
(sometimes	called	a	color),	and	packets	can	only	travel	from	one	segment	to	another	if	both	segments	have	the	same
identifier.	This	has	the	effect	of	limiting	the	number	of	segments	in	an	extended	LAN	that	will	receive	any	given
broadcast	packet.

Figure	13.	Two	virtual	LANs	share	a	common	backbone.

We	can	see	how	VLANs	work	with	an	example.	Figure	13	shows	four	hosts	on	four	different	LAN	segments.	In	the
absence	of	VLANs,	any	broadcast	packet	from	any	host	will	reach	all	the	other	hosts.	Now	let's	suppose	that	we
define	the	segments	connected	to	hosts	W	and	X	as	being	in	one	VLAN,	which	we'll	call	VLAN	100.	We	also	define
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the	segments	that	connect	to	hosts	Y	and	Z	as	being	in	VLAN	200.	To	do	this,	we	need	to	configure	a	VLAN	ID	on
each	port	of	bridges	B1	and	B2.	The	link	between	B1	and	B2	is	considered	to	be	in	both	VLANs.

When	a	packet	sent	by	host	X	arrives	at	bridge	B2,	the	bridge	observes	that	it	came	in	a	port	that	was	configured	as
being	in	VLAN	100.	It	inserts	a	VLAN	header	between	the	Ethernet	header	and	its	payload.	The	interesting	part	of	the
VLAN	header	is	the	VLAN	ID;	in	this	case,	that	ID	is	set	to	100.	The	bridge	now	applies	its	normal	rules	for	forwarding
to	the	packet,	with	the	extra	restriction	that	the	packet	may	not	be	sent	out	an	interface	that	is	not	part	of	VLAN	100.
Thus,	under	no	circumstances	will	the	packet—even	a	broadcast	packet—be	sent	out	the	interface	to	host	Z,	which	is
in	VLAN	200.	The	packet,	however,	is	forwarded	on	to	bridge	B1,	which	follows	the	same	rules	and	thus	may	forward
the	packet	to	host	W	but	not	to	host	Y.

An	attractive	feature	of	VLANs	is	that	it	is	possible	to	change	the	logical	topology	without	moving	any	wires	or
changing	any	addresses.	For	example,	if	we	wanted	to	make	the	segment	that	connects	to	host	Z	be	part	of	VLAN
100	and	thus	enable	X,	W,	and	Z	to	be	on	the	same	virtual	LAN,	then	we	would	just	need	to	change	one	piece	of
configuration	on	bridge	B2.

On	the	issue	of	heterogeneity,	bridges	are	fairly	limited	in	the	kinds	of	networks	they	can	interconnect.	In	particular,
bridges	make	use	of	the	network's	frame	header	and	so	can	support	only	networks	that	have	exactly	the	same	format
for	addresses.	Thus,	bridges	can	be	used	to	connect	Ethernets	to	Ethernets,	token	rings	to	token	rings,	and	one
802.11	network	to	another.	It's	also	possible	to	put	a	bridge	between,	say,	an	Ethernet	and	an	802.11	network,	since
both	networks	support	the	same	48-bit	address	format.	However,	bridges	do	not	readily	generalize	to	other	kinds	of
networks	with	different	addressing	formats,	such	as	ATM.

Despite	their	limitations,	bridges	are	a	very	important	part	of	the	complete	networking	picture.	Their	main	advantage	is
that	they	allow	multiple	LANs	to	be	transparently	connected;	that	is,	the	networks	can	be	connected	without	the	end
hosts	having	to	run	any	additional	protocols	(or	even	be	aware,	for	that	matter).	The	one	potential	exception	is	when
the	hosts	are	expected	to	announce	their	membership	in	a	multicast	group.

Notice,	however,	that	this	transparency	can	be	dangerous.	If	a	host	or,	more	precisely,	the	application	and	transport
protocol	running	on	that	host	is	programmed	under	the	assumption	that	it	is	running	on	a	single	LAN,	then	inserting
bridges	between	the	source	and	destination	hosts	can	have	unexpected	consequences.	For	example,	if	a	bridge
becomes	congested,	it	may	have	to	drop	frames;	in	contrast,	it	is	rare	that	a	single	Ethernet	ever	drops	a	frame.	As
another	example,	the	latency	between	any	pair	of	hosts	on	an	extended	LAN	becomes	both	larger	and	more	highly
variable;	in	contrast,	the	physical	limitations	of	a	single	Ethernet	make	the	latency	both	small	and	predictable.	As	a
final	example,	it	is	possible	(although	unlikely)	that	frames	will	be	reordered	in	an	extended	LAN;	in	contrast,	frame
order	is	never	shuffled	on	a	single	Ethernet.	The	bottom	line	is	that	it	is	never	safe	to	design	network	software	under
the	assumption	that	it	will	run	over	a	single	Ethernet	segment.	Bridges	happen.
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3.2	Basic	Internetworking

In	the	previous	section,	we	saw	that	it	was	possible	to	build	reasonably	large	LANs	using	bridges	and	LAN	switches,
but	that	such	approaches	were	limited	in	their	ability	to	scale	and	to	handle	heterogeneity.	In	this	section,	we	explore
some	ways	to	go	beyond	the	limitations	of	bridged	networks,	enabling	us	to	build	large,	highly	heterogeneous
networks	with	reasonably	efficient	routing.	We	refer	to	such	networks	as	internetworks.	We'll	continue	the	discussion
of	how	to	build	a	truly	global	internetwork	in	the	next	chapter,	but	for	now	we'll	explore	the	basics.	We	start	by
considering	more	carefully	what	the	word	internetwork	means.

What	Is	an	Internetwork?

We	use	the	term	internetwork,	or	sometimes	just	internet	with	a	lowercase	i,	to	refer	to	an	arbitrary	collection	of
networks	interconnected	to	provide	some	sort	of	host-to-host	packet	delivery	service.	For	example,	a	corporation	with
many	sites	might	construct	a	private	internetwork	by	interconnecting	the	LANs	at	their	different	sites	with	point-to-point
links	leased	from	the	phone	company.	When	we	are	talking	about	the	widely	used	global	internetwork	to	which	a	large
percentage	of	networks	are	now	connected,	we	call	it	the	Internet	with	a	capital	I.	In	keeping	with	the	first-principles
approach	of	this	book,	we	mainly	want	you	to	learn	about	the	principles	of	"lowercase	i"	internetworking,	but	we
illustrate	these	ideas	with	real-world	examples	from	the	"big	I"	Internet.

Another	piece	of	terminology	that	can	be	confusing	is	the	difference	between	networks,	subnetworks,	and
internetworks.	We	are	going	to	avoid	subnetworks	(or	subnets)	altogether	until	a	later	section.	For	now,	we	use
network	to	mean	either	a	directly	connected	or	a	switched	network	of	the	kind	described	in	the	previous	section	and
the	previous	chapter.	Such	a	network	uses	one	technology,	such	as	802.11	or	Ethernet.	An	internetwork	is	an
interconnected	collection	of	such	networks.	Sometimes,	to	avoid	ambiguity,	we	refer	to	the	underlying	networks	that
we	are	interconnecting	as	physical	networks.	An	internet	is	a	logical	network	built	out	of	a	collection	of	physical
networks.	In	this	context,	a	collection	of	Ethernet	segments	connected	by	bridges	or	switches	would	still	be	viewed	as
a	single	network.

Figure	1.	A	simple	internetwork.	H	denotes	a	host	and	R	denotes	a	router.
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Figure	1	shows	an	example	internetwork.	An	internetwork	is	often	referred	to	as	a	"network	of	networks"	because	it	is
made	up	of	lots	of	smaller	networks.	In	this	figure,	we	see	Ethernets,	a	wireless	network,	and	a	point-to-point	link.
Each	of	these	is	a	single-technology	network.	The	nodes	that	interconnect	the	networks	are	called	routers.	They	are
also	sometimes	called	gateways,	but	since	this	term	has	several	other	connotations,	we	restrict	our	usage	to	router.

Figure	2.	A	simple	internetwork,	showing	the	protocol	layers	used	to
connect	H5	to	H8	in	the	above	figure.	ETH	is	the	protocol	that	runs	over	the

Ethernet.

The	Internet	Protocol	is	the	key	tool	used	today	to	build	scalable,	heterogeneous	internetworks.	It	was	originally
known	as	the	Kahn-Cerf	protocol	after	its	inventors.	One	way	to	think	of	IP	is	that	it	runs	on	all	the	nodes	(both	hosts
and	routers)	in	a	collection	of	networks	and	defines	the	infrastructure	that	allows	these	nodes	and	networks	to	function
as	a	single	logical	internetwork.	For	example,	Figure	2	shows	how	hosts	H5	and	H8	are	logically	connected	by	the
internet	in	Figure	1,	including	the	protocol	graph	running	on	each	node.	Note	that	higher-level	protocols,	such	as	TCP
and	UDP,	typically	run	on	top	of	IP	on	the	hosts.

The	rest	of	this	and	the	next	chapter	are	about	various	aspects	of	IP.	While	it	is	certainly	possible	to	build	an
internetwork	that	does	not	use	IP—and	in	fact,	in	the	early	days	of	the	Internet	there	were	alternative	solutions—IP	is
the	most	interesting	case	to	study	simply	because	of	the	size	of	the	Internet.	Said	another	way,	it	is	only	the	IP
Internet	that	has	really	faced	the	issue	of	scale.	Thus,	it	provides	the	best	case	study	of	a	scalable	internetworking
protocol.

Service	Model

A	good	place	to	start	when	you	build	an	internetwork	is	to	define	its	service	model,	that	is,	the	host-to-host	services
you	want	to	provide.	The	main	concern	in	defining	a	service	model	for	an	internetwork	is	that	we	can	provide	a	host-
to-host	service	only	if	this	service	can	somehow	be	provided	over	each	of	the	underlying	physical	networks.	For
example,	it	would	be	no	good	deciding	that	our	internetwork	service	model	was	going	to	provide	guaranteed	delivery
of	every	packet	in	1	ms	or	less	if	there	were	underlying	network	technologies	that	could	arbitrarily	delay	packets.	The
philosophy	used	in	defining	the	IP	service	model,	therefore,	was	to	make	it	undemanding	enough	that	just	about	any
network	technology	that	might	turn	up	in	an	internetwork	would	be	able	to	provide	the	necessary	service.

The	IP	service	model	can	be	thought	of	as	having	two	parts:	an	addressing	scheme,	which	provides	a	way	to	identify
all	hosts	in	the	internetwork,	and	a	datagram	(connectionless)	model	of	data	delivery.	This	service	model	is
sometimes	called	best	effort	because,	although	IP	makes	every	effort	to	deliver	datagrams,	it	makes	no	guarantees.
We	postpone	a	discussion	of	the	addressing	scheme	for	now	and	look	first	at	the	data	delivery	model.

Datagram	Delivery

The	IP	datagram	is	fundamental	to	the	Internet	Protocol.	Recall	an	earlier	section	that	a	datagram	is	a	type	of	packet
that	happens	to	be	sent	in	a	connectionless	manner	over	a	network.	Every	datagram	carries	enough	information	to	let
the	network	forward	the	packet	to	its	correct	destination;	there	is	no	need	for	any	advance	setup	mechanism	to	tell	the
network	what	to	do	when	the	packet	arrives.	You	just	send	it,	and	the	network	makes	its	best	effort	to	get	it	to	the
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desired	destination.	The	"best-effort"	part	means	that	if	something	goes	wrong	and	the	packet	gets	lost,	corrupted,
misdelivered,	or	in	any	way	fails	to	reach	its	intended	destination,	the	network	does	nothing—it	made	its	best	effort,
and	that	is	all	it	has	to	do.	It	does	not	make	any	attempt	to	recover	from	the	failure.	This	is	sometimes	called	an
unreliable	service.

Best-effort,	connectionless	service	is	about	the	simplest	service	you	could	ask	for	from	an	internetwork,	and	this	is	a
great	strength.	For	example,	if	you	provide	best-effort	service	over	a	network	that	provides	a	reliable	service,	then
that's	fine—you	end	up	with	a	best-effort	service	that	just	happens	to	always	deliver	the	packets.	If,	on	the	other	hand,
you	had	a	reliable	service	model	over	an	unreliable	network,	you	would	have	to	put	lots	of	extra	functionality	into	the
routers	to	make	up	for	the	deficiencies	of	the	underlying	network.	Keeping	the	routers	as	simple	as	possible	was	one
of	the	original	design	goals	of	IP.

The	ability	of	IP	to	"run	over	anything"	is	frequently	cited	as	one	of	its	most	important	characteristics.	It	is	noteworthy
that	many	of	the	technologies	over	which	IP	runs	today	did	not	exist	when	IP	was	invented.	So	far,	no	networking
technology	has	been	invented	that	has	proven	too	bizarre	for	IP;	in	principle,	IP	can	run	over	a	network	that	transports
messages	using	carrier	pigeons.

Best-effort	delivery	does	not	just	mean	that	packets	can	get	lost.	Sometimes	they	can	get	delivered	out	of	order,	and
sometimes	the	same	packet	can	get	delivered	more	than	once.	The	higher-level	protocols	or	applications	that	run
above	IP	need	to	be	aware	of	all	these	possible	failure	modes.

Packet	Format

Clearly,	a	key	part	of	the	IP	service	model	is	the	type	of	packets	that	can	be	carried.	The	IP	datagram,	like	most
packets,	consists	of	a	header	followed	by	a	number	of	bytes	of	data.	The	format	of	the	header	is	shown	in	Figure	3.
Note	that	we	have	adopted	a	different	style	of	representing	packets	than	the	one	we	used	in	previous	chapters.	This	is
because	packet	formats	at	the	internetworking	layer	and	above,	where	we	will	be	focusing	our	attention	for	the	next
few	chapters,	are	almost	invariably	designed	to	align	on	32-bit	boundaries	to	simplify	the	task	of	processing	them	in
software.	Thus,	the	common	way	of	representing	them	(used	in	Internet	Requests	for	Comments,	for	example)	is	to
draw	them	as	a	succession	of	32-bit	words.	The	top	word	is	the	one	transmitted	first,	and	the	leftmost	byte	of	each
word	is	the	one	transmitted	first.	In	this	representation,	you	can	easily	recognize	fields	that	are	a	multiple	of	8	bits
long.	On	the	odd	occasion	when	fields	are	not	an	even	multiple	of	8	bits,	you	can	determine	the	field	lengths	by
looking	at	the	bit	positions	marked	at	the	top	of	the	packet.

Figure	3.	IPv4	packet	header.
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Looking	at	each	field	in	the	IP	header,	we	see	that	the	"simple"	model	of	best-effort	datagram	delivery	still	has	some
subtle	features.	The		Version		field	specifies	the	version	of	IP.	The	still-assumed	version	of	IP	is	4,	which	is	typically
called	IPv4.	Observe	that	putting	this	field	right	at	the	start	of	the	datagram	makes	it	easy	for	everything	else	in	the
packet	format	to	be	redefined	in	subsequent	versions;	the	header	processing	software	starts	off	by	looking	at	the
version	and	then	branches	off	to	process	the	rest	of	the	packet	according	to	the	appropriate	format.	The	next	field,
	HLen	,	specifies	the	length	of	the	header	in	32-bit	words.	When	there	are	no	options,	which	is	most	of	the	time,	the
header	is	5	words	(20	bytes)	long.	The	8-bit		TOS		(type	of	service)	field	has	had	a	number	of	different	definitions	over
the	years,	but	its	basic	function	is	to	allow	packets	to	be	treated	differently	based	on	application	needs.	For	example,
the		TOS		value	might	determine	whether	or	not	a	packet	should	be	placed	in	a	special	queue	that	receives	low	delay.

The	next	16	bits	of	the	header	contain	the		Length		of	the	datagram,	including	the	header.	Unlike	the		HLen		field,	the
	Length		field	counts	bytes	rather	than	words.	Thus,	the	maximum	size	of	an	IP	datagram	is	65,535	bytes.	The	physical
network	over	which	IP	is	running,	however,	may	not	support	such	long	packets.	For	this	reason,	IP	supports	a
fragmentation	and	reassembly	process.	The	second	word	of	the	header	contains	information	about	fragmentation,	and
the	details	of	its	use	are	presented	in	the	following	section	entitled	"Fragmentation	and	Reassembly."

Moving	on	to	the	third	word	of	the	header,	the	next	byte	is	the		TTL		(time	to	live)	field.	Its	name	reflects	its	historical
meaning	rather	than	the	way	it	is	commonly	used	today.	The	intent	of	the	field	is	to	catch	packets	that	have	been
going	around	in	routing	loops	and	discard	them,	rather	than	let	them	consume	resources	indefinitely.	Originally,		TTL	
was	set	to	a	specific	number	of	seconds	that	the	packet	would	be	allowed	to	live,	and	routers	along	the	path	would
decrement	this	field	until	it	reached	0.	However,	since	it	was	rare	for	a	packet	to	sit	for	as	long	as	1	second	in	a	router,
and	routers	did	not	all	have	access	to	a	common	clock,	most	routers	just	decremented	the		TTL		by	1	as	they
forwarded	the	packet.	Thus,	it	became	more	of	a	hop	count	than	a	timer,	which	is	still	a	perfectly	good	way	to	catch
packets	that	are	stuck	in	routing	loops.	One	subtlety	is	in	the	initial	setting	of	this	field	by	the	sending	host:	Set	it	too
high	and	packets	could	circulate	rather	a	lot	before	getting	dropped;	set	it	too	low	and	they	may	not	reach	their
destination.	The	value	64	is	the	current	default.

The		Protocol		field	is	simply	a	demultiplexing	key	that	identifies	the	higher-level	protocol	to	which	this	IP	packet	should
be	passed.	There	are	values	defined	for	the	TCP	(Transmission	Control	Protocol—6),	UDP	(User	Datagram	Protocol
—17),	and	many	other	protocols	that	may	sit	above	IP	in	the	protocol	graph.

The		Checksum		is	calculated	by	considering	the	entire	IP	header	as	a	sequence	of	16-bit	words,	adding	them	up	using
ones'	complement	arithmetic,	and	taking	the	ones'	complement	of	the	result.	Thus,	if	any	bit	in	the	header	is	corrupted
in	transit,	the	checksum	will	not	contain	the	correct	value	upon	receipt	of	the	packet.	Since	a	corrupted	header	may
contain	an	error	in	the	destination	address—and,	as	a	result,	may	have	been	misdelivered—it	makes	sense	to	discard
any	packet	that	fails	the	checksum.	It	should	be	noted	that	this	type	of	checksum	does	not	have	the	same	strong	error
detection	properties	as	a	CRC,	but	it	is	much	easier	to	calculate	in	software.

The	last	two	required	fields	in	the	header	are	the		SourceAddr		and	the		DestinationAddr		for	the	packet.	The	latter	is	the
key	to	datagram	delivery:	Every	packet	contains	a	full	address	for	its	intended	destination	so	that	forwarding	decisions
can	be	made	at	each	router.	The	source	address	is	required	to	allow	recipients	to	decide	if	they	want	to	accept	the
packet	and	to	enable	them	to	reply.	IP	addresses	are	discussed	in	a	later	section—for	now,	the	important	thing	to
know	is	that	IP	defines	its	own	global	address	space,	independent	of	whatever	physical	networks	it	runs	over.	As	we
will	see,	this	is	one	of	the	keys	to	supporting	heterogeneity.

Finally,	there	may	be	a	number	of	options	at	the	end	of	the	header.	The	presence	or	absence	of	options	may	be
determined	by	examining	the	header	length	(	HLen	)	field.	While	options	are	used	fairly	rarely,	a	complete	IP
implementation	must	handle	them	all.

Fragmentation	and	Reassembly

One	of	the	problems	of	providing	a	uniform	host-to-host	service	model	over	a	heterogeneous	collection	of	networks	is
that	each	network	technology	tends	to	have	its	own	idea	of	how	large	a	packet	can	be.	For	example,	classic	Ethernet
can	accept	packets	up	to	1500	bytes	long,	but	modern-day	variants	can	deliver	larger	(jumbo)	packets	that	carry	up	to
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9000	bytes	of	payload.	This	leaves	two	choices	for	the	IP	service	model:	Make	sure	that	all	IP	datagrams	are	small
enough	to	fit	inside	one	packet	on	any	network	technology,	or	provide	a	means	by	which	packets	can	be	fragmented
and	reassembled	when	they	are	too	big	to	go	over	a	given	network	technology.	The	latter	turns	out	to	be	a	good
choice,	especially	when	you	consider	the	fact	that	new	network	technologies	are	always	turning	up,	and	IP	needs	to
run	over	all	of	them;	this	would	make	it	hard	to	pick	a	suitably	small	bound	on	datagram	size.	This	also	means	that	a
host	will	not	send	needlessly	small	packets,	which	wastes	bandwidth	and	consumes	processing	resources	by
requiring	more	headers	per	byte	of	data	sent.

The	central	idea	here	is	that	every	network	type	has	a	maximum	transmission	unit	(MTU),	which	is	the	largest	IP
datagram	that	it	can	carry	in	a	frame.	Note	that	this	value	is	smaller	than	the	largest	packet	size	on	that	network
because	the	IP	datagram	needs	to	fit	in	the	payload	of	the	link-layer	frame.

In	ATM	networks,	the	MTU	is,	fortunately,	much	larger	than	a	single	cell,	as	ATM	has	its	own	fragmentation
mechanisms.	The	link-layer	frame	in	ATM	is	called	a	convergence-sublayer	protocol	data	unit	(CS-PDU).

When	a	host	sends	an	IP	datagram,	therefore,	it	can	choose	any	size	that	it	wants.	A	reasonable	choice	is	the	MTU	of
the	network	to	which	the	host	is	directly	attached.	Then,	fragmentation	will	only	be	necessary	if	the	path	to	the
destination	includes	a	network	with	a	smaller	MTU.	Should	the	transport	protocol	that	sits	on	top	of	IP	give	IP	a	packet
larger	than	the	local	MTU,	however,	then	the	source	host	must	fragment	it.

Fragmentation	typically	occurs	in	a	router	when	it	receives	a	datagram	that	it	wants	to	forward	over	a	network	that	has
an	MTU	that	is	smaller	than	the	received	datagram.	To	enable	these	fragments	to	be	reassembled	at	the	receiving
host,	they	all	carry	the	same	identifier	in	the		Ident		field.	This	identifier	is	chosen	by	the	sending	host	and	is	intended
to	be	unique	among	all	the	datagrams	that	might	arrive	at	the	destination	from	this	source	over	some	reasonable	time
period.	Since	all	fragments	of	the	original	datagram	contain	this	identifier,	the	reassembling	host	will	be	able	to
recognize	those	fragments	that	go	together.	Should	all	the	fragments	not	arrive	at	the	receiving	host,	the	host	gives	up
on	the	reassembly	process	and	discards	the	fragments	that	did	arrive.	IP	does	not	attempt	to	recover	from	missing
fragments.

Figure	4.	IP	datagrams	traversing	the	sequence	of	physical	networks
graphed	in	the	earlier	figure.

To	see	what	this	all	means,	consider	what	happens	when	host	H5	sends	a	datagram	to	host	H8	in	the	example
internet	shown	in	Figure	1.	Assuming	that	the	MTU	is	1500	bytes	for	the	two	Ethernets	and	the	802.11	network,	and
532	bytes	for	the	point-to-point	network,	then	a	1420-byte	datagram	(20-byte	IP	header	plus	1400	bytes	of	data)	sent
from	H5	makes	it	across	the	802.11	network	and	the	first	Ethernet	without	fragmentation	but	must	be	fragmented	into
three	datagrams	at	router	R2.	These	three	fragments	are	then	forwarded	by	router	R3	across	the	second	Ethernet	to
the	destination	host.	This	situation	is	illustrated	in	Figure	4.	This	figure	also	serves	to	reinforce	two	important	points:

1.	 Each	fragment	is	itself	a	self-contained	IP	datagram	that	is	transmitted	over	a	sequence	of	physical	networks,
independent	of	the	other	fragments.

2.	 Each	IP	datagram	is	re-encapsulated	for	each	physical	network	over	which	it	travels.
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Figure	5.	Header	fields	used	in	IP	fragmentation:	(a)	unfragmented	packet;
(b)	fragmented	packets.

The	fragmentation	process	can	be	understood	in	detail	by	looking	at	the	header	fields	of	each	datagram,	as	is	done	in
Figure	5.	The	unfragmented	packet,	shown	at	the	top,	has	1400	bytes	of	data	and	a	20-byte	IP	header.	When	the
packet	arrives	at	router	R2,	which	has	an	MTU	of	532	bytes,	it	has	to	be	fragmented.	A	532-byte	MTU	leaves	512
bytes	for	data	after	the	20-byte	IP	header,	so	the	first	fragment	contains	512	bytes	of	data.	The	router	sets	the	M	bit	in
the		Flags		field	(see	Figure	3),	meaning	that	there	are	more	fragments	to	follow,	and	it	sets	the		Offset		to	0,	since	this
fragment	contains	the	first	part	of	the	original	datagram.	The	data	carried	in	the	second	fragment	starts	with	the	513th
byte	of	the	original	data,	so	the		Offset		field	in	this	header	is	set	to	64,	which	is	512/8.	Why	the	division	by	8?
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Because	the	designers	of	IP	decided	that	fragmentation	should	always	happen	on	8-byte	boundaries,	which	means
that	the		Offset		field	counts	8-byte	chunks,	not	bytes.	(We	leave	it	as	an	exercise	for	you	to	figure	out	why	this	design
decision	was	made.)	The	third	fragment	contains	the	last	376	bytes	of	data,	and	the	offset	is	now	2	×	512/8	=	128.
Since	this	is	the	last	fragment,	the	M	bit	is	not	set.

Observe	that	the	fragmentation	process	is	done	in	such	a	way	that	it	could	be	repeated	if	a	fragment	arrived	at
another	network	with	an	even	smaller	MTU.	Fragmentation	produces	smaller,	valid	IP	datagrams	that	can	be	readily
reassembled	into	the	original	datagram	upon	receipt,	independent	of	the	order	of	their	arrival.	Reassembly	is	done	at
the	receiving	host	and	not	at	each	router.

IP	reassembly	is	far	from	a	simple	process.	For	example,	if	a	single	fragment	is	lost,	the	receiver	will	still	attempt	to
reassemble	the	datagram,	and	it	will	eventually	give	up	and	have	to	garbage-collect	the	resources	that	were	used	to
perform	the	failed	reassembly.	Getting	a	host	to	tie	up	resources	needlessly	can	be	the	basis	of	a	denial-of-service
attack.

For	this	reason,	among	others,	IP	fragmentation	is	generally	considered	a	good	thing	to	avoid.	Hosts	are	now	strongly
encouraged	to	perform	"path	MTU	discovery,"	a	process	by	which	fragmentation	is	avoided	by	sending	packets	that
are	small	enough	to	traverse	the	link	with	the	smallest	MTU	in	the	path	from	sender	to	receiver.

Global	Addresses

In	the	above	discussion	of	the	IP	service	model,	we	mentioned	that	one	of	the	things	that	it	provides	is	an	addressing
scheme.	After	all,	if	you	want	to	be	able	to	send	data	to	any	host	on	any	network,	there	needs	to	be	a	way	of
identifying	all	the	hosts.	Thus,	we	need	a	global	addressing	scheme—one	in	which	no	two	hosts	have	the	same
address.	Global	uniqueness	is	the	first	property	that	should	be	provided	in	an	addressing	scheme.

Ethernet	addresses	are	globally	unique,	but	that	alone	does	not	suffice	for	an	addressing	scheme	in	a	large
internetwork.	Ethernet	addresses	are	also	flat,	which	means	that	they	have	no	structure	and	provide	very	few	clues	to
routing	protocols.	(In	fact,	Ethernet	addresses	do	have	a	structure	for	the	purposes	of	assignment—the	first	24	bits
identify	the	manufacturer—but	this	provides	no	useful	information	to	routing	protocols	since	this	structure	has	nothing
to	do	with	network	topology.)	In	contrast,	IP	addresses	are	hierarchical,	by	which	we	mean	that	they	are	made	up	of
several	parts	that	correspond	to	some	sort	of	hierarchy	in	the	internetwork.	Specifically,	IP	addresses	consist	of	two
parts,	usually	referred	to	as	a	network	part	and	a	host	part.	This	is	a	fairly	logical	structure	for	an	internetwork,	which	is
made	up	of	many	interconnected	networks.	The	network	part	of	an	IP	address	identifies	the	network	to	which	the	host
is	attached;	all	hosts	attached	to	the	same	network	have	the	same	network	part	in	their	IP	address.	The	host	part	then
identifies	each	host	uniquely	on	that	particular	network.	Thus,	in	the	simple	internetwork	of	Figure	1,	the	addresses	of
the	hosts	on	network	1,	for	example,	would	all	have	the	same	network	part	and	different	host	parts.

Note	that	the	routers	in	Figure	1	are	attached	to	two	networks.	They	need	to	have	an	address	on	each	network,	one
for	each	interface.	For	example,	router	R1,	which	sits	between	the	wireless	network	and	an	Ethernet,	has	an	IP
address	on	the	interface	to	the	wireless	network	whose	network	part	is	the	same	as	all	the	hosts	on	that	network.	It
also	has	an	IP	address	on	the	interface	to	the	Ethernet	that	has	the	same	network	part	as	the	hosts	on	that	Ethernet.
Thus,	bearing	in	mind	that	a	router	might	be	implemented	as	a	host	with	two	network	interfaces,	it	is	more	precise	to
think	of	IP	addresses	as	belonging	to	interfaces	than	to	hosts.

Now,	what	do	these	hierarchical	addresses	look	like?	Unlike	some	other	forms	of	hierarchical	address,	the	sizes	of	the
two	parts	are	not	the	same	for	all	addresses.	Originally,	IP	addresses	were	divided	into	three	different	classes,	as
shown	in	Figure	6,	each	of	which	defines	different-sized	network	and	host	parts.	(There	are	also	class	D	addresses
that	specify	a	multicast	group	and	class	E	addresses	that	are	currently	unused.)	In	all	cases,	the	address	is	32	bits
long.
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The	class	of	an	IP	address	is	identified	in	the	most	significant	few	bits.	If	the	first	bit	is	0,	it	is	a	class	A	address.	If	the
first	bit	is	1	and	the	second	is	0,	it	is	a	class	B	address.	If	the	first	two	bits	are	1	and	the	third	is	0,	it	is	a	class	C
address.	Thus,	of	the	approximately	4	billion	possible	IP	addresses,	half	are	class	A,	one-quarter	are	class	B,	and
one-eighth	are	class	C.	Each	class	allocates	a	certain	number	of	bits	for	the	network	part	of	the	address	and	the	rest
for	the	host	part.	Class	A	networks	have	7	bits	for	the	network	part	and	24	bits	for	the	host	part,	meaning	that	there

can	be	only	126	class	A	networks	(the	values	0	and	127	are	reserved),	but	each	of	them	can	accommodate	up	to	2 	-

2	(about	16	million)	hosts	(again,	there	are	two	reserved	values).	Class	B	addresses	allocate	14	bits	for	the	network
and	16	bits	for	the	host,	meaning	that	each	class	B	network	has	room	for	65,534	hosts.	Finally,	class	C	addresses
have	only	8	bits	for	the	host	and	21	for	the	network	part.	Therefore,	a	class	C	network	can	have	only	256	unique	host
identifiers,	which	means	only	254	attached	hosts	(one	host	identifier,	255,	is	reserved	for	broadcast,	and	0	is	not	a

valid	host	number).	However,	the	addressing	scheme	supports	2 	class	C	networks.

Figure	6.	IP	addresses:	(a)	class	A;	(b)	class	B;	(c)	class	C.

On	the	face	of	it,	this	addressing	scheme	has	a	lot	of	flexibility,	allowing	networks	of	vastly	different	sizes	to	be
accommodated	fairly	efficiently.	The	original	idea	was	that	the	Internet	would	consist	of	a	small	number	of	wide	area
networks	(these	would	be	class	A	networks),	a	modest	number	of	site-	(campus-)	sized	networks	(these	would	be
class	B	networks),	and	a	large	number	of	LANs	(these	would	be	class	C	networks).	However,	it	turned	out	not	to	be
flexible	enough,	as	we	will	see	in	a	moment.	Today,	IP	addresses	are	normally	"classless";	the	details	of	this	are
explained	below.

Before	we	look	at	how	IP	addresses	get	used,	it	is	helpful	to	look	at	some	practical	matters,	such	as	how	you	write
them	down.	By	convention,	IP	addresses	are	written	as	four	decimal	integers	separated	by	dots.	Each	integer
represents	the	decimal	value	contained	in	1	byte	of	the	address,	starting	at	the	most	significant.	For	example,	the
address	of	the	computer	on	which	this	sentence	was	typed	is		171.69.210.245	.

It	is	important	not	to	confuse	IP	addresses	with	Internet	domain	names,	which	are	also	hierarchical.	Domain	names
tend	to	be	ASCII	strings	separated	by	dots,	such	as		cs.princeton.edu	.	The	important	thing	about	IP	addresses	is	that
they	are	what	is	carried	in	the	headers	of	IP	packets,	and	it	is	those	addresses	that	are	used	in	IP	routers	to	make
forwarding	decisions.

Datagram	Forwarding	in	IP
We	are	now	ready	to	look	at	the	basic	mechanism	by	which	IP	routers	forward	datagrams	in	an	internetwork.	Recall
from	an	earlier	section	that	forwarding	is	the	process	of	taking	a	packet	from	an	input	and	sending	it	out	on	the
appropriate	output,	while	routing	is	the	process	of	building	up	the	tables	that	allow	the	correct	output	for	a	packet	to	be
determined.	The	discussion	here	focuses	on	forwarding;	we	take	up	routing	in	a	later	section.

The	main	points	to	bear	in	mind	as	we	discuss	the	forwarding	of	IP	datagrams	are	the	following:

24

21
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Every	IP	datagram	contains	the	IP	address	of	the	destination	host.

The	network	part	of	an	IP	address	uniquely	identifies	a	single	physical	network	that	is	part	of	the	larger	Internet.

All	hosts	and	routers	that	share	the	same	network	part	of	their	address	are	connected	to	the	same	physical
network	and	can	thus	communicate	with	each	other	by	sending	frames	over	that	network.

Every	physical	network	that	is	part	of	the	Internet	has	at	least	one	router	that,	by	definition,	is	also	connected	to	at
least	one	other	physical	network;	this	router	can	exchange	packets	with	hosts	or	routers	on	either	network.

Forwarding	IP	datagrams	can	therefore	be	handled	in	the	following	way.	A	datagram	is	sent	from	a	source	host	to	a
destination	host,	possibly	passing	through	several	routers	along	the	way.	Any	node,	whether	it	is	a	host	or	a	router,
first	tries	to	establish	whether	it	is	connected	to	the	same	physical	network	as	the	destination.	To	do	this,	it	compares
the	network	part	of	the	destination	address	with	the	network	part	of	the	address	of	each	of	its	network	interfaces.
(Hosts	normally	have	only	one	interface,	while	routers	normally	have	two	or	more,	since	they	are	typically	connected
to	two	or	more	networks.)	If	a	match	occurs,	then	that	means	that	the	destination	lies	on	the	same	physical	network	as
the	interface,	and	the	packet	can	be	directly	delivered	over	that	network.	A	later	section	explains	some	of	the	details	of
this	process.

If	the	node	is	not	connected	to	the	same	physical	network	as	the	destination	node,	then	it	needs	to	send	the	datagram
to	a	router.	In	general,	each	node	will	have	a	choice	of	several	routers,	and	so	it	needs	to	pick	the	best	one,	or	at	least
one	that	has	a	reasonable	chance	of	getting	the	datagram	closer	to	its	destination.	The	router	that	it	chooses	is	known
as	the	next	hop	router.	The	router	finds	the	correct	next	hop	by	consulting	its	forwarding	table.	The	forwarding	table	is
conceptually	just	a	list	of		(NetworkNum,	NextHop)	pairs.	(As	we	will	see	below,	forwarding	tables	in	practice	often	contain
some	additional	information	related	to	the	next	hop.)	Normally,	there	is	also	a	default	router	that	is	used	if	none	of	the
entries	in	the	table	matches	the	destination's	network	number.	For	a	host,	it	may	be	quite	acceptable	to	have	a	default
router	and	nothing	else—this	means	that	all	datagrams	destined	for	hosts	not	on	the	physical	network	to	which	the
sending	host	is	attached	will	be	sent	out	through	the	default	router.

We	can	describe	the	datagram	forwarding	algorithm	in	the	following	way:

if	(NetworkNum	of	destination	=	NetworkNum	of	one	of	my	interfaces)	then
				deliver	packet	to	destination	over	that	interface
else
				if	(NetworkNum	of	destination	is	in	my	forwarding	table)	then
								deliver	packet	to	NextHop	router
				else
								deliver	packet	to	default	router

For	a	host	with	only	one	interface	and	only	a	default	router	in	its	forwarding	table,	this	simplifies	to

if	(NetworkNum	of	destination	=	my	NetworkNum)	then
				deliver	packet	to	destination	directly
else
				deliver	packet	to	default	router

Let's	see	how	this	works	in	the	example	internetwork	of	Figure	1.	First,	suppose	that	H1	wants	to	send	a	datagram	to
H2.	Since	they	are	on	the	same	physical	network,	H1	and	H2	have	the	same	network	number	in	their	IP	address.
Thus,	H1	deduces	that	it	can	deliver	the	datagram	directly	to	H2	over	the	Ethernet.	The	one	issue	that	needs	to	be
resolved	is	how	H1	finds	out	the	correct	Ethernet	address	for	H2—the	resolution	mechanism	described	in	a	later
section	addresses	this	issue.

Now	suppose	H5	wants	to	send	a	datagram	to	H8.	Since	these	hosts	are	on	different	physical	networks,	they	have
different	network	numbers,	so	H5	deduces	that	it	needs	to	send	the	datagram	to	a	router.	R1	is	the	only	choice—the
default	router—so	H1	sends	the	datagram	over	the	wireless	network	to	R1.	Similarly,	R1	knows	that	it	cannot	deliver	a
datagram	directly	to	H8	because	neither	of	R1's	interfaces	are	on	the	same	network	as	H8.	Suppose	R1's	default
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router	is	R2;	R1	then	sends	the	datagram	to	R2	over	the	Ethernet.	Assuming	R2	has	the	forwarding	table	shown	in
Table	1,	it	looks	up	H8's	network	number	(network	4)	and	forwards	the	datagram	over	the	point-to-point	network	to
R3.	Finally,	R3,	since	it	is	on	the	same	network	as	H8,	forwards	the	datagram	directly	to	H8.

Table	1.	Forwarding	table	for	Router	R2.

NetworkNum NextHop

1 R1

4 R3

Table	2.	Complete	Forwarding	Table	for	Router	R2.

NetworkNum NextHop

1 R1

2 Interface	1

3 Interface	0

4 R3

Note	that	it	is	possible	to	include	the	information	about	directly	connected	networks	in	the	forwarding	table.	For
example,	we	could	label	the	network	interfaces	of	router	R2	as	interface	0	for	the	point-to-point	link	(network	3)	and
interface	1	for	the	Ethernet	(network	2).	Then	R2	would	have	the	forwarding	table	shown	in	Table	2.

Thus,	for	any	network	number	that	R2	encounters	in	a	packet,	it	knows	what	to	do.	Either	that	network	is	directly
connected	to	R2,	in	which	case	the	packet	can	be	delivered	to	its	destination	over	that	network,	or	the	network	is
reachable	via	some	next	hop	router	that	R2	can	reach	over	a	network	to	which	it	is	connected.	In	either	case,	R2	will
use	ARP,	described	below,	to	find	the	MAC	address	of	the	node	to	which	the	packet	is	to	be	sent	next.

The	forwarding	table	used	by	R2	is	simple	enough	that	it	could	be	manually	configured.	Usually,	however,	these
tables	are	more	complex	and	would	be	built	up	by	running	a	routing	protocol	such	as	one	of	those	described	in	a	later
section.	Also	note	that,	in	practice,	the	network	numbers	are	usually	longer	(e.g.,	128.96).

We	can	now	see	how	hierarchical	addressing—splitting	the	address	into	network	and	host	parts—has	improved	the
scalability	of	a	large	network.	Routers	now	contain	forwarding	tables	that	list	only	a	set	of	network	numbers	rather
than	all	the	nodes	in	the	network.	In	our	simple	example,	that	meant	that	R2	could	store	the	information	needed	to
reach	all	the	hosts	in	the	network	(of	which	there	were	eight)	in	a	four-entry	table.	Even	if	there	were	100	hosts	on
each	physical	network,	R2	would	still	only	need	those	same	four	entries.	This	is	a	good	first	step	(although	by	no
means	the	last)	in	achieving	scalability.

Key	Takeaway

This	illustrates	one	of	the	most	important	principles	of	building	scalable	networks:	To	achieve	scalability,	you
need	to	reduce	the	amount	of	information	that	is	stored	in	each	node	and	that	is	exchanged	between	nodes.
The	most	common	way	to	do	that	is	hierarchical	aggregation.	IP	introduces	a	two-level	hierarchy,	with	networks
at	the	top	level	and	nodes	at	the	bottom	level.	We	have	aggregated	information	by	letting	routers	deal	only	with
reaching	the	right	network;	the	information	that	a	router	needs	to	deliver	a	datagram	to	any	node	on	a	given
network	is	represented	by	a	single	aggregated	piece	of	information.

Subnetting	and	Classless	Addressing
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The	original	intent	of	IP	addresses	was	that	the	network	part	would	uniquely	identify	exactly	one	physical	network.	It
turns	out	that	this	approach	has	a	couple	of	drawbacks.	Imagine	a	large	campus	that	has	lots	of	internal	networks	and
decides	to	connect	to	the	Internet.	For	every	network,	no	matter	how	small,	the	site	needs	at	least	a	class	C	network
address.	Even	worse,	for	any	network	with	more	than	255	hosts,	they	need	a	class	B	address.	This	may	not	seem	like
a	big	deal,	and	indeed	it	wasn't	when	the	Internet	was	first	envisioned,	but	there	are	only	a	finite	number	of	network
numbers,	and	there	are	far	fewer	class	B	addresses	than	class	Cs.	Class	B	addresses	tend	to	be	in	particularly	high
demand	because	you	never	know	if	your	network	might	expand	beyond	255	nodes,	so	it	is	easier	to	use	a	class	B
address	from	the	start	than	to	have	to	renumber	every	host	when	you	run	out	of	room	on	a	class	C	network.	The
problem	we	observe	here	is	address	assignment	inefficiency:	A	network	with	two	nodes	uses	an	entire	class	C
network	address,	thereby	wasting	253	perfectly	useful	addresses;	a	class	B	network	with	slightly	more	than	255	hosts
wastes	over	64,000	addresses.

Assigning	one	network	number	per	physical	network,	therefore,	uses	up	the	IP	address	space	potentially	much	faster
than	we	would	like.	While	we	would	need	to	connect	over	4	billion	hosts	to	use	up	all	the	valid	addresses,	we	only

need	to	connect	2 	(about	16,000)	class	B	networks	before	that	part	of	the	address	space	runs	out.	Therefore,	we

would	like	to	find	some	way	to	use	the	network	numbers	more	efficiently.

Assigning	many	network	numbers	has	another	drawback	that	becomes	apparent	when	you	think	about	routing.	Recall
that	the	amount	of	state	that	is	stored	in	a	node	participating	in	a	routing	protocol	is	proportional	to	the	number	of
other	nodes,	and	that	routing	in	an	internet	consists	of	building	up	forwarding	tables	that	tell	a	router	how	to	reach
different	networks.	Thus,	the	more	network	numbers	there	are	in	use,	the	bigger	the	forwarding	tables	get.	Big
forwarding	tables	add	costs	to	routers,	and	they	are	potentially	slower	to	search	than	smaller	tables	for	a	given
technology,	so	they	degrade	router	performance.	This	provides	another	motivation	for	assigning	network	numbers
carefully.

Subnetting	provides	a	first	step	to	reducing	total	number	of	network	numbers	that	are	assigned.	The	idea	is	to	take	a
single	IP	network	number	and	allocate	the	IP	addresses	with	that	network	number	to	several	physical	networks,	which
are	now	referred	to	as	subnets.	Several	things	need	to	be	done	to	make	this	work.	First,	the	subnets	should	be	close
to	each	other.	This	is	because	from	a	distant	point	in	the	Internet,	they	will	all	look	like	a	single	network,	having	only
one	network	number	between	them.	This	means	that	a	router	will	only	be	able	to	select	one	route	to	reach	any	of	the
subnets,	so	they	had	better	all	be	in	the	same	general	direction.	A	perfect	situation	in	which	to	use	subnetting	is	a
large	campus	or	corporation	that	has	many	physical	networks.	From	outside	the	campus,	all	you	need	to	know	to
reach	any	subnet	inside	the	campus	is	where	the	campus	connects	to	the	rest	of	the	Internet.	This	is	often	at	a	single
point,	so	one	entry	in	your	forwarding	table	will	suffice.	Even	if	there	are	multiple	points	at	which	the	campus	is
connected	to	the	rest	of	the	Internet,	knowing	how	to	get	to	one	point	in	the	campus	network	is	still	a	good	start.

The	mechanism	by	which	a	single	network	number	can	be	shared	among	multiple	networks	involves	configuring	all
the	nodes	on	each	subnet	with	a	subnet	mask.	With	simple	IP	addresses,	all	hosts	on	the	same	network	must	have
the	same	network	number.	The	subnet	mask	enables	us	to	introduce	a	subnet	number;	all	hosts	on	the	same	physical
network	will	have	the	same	subnet	number,	which	means	that	hosts	may	be	on	different	physical	networks	but	share	a
single	network	number.	This	concept	is	illustrated	in	Figure	7.

14
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Figure	7.	Subnet	addressing.

What	subnetting	means	to	a	host	is	that	it	is	now	configured	with	both	an	IP	address	and	a	subnet	mask	for	the	subnet
to	which	it	is	attached.	For	example,	host	H1	in	Figure	8	is	configured	with	an	address	of	128.96.34.15	and	a	subnet
mask	of	255.255.255.128.	(All	hosts	on	a	given	subnet	are	configured	with	the	same	mask;	that	is,	there	is	exactly
one	subnet	mask	per	subnet.)	The	bitwise	AND	of	these	two	numbers	defines	the	subnet	number	of	the	host	and	of	all
other	hosts	on	the	same	subnet.	In	this	case,	128.96.34.15	AND	255.255.255.128	equals	128.96.34.0,	so	this	is	the
subnet	number	for	the	topmost	subnet	in	the	figure.

Figure	8.	An	example	of	subnetting.

When	the	host	wants	to	send	a	packet	to	a	certain	IP	address,	the	first	thing	it	does	is	to	perform	a	bitwise	AND
between	its	own	subnet	mask	and	the	destination	IP	address.	If	the	result	equals	the	subnet	number	of	the	sending
host,	then	it	knows	that	the	destination	host	is	on	the	same	subnet	and	the	packet	can	be	delivered	directly	over	the
subnet.	If	the	results	are	not	equal,	the	packet	needs	to	be	sent	to	a	router	to	be	forwarded	to	another	subnet.	For
example,	if	H1	is	sending	to	H2,	then	H1	ANDs	its	subnet	mask	(255.255.255.128)	with	the	address	for	H2
(128.96.34.139)	to	obtain	128.96.34.128.	This	does	not	match	the	subnet	number	for	H1	(128.96.34.0)	so	H1	knows
that	H2	is	on	a	different	subnet.	Since	H1	cannot	deliver	the	packet	to	H2	directly	over	the	subnet,	it	sends	the	packet
to	its	default	router	R1.
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The	forwarding	table	of	a	router	also	changes	slightly	when	we	introduce	subnetting.	Recall	that	we	previously	had	a
forwarding	table	that	consisted	of	entries	of	the	form		(NetworkNum,	NextHop)	.	To	support	subnetting,	the	table	must	now
hold	entries	of	the	form		(SubnetNumber,	SubnetMask,	NextHop)	.	To	find	the	right	entry	in	the	table,	the	router	ANDs	the
packet's	destination	address	with	the		SubnetMask	for	each	entry	in	turn;	if	the	result	matches	the		SubnetNumber		of	the
entry,	then	this	is	the	right	entry	to	use,	and	it	forwards	the	packet	to	the	next	hop	router	indicated.	In	the	example
network	of	Figure	8,	router	R1	would	have	the	entries	shown	in	Table	2.

Table	3.	Example	Forwarding	Table	with	Subnetting.

SubnetNumber SubnetMask NextHop

128.96.34.0 255.255.255.128 Interface	0

128.96.34.128 255.255.255.128 Interface	1

128.96.33.0 255.255.255.0 R2

Continuing	with	the	example	of	a	datagram	from	H1	being	sent	to	H2,	R1	would	AND	H2's	address	(128.96.34.139)
with	the	subnet	mask	of	the	first	entry	(255.255.255.128)	and	compare	the	result	(128.96.34.128)	with	the	network
number	for	that	entry	(128.96.34.0).	Since	this	is	not	a	match,	it	proceeds	to	the	next	entry.	This	time	a	match	does
occur,	so	R1	delivers	the	datagram	to	H2	using	interface	1,	which	is	the	interface	connected	to	the	same	network	as
H2.

We	can	now	describe	the	datagram	forwarding	algorithm	in	the	following	way:

D	=	destination	IP	address
for	each	forwarding	table	entry	(SubnetNumber,	SubnetMask,	NextHop)
				D1	=	SubnetMask	&	D
				if	D1	=	SubnetNumber
								if	NextHop	is	an	interface
												deliver	datagram	directly	to	destination
								else
												deliver	datagram	to	NextHop	(a	router)

Although	not	shown	in	this	example,	a	default	route	would	usually	be	included	in	the	table	and	would	be	used	if	no
explicit	matches	were	found.	Note	that	a	naive	implementation	of	this	algorithm—one	involving	repeated	ANDing	of
the	destination	address	with	a	subnet	mask	that	may	not	be	different	every	time,	and	a	linear	table	search—would	be
very	inefficient.

An	important	consequence	of	subnetting	is	that	different	parts	of	the	internet	see	the	world	differently.	From	outside
our	hypothetical	campus,	routers	see	a	single	network.	In	the	example	above,	routers	outside	the	campus	see	the
collection	of	networks	in	Figure	8	as	just	the	network	128.96,	and	they	keep	one	entry	in	their	forwarding	tables	to	tell
them	how	to	reach	it.	Routers	within	the	campus,	however,	need	to	be	able	to	route	packets	to	the	right	subnet.	Thus,
not	all	parts	of	the	internet	see	exactly	the	same	routing	information.	This	is	an	example	of	an	aggregation	of	routing
information,	which	is	fundamental	to	scaling	of	the	routing	system.	The	next	section	shows	how	aggregation	can	be
taken	to	another	level.

Classless	Addressing

Subnetting	has	a	counterpart,	sometimes	called	supernetting,	but	more	often	called	Classless	Interdomain	Routing	or
CIDR,	pronounced	"cider."	CIDR	takes	the	subnetting	idea	to	its	logical	conclusion	by	essentially	doing	away	with
address	classes	altogether.	Why	isn't	subnetting	alone	sufficient?	In	essence,	subnetting	only	allows	us	to	split	a
classful	address	among	multiple	subnets,	while	CIDR	allows	us	to	coalesce	several	classful	addresses	into	a	single
"supernet."	This	further	tackles	the	address	space	inefficiency	noted	above,	and	does	so	in	a	way	that	keeps	the
routing	system	from	being	overloaded.
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To	see	how	the	issues	of	address	space	efficiency	and	scalability	of	the	routing	system	are	coupled,	consider	the
hypothetical	case	of	a	company	whose	network	has	256	hosts	on	it.	That	is	slightly	too	many	for	a	Class	C	address,
so	you	would	be	tempted	to	assign	a	class	B.	However,	using	up	a	chunk	of	address	space	that	could	address	65535
to	address	256	hosts	has	an	efficiency	of	only	256/65,535	=	0.39%.	Even	though	subnetting	can	help	us	to	assign
addresses	carefully,	it	does	not	get	around	the	fact	that	any	organization	with	more	than	255	hosts,	or	an	expectation
of	eventually	having	that	many,	wants	a	class	B	address.

The	first	way	you	might	deal	with	this	issue	would	be	to	refuse	to	give	a	class	B	address	to	any	organization	that
requests	one	unless	they	can	show	a	need	for	something	close	to	64K	addresses,	and	instead	giving	them	an
appropriate	number	of	class	C	addresses	to	cover	the	expected	number	of	hosts.	Since	we	would	now	be	handing	out
address	space	in	chunks	of	256	addresses	at	a	time,	we	could	more	accurately	match	the	amount	of	address	space
consumed	to	the	size	of	the	organization.	For	any	organization	with	at	least	256	hosts,	we	can	guarantee	an	address
utilization	of	at	least	50%,	and	typically	much	more.

Even	if	you	can	justify	a	request	of	a	class	B	network	number,	don't	bother.	They	are	all	spoken	for.

This	solution,	however,	raises	a	problem	that	is	at	least	as	serious:	excessive	storage	requirements	at	the	routers.	If	a
single	site	has,	say,	16	class	C	network	numbers	assigned	to	it,	that	means	every	Internet	backbone	router	needs	16
entries	in	its	routing	tables	to	direct	packets	to	that	site.	This	is	true	even	if	the	path	to	every	one	of	those	networks	is
the	same.	If	we	had	assigned	a	class	B	address	to	the	site,	the	same	routing	information	could	be	stored	in	one	table
entry.	However,	our	address	assignment	efficiency	would	then	be	only	6	×	255	/	65,536	=	6.2%.

CIDR,	therefore,	tries	to	balance	the	desire	to	minimize	the	number	of	routes	that	a	router	needs	to	know	against	the
need	to	hand	out	addresses	efficiently.	To	do	this,	CIDR	helps	us	to	aggregate	routes.	That	is,	it	lets	us	use	a	single
entry	in	a	forwarding	table	to	tell	us	how	to	reach	a	lot	of	different	networks.	As	noted	above	it	does	this	by	breaking
the	rigid	boundaries	between	address	classes.	To	understand	how	this	works,	consider	our	hypothetical	organization
with	16	class	C	network	numbers.	Instead	of	handing	out	16	addresses	at	random,	we	can	hand	out	a	block	of
contiguous	class	C	addresses.	Suppose	we	assign	the	class	C	network	numbers	from	192.4.16	through	192.4.31.
Observe	that	the	top	20	bits	of	all	the	addresses	in	this	range	are	the	same	(	11000000	00000100	0001	).	Thus,	what	we
have	effectively	created	is	a	20-bit	network	number—something	that	is	between	a	class	B	network	number	and	a
class	C	number	in	terms	of	the	number	of	hosts	that	it	can	support.	In	other	words,	we	get	both	the	high	address
efficiency	of	handing	out	addresses	in	chunks	smaller	than	a	class	B	network,	and	a	single	network	prefix	that	can	be
used	in	forwarding	tables.	Observe	that,	for	this	scheme	to	work,	we	need	to	hand	out	blocks	of	class	C	addresses
that	share	a	common	prefix,	which	means	that	each	block	must	contain	a	number	of	class	C	networks	that	is	a	power
of	two.

CIDR	requires	a	new	type	of	notation	to	represent	network	numbers,	or	prefixes	as	they	are	known,	because	the
prefixes	can	be	of	any	length.	The	convention	is	to	place	a		/X		after	the	prefix,	where		X		is	the	prefix	length	in	bits.
So,	for	the	example	above,	the	20-bit	prefix	for	all	the	networks	192.4.16	through	192.4.31	is	represented	as
192.4.16/20.	By	contrast,	if	we	wanted	to	represent	a	single	class	C	network	number,	which	is	24	bits	long,	we	would
write	it	192.4.16/24.	Today,	with	CIDR	being	the	norm,	it	is	more	common	to	hear	people	talk	about	"slash	24"	prefixes
than	class	C	networks.	Note	that	representing	a	network	address	in	this	way	is	similar	to	the	(mask,	value)		approach
used	in	subnetting,	as	long	as		masks		consist	of	contiguous	bits	starting	from	the	most	significant	bit	(which	in	practice
is	almost	always	the	case).
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Figure	9.	Route	aggregation	with	CIDR.

The	ability	to	aggregate	routes	at	the	edge	of	the	network	as	we	have	just	seen	is	only	the	first	step.	Imagine	an
Internet	service	provider	network,	whose	primary	job	is	to	provide	Internet	connectivity	to	a	large	number	of
corporations	and	campuses	(customers).	If	we	assign	prefixes	to	the	customers	in	such	a	way	that	many	different
customer	networks	connected	to	the	provider	network	share	a	common,	shorter	address	prefix,	then	we	can	get	even
greater	aggregation	of	routes.	Consider	the	example	in	Figure	9.	Assume	that	eight	customers	served	by	the	provider
network	have	each	been	assigned	adjacent	24-bit	network	prefixes.	Those	prefixes	all	start	with	the	same	21	bits.
Since	all	of	the	customers	are	reachable	through	the	same	provider	network,	it	can	advertise	a	single	route	to	all	of
them	by	just	advertising	the	common	21-bit	prefix	they	share.	And	it	can	do	this	even	if	not	all	the	24-bit	prefixes	have
been	handed	out,	as	long	as	the	provider	ultimately	will	have	the	right	to	hand	out	those	prefixes	to	a	customer.	One
way	to	accomplish	that	is	to	assign	a	portion	of	address	space	to	the	provider	in	advance	and	then	to	let	the	network
provider	assign	addresses	from	that	space	to	its	customers	as	needed.	Note	that,	in	contrast	to	this	simple	example,
there	is	no	need	for	all	customer	prefixes	to	be	the	same	length.

IP	Forwarding	Revisited

In	all	our	discussion	of	IP	forwarding	so	far,	we	have	assumed	that	we	could	find	the	network	number	in	a	packet	and
then	look	up	that	number	in	a	forwarding	table.	However,	now	that	we	have	introduced	CIDR,	we	need	to	reexamine
this	assumption.	CIDR	means	that	prefixes	may	be	of	any	length,	from	2	to	32	bits.	Furthermore,	it	is	sometimes
possible	to	have	prefixes	in	the	forwarding	table	that	"overlap,"	in	the	sense	that	some	addresses	may	match	more
than	one	prefix.	For	example,	we	might	find	both	171.69	(a	16-bit	prefix)	and	171.69.10	(a	24-bit	prefix)	in	the
forwarding	table	of	a	single	router.	In	this	case,	a	packet	destined	to,	say,	171.69.10.5	clearly	matches	both	prefixes.
The	rule	in	this	case	is	based	on	the	principle	of	"longest	match";	that	is,	the	packet	matches	the	longest	prefix,	which
would	be	171.69.10	in	this	example.	On	the	other	hand,	a	packet	destined	to	171.69.20.5	would	match	171.69	and	not
171.69.10,	and	in	the	absence	of	any	other	matching	entry	in	the	routing	table	171.69	would	be	the	longest	match.

The	task	of	efficiently	finding	the	longest	match	between	an	IP	address	and	the	variable-length	prefixes	in	a
forwarding	table	has	been	a	fruitful	field	of	research	for	many	years.	The	most	well-known	algorithm	uses	an	approach
known	as	a	PATRICIA	tree,	which	was	actually	developed	well	in	advance	of	CIDR.

Address	Translation	(ARP)
In	the	previous	section	we	talked	about	how	to	get	IP	datagrams	to	the	right	physical	network	but	glossed	over	the
issue	of	how	to	get	a	datagram	to	a	particular	host	or	router	on	that	network.	The	main	issue	is	that	IP	datagrams
contain	IP	addresses,	but	the	physical	interface	hardware	on	the	host	or	router	to	which	you	want	to	send	the
datagram	only	understands	the	addressing	scheme	of	that	particular	network.	Thus,	we	need	to	translate	the	IP
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address	to	a	link-level	address	that	makes	sense	on	this	network	(e.g.,	a	48-bit	Ethernet	address).	We	can	then
encapsulate	the	IP	datagram	inside	a	frame	that	contains	that	link-level	address	and	send	it	either	to	the	ultimate
destination	or	to	a	router	that	promises	to	forward	the	datagram	toward	the	ultimate	destination.

One	simple	way	to	map	an	IP	address	into	a	physical	network	address	is	to	encode	a	host's	physical	address	in	the
host	part	of	its	IP	address.	For	example,	a	host	with	physical	address		00100001	01001001		(which	has	the	decimal	value
33	in	the	upper	byte	and	81	in	the	lower	byte)	might	be	given	the	IP	address		128.96.33.81	.	While	this	solution	has
been	used	on	some	networks,	it	is	limited	in	that	the	network's	physical	addresses	can	be	no	more	than	16	bits	long	in
this	example;	they	can	be	only	8	bits	long	on	a	class	C	network.	This	clearly	will	not	work	for	48-bit	Ethernet
addresses.

A	more	general	solution	would	be	for	each	host	to	maintain	a	table	of	address	pairs;	that	is,	the	table	would	map	IP
addresses	into	physical	addresses.	While	this	table	could	be	centrally	managed	by	a	system	administrator	and	then
copied	to	each	host	on	the	network,	a	better	approach	would	be	for	each	host	to	dynamically	learn	the	contents	of	the
table	using	the	network.	This	can	be	accomplished	using	the	Address	Resolution	Protocol	(ARP).	The	goal	of	ARP	is
to	enable	each	host	on	a	network	to	build	up	a	table	of	mappings	between	IP	addresses	and	link-level	addresses.
Since	these	mappings	may	change	over	time	(e.g.,	because	an	Ethernet	card	in	a	host	breaks	and	is	replaced	by	a
new	one	with	a	new	address),	the	entries	are	timed	out	periodically	and	removed.	This	happens	on	the	order	of	every
15	minutes.	The	set	of	mappings	currently	stored	in	a	host	is	known	as	the	ARP	cache	or	ARP	table.

ARP	takes	advantage	of	the	fact	that	many	link-level	network	technologies,	such	as	Ethernet,	support	broadcast.	If	a
host	wants	to	send	an	IP	datagram	to	a	host	(or	router)	that	it	knows	to	be	on	the	same	network	(i.e.,	the	sending	and
receiving	nodes	have	the	same	IP	network	number),	it	first	checks	for	a	mapping	in	the	cache.	If	no	mapping	is	found,
it	needs	to	invoke	the	Address	Resolution	Protocol	over	the	network.	It	does	this	by	broadcasting	an	ARP	query	onto
the	network.	This	query	contains	the	IP	address	in	question	(the	target	IP	address).	Each	host	receives	the	query	and
checks	to	see	if	it	matches	its	IP	address.	If	it	does	match,	the	host	sends	a	response	message	that	contains	its	link-
layer	address	back	to	the	originator	of	the	query.	The	originator	adds	the	information	contained	in	this	response	to	its
ARP	table.

The	query	message	also	includes	the	IP	address	and	link-layer	address	of	the	sending	host.	Thus,	when	a	host
broadcasts	a	query	message,	each	host	on	the	network	can	learn	the	sender's	link-level	and	IP	addresses	and	place
that	information	in	its	ARP	table.	However,	not	every	host	adds	this	information	to	its	ARP	table.	If	the	host	already
has	an	entry	for	that	host	in	its	table,	it	"refreshes"	this	entry;	that	is,	it	resets	the	length	of	time	until	it	discards	the
entry.	If	that	host	is	the	target	of	the	query,	then	it	adds	the	information	about	the	sender	to	its	table,	even	if	it	did	not
already	have	an	entry	for	that	host.	This	is	because	there	is	a	good	chance	that	the	source	host	is	about	to	send	it	an
application-level	message,	and	it	may	eventually	have	to	send	a	response	or	ACK	back	to	the	source;	it	will	need	the
source's	physical	address	to	do	this.	If	a	host	is	not	the	target	and	does	not	already	have	an	entry	for	the	source	in	its
ARP	table,	then	it	does	not	add	an	entry	for	the	source.	This	is	because	there	is	no	reason	to	believe	that	this	host	will
ever	need	the	source's	link-level	address;	there	is	no	need	to	clutter	its	ARP	table	with	this	information.

Figure	10.	ARP	packet	format	for	mapping	IP	addresses	into	Ethernet
addresses.
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Figure	10	shows	the	ARP	packet	format	for	IP-to-Ethernet	address	mappings.	In	fact,	ARP	can	be	used	for	lots	of
other	kinds	of	mappings—the	major	differences	are	in	the	address	sizes.	In	addition	to	the	IP	and	link-layer	addresses
of	both	sender	and	target,	the	packet	contains

A		HardwareType		field,	which	specifies	the	type	of	physical	network	(e.g.,	Ethernet)

A		ProtocolType		field,	which	specifies	the	higher-layer	protocol	(e.g.,	IP)

	HLen		("hardware"	address	length)	and		PLen		("protocol"	address	length)	fields,	which	specify	the	length	of	the
link-layer	address	and	higher-layer	protocol	address,	respectively

An		Operation		field,	which	specifies	whether	this	is	a	request	or	a	response

The	source	and	target	hardware	(Ethernet)	and	protocol	(IP)	addresses

Note	that	the	results	of	the	ARP	process	can	be	added	as	an	extra	column	in	a	forwarding	table	like	the	one	in	Table
1.	Thus,	for	example,	when	R2	needs	to	forward	a	packet	to	network	2,	it	not	only	finds	that	the	next	hop	is	R1,	but
also	finds	the	MAC	address	to	place	on	the	packet	to	send	it	to	R1.

Key	Takeaway

We	have	now	seen	the	basic	mechanisms	that	IP	provides	for	dealing	with	both	heterogeneity	and	scale.	On
the	issue	of	heterogeneity,	IP	begins	by	defining	a	best-effort	service	model	that	makes	minimal	assumptions
about	the	underlying	networks;	most	notably,	this	service	model	is	based	on	unreliable	datagrams.	IP	then
makes	two	important	additions	to	this	starting	point:	(1)	a	common	packet	format	(fragmentation/reassembly	is
the	mechanism	that	makes	this	format	work	over	networks	with	different	MTUs)	and	(2)	a	global	address	space
for	identifying	all	hosts	(ARP	is	the	mechanism	that	makes	this	global	address	space	work	over	networks	with
different	physical	addressing	schemes).	On	the	issue	of	scale,	IP	uses	hierarchical	aggregation	to	reduce	the
amount	of	information	needed	to	forward	packets.	Specifically,	IP	addresses	are	partitioned	into	network	and
host	components,	with	packets	first	routed	toward	the	destination	network	and	then	delivered	to	the	correct	host
on	that	network.

Host	Configuration	(DHCP)

Ethernet	addresses	are	configured	into	the	network	adaptor	by	the	manufacturer,	and	this	process	is	managed	in	such
a	way	to	ensure	that	these	addresses	are	globally	unique.	This	is	clearly	a	sufficient	condition	to	ensure	that	any
collection	of	hosts	connected	to	a	single	Ethernet	(including	an	extended	LAN)	will	have	unique	addresses.
Furthermore,	uniqueness	is	all	we	ask	of	Ethernet	addresses.

IP	addresses,	by	contrast,	not	only	must	be	unique	on	a	given	internetwork	but	also	must	reflect	the	structure	of	the
internetwork.	As	noted	above,	they	contain	a	network	part	and	a	host	part,	and	the	network	part	must	be	the	same	for
all	hosts	on	the	same	network.	Thus,	it	is	not	possible	for	the	IP	address	to	be	configured	once	into	a	host	when	it	is
manufactured,	since	that	would	imply	that	the	manufacturer	knew	which	hosts	were	going	to	end	up	on	which
networks,	and	it	would	mean	that	a	host,	once	connected	to	one	network,	could	never	move	to	another.	For	this
reason,	IP	addresses	need	to	be	reconfigurable.

In	addition	to	an	IP	address,	there	are	some	other	pieces	of	information	a	host	needs	to	have	before	it	can	start
sending	packets.	The	most	notable	of	these	is	the	address	of	a	default	router—the	place	to	which	it	can	send	packets
whose	destination	address	is	not	on	the	same	network	as	the	sending	host.

Most	host	operating	systems	provide	a	way	for	a	system	administrator,	or	even	a	user,	to	manually	configure	the	IP
information	needed	by	a	host;	however,	there	are	some	obvious	drawbacks	to	such	manual	configuration.	One	is	that
it	is	simply	a	lot	of	work	to	configure	all	the	hosts	in	a	large	network	directly,	especially	when	you	consider	that	such
hosts	are	not	reachable	over	a	network	until	they	are	configured.	Even	more	importantly,	the	configuration	process	is
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very	error	prone,	since	it	is	necessary	to	ensure	that	every	host	gets	the	correct	network	number	and	that	no	two
hosts	receive	the	same	IP	address.	For	these	reasons,	automated	configuration	methods	are	required.	The	primary
method	uses	a	protocol	known	as	the	Dynamic	Host	Configuration	Protocol	(DHCP).

DHCP	relies	on	the	existence	of	a	DHCP	server	that	is	responsible	for	providing	configuration	information	to	hosts.
There	is	at	least	one	DHCP	server	for	an	administrative	domain.	At	the	simplest	level,	the	DHCP	server	can	function
just	as	a	centralized	repository	for	host	configuration	information.	Consider,	for	example,	the	problem	of	administering
addresses	in	the	internetwork	of	a	large	company.	DHCP	saves	the	network	administrators	from	having	to	walk
around	to	every	host	in	the	company	with	a	list	of	addresses	and	network	map	in	hand	and	configuring	each	host
manually.	Instead,	the	configuration	information	for	each	host	could	be	stored	in	the	DHCP	server	and	automatically
retrieved	by	each	host	when	it	is	booted	or	connected	to	the	network.	However,	the	administrator	would	still	pick	the
address	that	each	host	is	to	receive;	he	would	just	store	that	in	the	server.	In	this	model,	the	configuration	information
for	each	host	is	stored	in	a	table	that	is	indexed	by	some	form	of	unique	client	identifier,	typically	the	hardware
address	(e.g.,	the	Ethernet	address	of	its	network	adaptor).

A	more	sophisticated	use	of	DHCP	saves	the	network	administrator	from	even	having	to	assign	addresses	to
individual	hosts.	In	this	model,	the	DHCP	server	maintains	a	pool	of	available	addresses	that	it	hands	out	to	hosts	on
demand.	This	considerably	reduces	the	amount	of	configuration	an	administrator	must	do,	since	now	it	is	only
necessary	to	allocate	a	range	of	IP	addresses	(all	with	the	same	network	number)	to	each	network.

Since	the	goal	of	DHCP	is	to	minimize	the	amount	of	manual	configuration	required	for	a	host	to	function,	it	would
rather	defeat	the	purpose	if	each	host	had	to	be	configured	with	the	address	of	a	DHCP	server.	Thus,	the	first	problem
faced	by	DHCP	is	that	of	server	discovery.

To	contact	a	DHCP	server,	a	newly	booted	or	attached	host	sends	a		DHCPDISCOVER		message	to	a	special	IP	address
(255.255.255.255)	that	is	an	IP	broadcast	address.	This	means	it	will	be	received	by	all	hosts	and	routers	on	that
network.	(Routers	do	not	forward	such	packets	onto	other	networks,	preventing	broadcast	to	the	entire	Internet.)	In	the
simplest	case,	one	of	these	nodes	is	the	DHCP	server	for	the	network.	The	server	would	then	reply	to	the	host	that
generated	the	discovery	message	(all	the	other	nodes	would	ignore	it).	However,	it	is	not	really	desirable	to	require
one	DHCP	server	on	every	network,	because	this	still	creates	a	potentially	large	number	of	servers	that	need	to	be
correctly	and	consistently	configured.	Thus,	DHCP	uses	the	concept	of	a	relay	agent.	There	is	at	least	one	relay	agent
on	each	network,	and	it	is	configured	with	just	one	piece	of	information:	the	IP	address	of	the	DHCP	server.	When	a
relay	agent	receives	a		DHCPDISCOVER		message,	it	unicasts	it	to	the	DHCP	server	and	awaits	the	response,	which	it	will
then	send	back	to	the	requesting	client.	The	process	of	relaying	a	message	from	a	host	to	a	remote	DHCP	server	is
shown	in	Figure	11.

Figure	11.	A	DHCP	relay	agent	receives	a	broadcast	DHCPDISCOVER
message	from	a	host	and	sends	a	unicast	DHCPDISCOVER	to	the	DHCP

server.
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Figure	12	below	shows	the	format	of	a	DHCP	message.	The	message	is	actually	sent	using	a	protocol	called	the	User
Datagram	Protocol	(UDP)	that	runs	over	IP.	UDP	is	discussed	in	detail	in	the	next	chapter,	but	the	only	interesting
thing	it	does	in	this	context	is	to	provide	a	demultiplexing	key	that	says,	"This	is	a	DHCP	packet."

Figure	12.	DHCP	packet	format.

DHCP	is	derived	from	an	earlier	protocol	called	BOOTP,	and	some	of	the	packet	fields	are	thus	not	strictly	relevant	to
host	configuration.	When	trying	to	obtain	configuration	information,	the	client	puts	its	hardware	address	(e.g.,	its
Ethernet	address)	in	the		chaddr		field.	The	DHCP	server	replies	by	filling	in	the		yiaddr		("your"	IP	address)	field	and
sending	it	to	the	client.	Other	information	such	as	the	default	router	to	be	used	by	this	client	can	be	included	in	the
	options		field.

In	the	case	where	DHCP	dynamically	assigns	IP	addresses	to	hosts,	it	is	clear	that	hosts	cannot	keep	addresses
indefinitely,	as	this	would	eventually	cause	the	server	to	exhaust	its	address	pool.	At	the	same	time,	a	host	cannot	be
depended	upon	to	give	back	its	address,	since	it	might	have	crashed,	been	unplugged	from	the	network,	or	been
turned	off.	Thus,	DHCP	allows	addresses	to	be	leased	for	some	period	of	time.	Once	the	lease	expires,	the	server	is
free	to	return	that	address	to	its	pool.	A	host	with	a	leased	address	clearly	needs	to	renew	the	lease	periodically	if	in
fact	it	is	still	connected	to	the	network	and	functioning	correctly.

Key	Takeaway

DHCP	illustrates	an	important	aspect	of	scaling:	the	scaling	of	network	management.	While	discussions	of
scaling	often	focus	on	keeping	the	state	in	network	devices	from	growing	too	fast,	it	is	important	to	pay	attention
to	the	growth	of	network	management	complexity.	By	allowing	network	managers	to	configure	a	range	of	IP
addresses	per	network	rather	than	one	IP	address	per	host,	DHCP	improves	the	manageability	of	a	network.

Note	that	DHCP	may	also	introduce	some	more	complexity	into	network	management,	since	it	makes	the	binding
between	physical	hosts	and	IP	addresses	much	more	dynamic.	This	may	make	the	network	manager's	job	more
difficult	if,	for	example,	it	becomes	necessary	to	locate	a	malfunctioning	host.

Error	Reporting	(ICMP)
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The	next	issue	is	how	the	Internet	treats	errors.	While	IP	is	perfectly	willing	to	drop	datagrams	when	the	going	gets
tough—for	example,	when	a	router	does	not	know	how	to	forward	the	datagram	or	when	one	fragment	of	a	datagram
fails	to	arrive	at	the	destination—it	does	not	necessarily	fail	silently.	IP	is	always	configured	with	a	companion
protocol,	known	as	the	Internet	Control	Message	Protocol	(ICMP),	that	defines	a	collection	of	error	messages	that	are
sent	back	to	the	source	host	whenever	a	router	or	host	is	unable	to	process	an	IP	datagram	successfully.	For
example,	ICMP	defines	error	messages	indicating	that	the	destination	host	is	unreachable	(perhaps	due	to	a	link
failure),	that	the	reassembly	process	failed,	that	the	TTL	had	reached	0,	that	the	IP	header	checksum	failed,	and	so
on.

ICMP	also	defines	a	handful	of	control	messages	that	a	router	can	send	back	to	a	source	host.	One	of	the	most	useful
control	messages,	called	an	ICMP-Redirect,	tells	the	source	host	that	there	is	a	better	route	to	the	destination.	ICMP-
Redirects	are	used	in	the	following	situation.	Suppose	a	host	is	connected	to	a	network	that	has	two	routers	attached
to	it,	called	R1	and	R2,	where	the	host	uses	R1	as	its	default	router.	Should	R1	ever	receive	a	datagram	from	the
host,	where	based	on	its	forwarding	table	it	knows	that	R2	would	have	been	a	better	choice	for	a	particular	destination
address,	it	sends	an	ICMP-Redirect	back	to	the	host,	instructing	it	to	use	R2	for	all	future	datagrams	addressed	to	that
destination.	The	host	then	adds	this	new	route	to	its	forwarding	table.

ICMP	also	provides	the	basis	for	two	widely	used	debugging	tools,		ping		and		traceroute	.		ping		uses	ICMP	echo
messages	to	determine	if	a	node	is	reachable	and	alive.		traceroute		uses	a	slightly	non-intuitive	technique	to
determine	the	set	of	routers	along	the	path	to	a	destination,	which	is	the	topic	for	one	of	the	exercises	at	the	end	of
this	chapter.

Virtual	Networks	and	Tunnels
We	conclude	our	introduction	to	IP	by	considering	an	issue	you	might	not	have	anticipated,	but	one	that	is	becoming
increasingly	important.	Our	discussion	up	to	this	point	has	focused	on	making	it	possible	for	nodes	on	different
networks	to	communicate	with	each	other	in	an	unrestricted	way.	This	is	the	usually	the	goal	in	the	Internet—
everybody	wants	to	be	able	to	send	email	to	everybody,	and	the	creator	of	a	new	website	wants	to	reach	the	widest
possible	audience.	However,	there	are	many	situations	where	more	controlled	connectivity	is	required.	An	important
example	of	such	a	situation	is	the	virtual	private	network	(VPN).

The	term	VPN	is	heavily	overused	and	definitions	vary,	but	intuitively	we	can	define	a	VPN	by	considering	first	the
idea	of	a	private	network.	Corporations	with	many	sites	often	build	private	networks	by	leasing	transmission	lines	from
the	phone	companies	and	using	those	lines	to	interconnect	sites.	In	such	a	network,	communication	is	restricted	to
take	place	only	among	the	sites	of	that	corporation,	which	is	often	desirable	for	security	reasons.	To	make	a	private
network	virtual,	the	leased	transmission	lines—which	are	not	shared	with	any	other	corporations—would	be	replaced
by	some	sort	of	shared	network.	A	virtual	circuit	(VC)	is	a	very	reasonable	replacement	for	a	leased	line	because	it	still
provides	a	logical	point-to-point	connection	between	the	corporation's	sites.	For	example,	if	corporation	X	has	a	VC
from	site	A	to	site	B,	then	clearly	it	can	send	packets	between	sites	A	and	B.	But	there	is	no	way	that	corporation	Y
can	get	its	packets	delivered	to	site	B	without	first	establishing	its	own	virtual	circuit	to	site	B,	and	the	establishment	of
such	a	VC	can	be	administratively	prevented,	thus	preventing	unwanted	connectivity	between	corporation	X	and
corporation	Y.

Figure	13(a)	shows	two	private	networks	for	two	separate	corporations.	In	Figure	13(b)	they	are	both	migrated	to	a
virtual	circuit	network.	The	limited	connectivity	of	a	real	private	network	is	maintained,	but	since	the	private	networks
now	share	the	same	transmission	facilities	and	switches	we	say	that	two	virtual	private	networks	have	been	created.
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Figure	13.	An	example	of	virtual	private	networks:	(a)	two	separate	private
networks;	(b)	two	virtual	private	networks	sharing	common	switches.

In	Figure	13,	a	virtual	circuit	network	(using	ATM,	for	example)	is	used	to	provide	the	controlled	connectivity	among
sites.	It	is	also	possible	to	provide	a	similar	function	using	an	IP	network	to	provide	the	connectivity.	However,	we
cannot	just	connect	the	various	corporations'	sites	to	a	single	internetwork	because	that	would	provide	connectivity
between	corporation	X	and	corporation	Y,	which	we	wish	to	avoid.	To	solve	this	problem,	we	need	to	introduce	a	new
concept,	the	IP	tunnel.

We	can	think	of	an	IP	tunnel	as	a	virtual	point-to-point	link	between	a	pair	of	nodes	that	are	actually	separated	by	an
arbitrary	number	of	networks.	The	virtual	link	is	created	within	the	router	at	the	entrance	to	the	tunnel	by	providing	it
with	the	IP	address	of	the	router	at	the	far	end	of	the	tunnel.	Whenever	the	router	at	the	entrance	of	the	tunnel	wants
to	send	a	packet	over	this	virtual	link,	it	encapsulates	the	packet	inside	an	IP	datagram.	The	destination	address	in	the
IP	header	is	the	address	of	the	router	at	the	far	end	of	the	tunnel,	while	the	source	address	is	that	of	the	encapsulating
router.

Figure	14.	A	tunnel	through	an	internetwork.	18.5.0.1	is	the	address	of	R2
that	can	be	reached	from	R1	across	the	internetwork.
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In	the	forwarding	table	of	the	router	at	the	entrance	to	the	tunnel,	this	virtual	link	looks	much	like	a	normal	link.
Consider,	for	example,	the	network	in	Figure	14.	A	tunnel	has	been	configured	from	R1	to	R2	and	assigned	a	virtual
interface	number	of	0.	The	forwarding	table	in	R1	might	therefore	look	like	Table	4.

Table	4.	Forwarding	Table	for	Router	R1.

NetworkNum NextHop

1 Interface	0

2 Virtual	interface	0

Default Interface	1

R1	has	two	physical	interfaces.	Interface	0	connects	to	network	1;	interface	1	connects	to	a	large	internetwork	and	is
thus	the	default	for	all	traffic	that	does	not	match	something	more	specific	in	the	forwarding	table.	In	addition,	R1	has	a
virtual	interface,	which	is	the	interface	to	the	tunnel.	Suppose	R1	receives	a	packet	from	network	1	that	contains	an
address	in	network	2.	The	forwarding	table	says	this	packet	should	be	sent	out	virtual	interface	0.	In	order	to	send	a
packet	out	this	interface,	the	router	takes	the	packet,	adds	an	IP	header	addressed	to	R2,	and	then	proceeds	to
forward	the	packet	as	if	it	had	just	been	received.	R2's	address	is	18.5.0.1;	since	the	network	number	of	this	address
is	18,	not	1	or	2,	a	packet	destined	for	R2	will	be	forwarded	out	the	default	interface	into	the	internetwork.

Once	the	packet	leaves	R1,	it	looks	to	the	rest	of	the	world	like	a	normal	IP	packet	destined	to	R2,	and	it	is	forwarded
accordingly.	All	the	routers	in	the	internetwork	forward	it	using	normal	means,	until	it	arrives	at	R2.	When	R2	receives
the	packet,	it	finds	that	it	carries	its	own	address,	so	it	removes	the	IP	header	and	looks	at	the	payload	of	the	packet.
What	it	finds	is	an	inner	IP	packet	whose	destination	address	is	in	network	2.	R2	now	processes	this	packet	like	any
other	IP	packet	it	receives.	Since	R2	is	directly	connected	to	network	2,	it	forwards	the	packet	on	to	that	network.
Figur	14	shows	the	change	in	encapsulation	of	the	packet	as	it	moves	across	the	network.

While	R2	is	acting	as	the	endpoint	of	the	tunnel,	there	is	nothing	to	prevent	it	from	performing	the	normal	functions	of
a	router.	For	example,	it	might	receive	some	packets	that	are	not	tunneled,	but	that	are	addressed	to	networks	that	it
knows	how	to	reach,	and	it	would	forward	them	in	the	normal	way.

You	might	wonder	why	anyone	would	want	to	go	to	all	the	trouble	of	creating	a	tunnel	and	changing	the	encapsulation
of	a	packet	as	it	goes	across	an	internetwork.	One	reason	is	security.	Supplemented	with	encryption,	a	tunnel	can
become	a	very	private	sort	of	link	across	a	public	network.	Another	reason	may	be	that	R1	and	R2	have	some
capabilities	that	are	not	widely	available	in	the	intervening	networks,	such	as	multicast	routing.	By	connecting	these
routers	with	a	tunnel,	we	can	build	a	virtual	network	in	which	all	the	routers	with	this	capability	appear	to	be	directly
connected.	A	third	reason	to	build	tunnels	is	to	carry	packets	from	protocols	other	than	IP	across	an	IP	network.	As
long	as	the	routers	at	either	end	of	the	tunnel	know	how	to	handle	these	other	protocols,	the	IP	tunnel	looks	to	them
like	a	point-to-point	link	over	which	they	can	send	non-IP	packets.	Tunnels	also	provide	a	mechanism	by	which	we
can	force	a	packet	to	be	delivered	to	a	particular	place	even	if	its	original	header—the	one	that	gets	encapsulated
inside	the	tunnel	header—might	suggest	that	it	should	go	somewhere	else.	Thus,	we	see	that	tunneling	is	a	powerful
and	quite	general	technique	for	building	virtual	links	across	internetworks.	So	general,	in	fact,	that	the	technique
recurses,	with	the	most	common	use	case	being	to	tunnel	IP	over	IP.

Tunneling	does	have	its	downsides.	One	is	that	it	increases	the	length	of	packets;	this	might	represent	a	significant
waste	of	bandwidth	for	short	packets.	Longer	packets	might	be	subject	to	fragmentation,	which	has	its	own	set	of
drawbacks.	There	may	also	be	performance	implications	for	the	routers	at	either	end	of	the	tunnel,	since	they	need	to
do	more	work	than	normal	forwarding	as	they	add	and	remove	the	tunnel	header.	Finally,	there	is	a	management	cost
for	the	administrative	entity	that	is	responsible	for	setting	up	the	tunnels	and	making	sure	they	are	correctly	handled
by	the	routing	protocols.
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3.3	Routing

So	far	in	this	chapter	we	have	assumed	that	the	switches	and	routers	have	enough	knowledge	of	the	network
topology	so	they	can	choose	the	right	port	onto	which	each	packet	should	be	output.	In	the	case	of	virtual	circuits,
routing	is	an	issue	only	for	the	connection	request	packet;	all	subsequent	packets	follow	the	same	path	as	the
request.	In	datagram	networks,	including	IP	networks,	routing	is	an	issue	for	every	packet.	In	either	case,	a	switch	or
router	needs	to	be	able	to	look	at	a	destination	address	and	then	to	determine	which	of	the	output	ports	is	the	best
choice	to	get	a	packet	to	that	address.	As	we	saw	in	an	earlier	section,	the	switch	makes	this	decision	by	consulting	a
forwarding	table.	The	fundamental	problem	of	routing	is	how	switches	and	routers	acquire	the	information	in	their
forwarding	tables.

Key	Takeaway

We	restate	an	important	distinction,	which	is	often	neglected,	between	forwarding	and	routing.	Forwarding
consists	of	taking	a	packet,	looking	at	its	destination	address,	consulting	a	table,	and	sending	the	packet	in	a
direction	determined	by	that	table.	We	saw	several	examples	of	forwarding	in	the	preceding	section.	Routing	is
the	process	by	which	forwarding	tables	are	built.	We	also	note	that	forwarding	is	a	relatively	simple	and	well-
defined	process	performed	locally	at	a	node,	whereas	routing	depends	on	complex	distributed	algorithms	that
have	continued	to	evolve	throughout	the	history	of	networking.

While	the	terms	forwarding	table	and	routing	table	are	sometimes	used	interchangeably,	we	will	make	a	distinction
between	them	here.	The	forwarding	table	is	used	when	a	packet	is	being	forwarded	and	so	must	contain	enough
information	to	accomplish	the	forwarding	function.	This	means	that	a	row	in	the	forwarding	table	contains	the	mapping
from	a	network	prefix	to	an	outgoing	interface	and	some	MAC	information,	such	as	the	Ethernet	address	of	the	next
hop.	The	routing	table,	on	the	other	hand,	is	the	table	that	is	built	up	by	the	routing	algorithms	as	a	precursor	to
building	the	forwarding	table.	It	generally	contains	mappings	from	network	prefixes	to	next	hops.	It	may	also	contain
information	about	how	this	information	was	learned,	so	that	the	router	will	be	able	to	decide	when	it	should	discard
some	information.

Whether	the	routing	table	and	forwarding	table	are	actually	separate	data	structures	is	something	of	an
implementation	choice,	but	there	are	numerous	reasons	to	keep	them	separate.	For	example,	the	forwarding	table
needs	to	be	structured	to	optimize	the	process	of	looking	up	an	address	when	forwarding	a	packet,	while	the	routing
table	needs	to	be	optimized	for	the	purpose	of	calculating	changes	in	topology.	In	many	cases,	the	forwarding	table
may	even	be	implemented	in	specialized	hardware,	whereas	this	is	rarely	if	ever	done	for	the	routing	table.	Table	1
below	provides	an	example	of	a	row	from	each	sort	of	table.	In	this	case,	the	routing	table	tells	us	that	network	prefix
18/8	is	to	be	reached	by	a	next	hop	router	with	the	IP	address	171.69.245.10,	while	the	forwarding	table	contains	the
information	about	exactly	how	to	forward	a	packet	to	that	next	hop:	Send	it	out	interface	number	0	with	a	MAC
address	of	8:0:2b:e4:b:1:2.	Note	that	the	last	piece	of	information	is	provided	by	the	Address	Resolution	Protocol.

Table	1.	Example	Rows	from	(a)	Routing	and	(b)	Forwarding	Tables.

(a)

Prefix/Length Next	Hop

18/8 171.69.245.10

(b)

Prefix/Length Interface MAC	Address

18/8 if0 8:0:2b:e4:b:1:2
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Before	getting	into	the	details	of	routing,	we	need	to	remind	ourselves	of	the	key	question	we	should	be	asking
anytime	we	try	to	build	a	mechanism	for	the	Internet:	"Does	this	solution	scale?"	The	answer	for	the	algorithms	and
protocols	described	in	this	section	is	"not	so	much."	They	are	designed	for	networks	of	fairly	modest	size—up	to	a	few
hundred	nodes,	in	practice.	However,	the	solutions	we	describe	do	serve	as	a	building	block	for	a	hierarchical	routing
infrastructure	that	is	used	in	the	Internet	today.	Specifically,	the	protocols	described	in	this	section	are	collectively
known	as	intradomain	routing	protocols,	or	interior	gateway	protocols	(IGPs).	To	understand	these	terms,	we	need	to
define	a	routing	domain.	A	good	working	definition	is	an	internetwork	in	which	all	the	routers	are	under	the	same
administrative	control	(e.g.,	a	single	university	campus,	or	the	network	of	a	single	Internet	Service	Provider).	The
relevance	of	this	definition	will	become	apparent	in	the	next	chapter	when	we	look	at	interdomain	routing	protocols.
For	now,	the	important	thing	to	keep	in	mind	is	that	we	are	considering	the	problem	of	routing	in	the	context	of	small	to
midsized	networks,	not	for	a	network	the	size	of	the	Internet.

Network	as	a	Graph

Routing	is,	in	essence,	a	problem	of	graph	theory.	Figure	1	shows	a	graph	representing	a	network.	The	nodes	of	the
graph,	labeled	A	through	F,	may	be	hosts,	switches,	routers,	or	networks.	For	our	initial	discussion,	we	will	focus	on
the	case	where	the	nodes	are	routers.	The	edges	of	the	graph	correspond	to	the	network	links.	Each	edge	has	an
associated	cost,	which	gives	some	indication	of	the	desirability	of	sending	traffic	over	that	link.	A	discussion	of	how
edge	costs	are	assigned	is	given	in	a	later	section.

In	the	example	networks	(graphs)	used	throughout	this	chapter,	we	use	undirected	edges	and	assign	each
edge	a	single	cost.	This	is	actually	a	slight	simplification.	It	is	more	accurate	to	make	the	edges	directed,	which
typically	means	that	there	would	be	a	pair	of	edges	between	each	node—one	flowing	in	each	direction,	and
each	with	its	own	edge	cost.

Figure	1.	Network	represented	as	a	graph.

The	basic	problem	of	routing	is	to	find	the	lowest-cost	path	between	any	two	nodes,	where	the	cost	of	a	path	equals
the	sum	of	the	costs	of	all	the	edges	that	make	up	the	path.	For	a	simple	network	like	the	one	in	Figure	1,	you	could
imagine	just	calculating	all	the	shortest	paths	and	loading	them	into	some	nonvolatile	storage	on	each	node.	Such	a
static	approach	has	several	shortcomings:

It	does	not	deal	with	node	or	link	failures.

It	does	not	consider	the	addition	of	new	nodes	or	links.

It	implies	that	edge	costs	cannot	change,	even	though	we	might	reasonably	wish	to	have	link	costs	change	over
time	(e.g.,	assigning	high	cost	to	a	link	that	is	heavily	loaded).

For	these	reasons,	routing	is	achieved	in	most	practical	networks	by	running	routing	protocols	among	the	nodes.
These	protocols	provide	a	distributed,	dynamic	way	to	solve	the	problem	of	finding	the	lowest-cost	path	in	the
presence	of	link	and	node	failures	and	changing	edge	costs.	Note	the	word	distributed	in	the	previous	sentence;	it	is
difficult	to	make	centralized	solutions	scalable,	so	all	the	widely	used	routing	protocols	use	distributed	algorithms.
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The	distributed	nature	of	routing	algorithms	is	one	of	the	main	reasons	why	this	has	been	such	a	rich	field	of	research
and	development—there	are	a	lot	of	challenges	in	making	distributed	algorithms	work	well.	For	example,	distributed
algorithms	raise	the	possibility	that	two	routers	will	at	one	instant	have	different	ideas	about	the	shortest	path	to	some
destination.	In	fact,	each	one	may	think	that	the	other	one	is	closer	to	the	destination	and	decide	to	send	packets	to
the	other	one.	Clearly,	such	packets	will	be	stuck	in	a	loop	until	the	discrepancy	between	the	two	routers	is	resolved,
and	it	would	be	good	to	resolve	it	as	soon	as	possible.	This	is	just	one	example	of	the	type	of	problem	routing
protocols	must	address.

To	begin	our	analysis,	we	assume	that	the	edge	costs	in	the	network	are	known.	We	will	examine	the	two	main
classes	of	routing	protocols:	distance	vector	and	link	state.	In	a	later	section,	we	return	to	the	problem	of	calculating
edge	costs	in	a	meaningful	way.

Distance-Vector	(RIP)

The	idea	behind	the	distance-vector	algorithm	is	suggested	by	its	name.	(The	other	common	name	for	this	class	of
algorithm	is	Bellman-Ford,	after	its	inventors.)	Each	node	constructs	a	one-dimensional	array	(a	vector)	containing	the
"distances"	(costs)	to	all	other	nodes	and	distributes	that	vector	to	its	immediate	neighbors.	The	starting	assumption
for	distance-vector	routing	is	that	each	node	knows	the	cost	of	the	link	to	each	of	its	directly	connected	neighbors.
These	costs	may	be	provided	when	the	router	is	configured	by	a	network	manager.	A	link	that	is	down	is	assigned	an
infinite	cost.

Figure	2.	Distance-vector	routing:	an	example	network.

Table	2.	Initial	Distances	Stored	at	Each	Node	(Global	View).

A B C D E F G

A 0 1 1 ∞ 1 1 ∞

B 1 0 1 ∞ ∞ ∞ ∞

C 1 1 0 1 ∞ ∞ ∞

D ∞ ∞ 1 0 ∞ ∞ 1

E 1 ∞ ∞ ∞ 0 ∞ ∞

F 1 ∞ ∞ ∞ ∞ 0 1

G ∞ ∞ ∞ 1 ∞ 1 0

To	see	how	a	distance-vector	routing	algorithm	works,	it	is	easiest	to	consider	an	example	like	the	one	depicted	in
Figure	2.	In	this	example,	the	cost	of	each	link	is	set	to	1,	so	that	a	least-cost	path	is	simply	the	one	with	the	fewest
hops.	(Since	all	edges	have	the	same	cost,	we	do	not	show	the	costs	in	the	graph.)	We	can	represent	each	node's
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knowledge	about	the	distances	to	all	other	nodes	as	a	table	like	Table	2.	Note	that	each	node	knows	only	the
information	in	one	row	of	the	table	(the	one	that	bears	its	name	in	the	left	column).	The	global	view	that	is	presented
here	is	not	available	at	any	single	point	in	the	network.

We	may	consider	each	row	in	Table	2	as	a	list	of	distances	from	one	node	to	all	other	nodes,	representing	the	current
beliefs	of	that	node.	Initially,	each	node	sets	a	cost	of	1	to	its	directly	connected	neighbors	and	∞	to	all	other	nodes.
Thus,	A	initially	believes	that	it	can	reach	B	in	one	hop	and	that	D	is	unreachable.	The	routing	table	stored	at	A
reflects	this	set	of	beliefs	and	includes	the	name	of	the	next	hop	that	A	would	use	to	reach	any	reachable	node.
Initially,	then,	A's	routing	table	would	look	like	Table	3.

Table	3.	Initial	Routing	Table	at	Node	A.

Destination Cost NextHop

B 1 B

C 1 C

D ∞ —

E 1 E

F 1 F

G ∞ —

The	next	step	in	distance-vector	routing	is	that	every	node	sends	a	message	to	its	directly	connected	neighbors
containing	its	personal	list	of	distances.	For	example,	node	F	tells	node	A	that	it	can	reach	node	G	at	a	cost	of	1;	A
also	knows	it	can	reach	F	at	a	cost	of	1,	so	it	adds	these	costs	to	get	the	cost	of	reaching	G	by	means	of	F.	This	total
cost	of	2	is	less	than	the	current	cost	of	infinity,	so	A	records	that	it	can	reach	G	at	a	cost	of	2	by	going	through	F.
Similarly,	A	learns	from	C	that	D	can	be	reached	from	C	at	a	cost	of	1;	it	adds	this	to	the	cost	of	reaching	C	(1)	and
decides	that	D	can	be	reached	via	C	at	a	cost	of	2,	which	is	better	than	the	old	cost	of	infinity.	At	the	same	time,	A
learns	from	C	that	B	can	be	reached	from	C	at	a	cost	of	1,	so	it	concludes	that	the	cost	of	reaching	B	via	C	is	2.	Since
this	is	worse	than	the	current	cost	of	reaching	B	(1),	this	new	information	is	ignored.

At	this	point,	A	can	update	its	routing	table	with	costs	and	next	hops	for	all	nodes	in	the	network.	The	result	is	shown
in	Table	4.

Table	4.	Final	Routing	Table	at	Node	A.

Destination Cost NextHop

B 1 B

C 1 C

D 2 C

E 1 E

F 1 F

G 2 F

Table	5.	Final	Distances	Stored	at	Each	Node	(Global	View).

A B C D E F G

A 0 1 1 2 1 1 2

B 1 0 1 2 2 2 3
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C 1 1 0 1 2 2 2

D 2 2 1 0 3 2 1

E 1 2 2 3 0 2 3

F 1 2 2 2 2 0 1

G 2 3 2 1 3 1 0

In	the	absence	of	any	topology	changes,	it	takes	only	a	few	exchanges	of	information	between	neighbors	before	each
node	has	a	complete	routing	table.	The	process	of	getting	consistent	routing	information	to	all	the	nodes	is	called
convergence.	Table	5	shows	the	final	set	of	costs	from	each	node	to	all	other	nodes	when	routing	has	converged.	We
must	stress	that	there	is	no	one	node	in	the	network	that	has	all	the	information	in	this	table—each	node	only	knows
about	the	contents	of	its	own	routing	table.	The	beauty	of	a	distributed	algorithm	like	this	is	that	it	enables	all	nodes	to
achieve	a	consistent	view	of	the	network	in	the	absence	of	any	centralized	authority.

There	are	a	few	details	to	fill	in	before	our	discussion	of	distance-vector	routing	is	complete.	First	we	note	that	there
are	two	different	circumstances	under	which	a	given	node	decides	to	send	a	routing	update	to	its	neighbors.	One	of
these	circumstances	is	the	periodic	update.	In	this	case,	each	node	automatically	sends	an	update	message	every	so
often,	even	if	nothing	has	changed.	This	serves	to	let	the	other	nodes	know	that	this	node	is	still	running.	It	also
makes	sure	that	they	keep	getting	information	that	they	may	need	if	their	current	routes	become	unviable.	The
frequency	of	these	periodic	updates	varies	from	protocol	to	protocol,	but	it	is	typically	on	the	order	of	several	seconds
to	several	minutes.	The	second	mechanism,	sometimes	called	a	triggered	update,	happens	whenever	a	node	notices
a	link	failure	or	receives	an	update	from	one	of	its	neighbors	that	causes	it	to	change	one	of	the	routes	in	its	routing
table.	Whenever	a	node's	routing	table	changes,	it	sends	an	update	to	its	neighbors,	which	may	lead	to	a	change	in
their	tables,	causing	them	to	send	an	update	to	their	neighbors.

Now	consider	what	happens	when	a	link	or	node	fails.	The	nodes	that	notice	first	send	new	lists	of	distances	to	their
neighbors,	and	normally	the	system	settles	down	fairly	quickly	to	a	new	state.	As	to	the	question	of	how	a	node
detects	a	failure,	there	are	a	couple	of	different	answers.	In	one	approach,	a	node	continually	tests	the	link	to	another
node	by	sending	a	control	packet	and	seeing	if	it	receives	an	acknowledgment.	In	another	approach,	a	node
determines	that	the	link	(or	the	node	at	the	other	end	of	the	link)	is	down	if	it	does	not	receive	the	expected	periodic
routing	update	for	the	last	few	update	cycles.

To	understand	what	happens	when	a	node	detects	a	link	failure,	consider	what	happens	when	F	detects	that	its	link	to
G	has	failed.	First,	F	sets	its	new	distance	to	G	to	infinity	and	passes	that	information	along	to	A.	Since	A	knows	that
its	2-hop	path	to	G	is	through	F,	A	would	also	set	its	distance	to	G	to	infinity.	However,	with	the	next	update	from	C,	A
would	learn	that	C	has	a	2-hop	path	to	G.	Thus,	A	would	know	that	it	could	reach	G	in	3	hops	through	C,	which	is	less
than	infinity,	and	so	A	would	update	its	table	accordingly.	When	it	advertises	this	to	F,	node	F	would	learn	that	it	can
reach	G	at	a	cost	of	4	through	A,	which	is	less	than	infinity,	and	the	system	would	again	become	stable.

Unfortunately,	slightly	different	circumstances	can	prevent	the	network	from	stabilizing.	Suppose,	for	example,	that	the
link	from	A	to	E	goes	down.	In	the	next	round	of	updates,	A	advertises	a	distance	of	infinity	to	E,	but	B	and	C	advertise
a	distance	of	2	to	E.	Depending	on	the	exact	timing	of	events,	the	following	might	happen:	Node	B,	upon	hearing	that
E	can	be	reached	in	2	hops	from	C,	concludes	that	it	can	reach	E	in	3	hops	and	advertises	this	to	A;	node	A
concludes	that	it	can	reach	E	in	4	hops	and	advertises	this	to	C;	node	C	concludes	that	it	can	reach	E	in	5	hops;	and
so	on.	This	cycle	stops	only	when	the	distances	reach	some	number	that	is	large	enough	to	be	considered	infinite.	In
the	meantime,	none	of	the	nodes	actually	knows	that	E	is	unreachable,	and	the	routing	tables	for	the	network	do	not
stabilize.	This	situation	is	known	as	the	count	to	infinity	problem.

There	are	several	partial	solutions	to	this	problem.	The	first	one	is	to	use	some	relatively	small	number	as	an
approximation	of	infinity.	For	example,	we	might	decide	that	the	maximum	number	of	hops	to	get	across	a	certain
network	is	never	going	to	be	more	than	16,	and	so	we	could	pick	16	as	the	value	that	represents	infinity.	This	at	least
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bounds	the	amount	of	time	that	it	takes	to	count	to	infinity.	Of	course,	it	could	also	present	a	problem	if	our	network
grew	to	a	point	where	some	nodes	were	separated	by	more	than	16	hops.

One	technique	to	improve	the	time	to	stabilize	routing	is	called	split	horizon.	The	idea	is	that	when	a	node	sends	a
routing	update	to	its	neighbors,	it	does	not	send	those	routes	it	learned	from	each	neighbor	back	to	that	neighbor.	For
example,	if	B	has	the	route	(E,	2,	A)	in	its	table,	then	it	knows	it	must	have	learned	this	route	from	A,	and	so	whenever
B	sends	a	routing	update	to	A,	it	does	not	include	the	route	(E,	2)	in	that	update.	In	a	stronger	variation	of	split
horizon,	called	split	horizon	with	poison	reverse,	B	actually	sends	that	route	back	to	A,	but	it	puts	negative	information
in	the	route	to	ensure	that	A	will	not	eventually	use	B	to	get	to	E.	For	example,	B	sends	the	route	(E,	∞)	to	A.	The
problem	with	both	of	these	techniques	is	that	they	only	work	for	routing	loops	that	involve	two	nodes.	For	larger
routing	loops,	more	drastic	measures	are	called	for.	Continuing	the	above	example,	if	B	and	C	had	waited	for	a	while
after	hearing	of	the	link	failure	from	A	before	advertising	routes	to	E,	they	would	have	found	that	neither	of	them	really
had	a	route	to	E.	Unfortunately,	this	approach	delays	the	convergence	of	the	protocol;	speed	of	convergence	is	one	of
the	key	advantages	of	its	competitor,	link-state	routing,	the	subject	of	a	later	section.

Implementation

The	code	that	implements	this	algorithm	is	very	straightforward;	we	give	only	some	of	the	basics	here.	Structure
	Route		defines	each	entry	in	the	routing	table,	and	constant		MAX_TTL		specifies	how	long	an	entry	is	kept	in	the	table
before	it	is	discarded.

#define	MAX_ROUTES						128					/*	maximum	size	of	routing	table	*/
#define	MAX_TTL									120					/*	time	(in	seconds)	until	route	expires	*/

typedef	struct	{
				NodeAddr		Destination;				/*	address	of	destination	*/
				NodeAddr		NextHop;								/*	address	of	next	hop	*/
				int								Cost;										/*	distance	metric	*/
				u_short			TTL;												/*	time	to	live	*/
}	Route;

int						numRoutes	=	0;
Route				routingTable[MAX_ROUTES];

The	routine	that	updates	the	local	node's	routing	table	based	on	a	new	route	is	given	by		mergeRoute	.	Although	not
shown,	a	timer	function	periodically	scans	the	list	of	routes	in	the	node's	routing	table,	decrements	the		TTL		(time	to
live)	field	of	each	route,	and	discards	any	routes	that	have	a	time	to	live	of	0.	Notice,	however,	that	the		TTL		field	is
reset	to		MAX_TTL		any	time	the	route	is	reconfirmed	by	an	update	message	from	a	neighboring	node.

void
mergeRoute	(Route	*new)
{
				int	i;

				for	(i	=	0;	i	<	numRoutes;	++i)
				{
								if	(new->Destination	==	routingTable[i].Destination)
								{
												if	(new->Cost	+	1	<	routingTable[i].Cost)
												{
																/*	found	a	better	route:	*/
																break;
												}	else	if	(new->NextHop	==	routingTable[i].NextHop)	{
																/*	metric	for	current	next-hop	may	have	changed:	*/
																break;
												}	else	{
																/*	route	is	uninteresting---just	ignore	it	*/
																return;
												}
								}
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				}
				if	(i	==	numRoutes)
				{
								/*	this	is	a	completely	new	route;	is	there	room	for	it?	*/
								if	(numRoutes	<	MAXROUTES)
								{
												++numRoutes;
								}	else	{
												/*	can`t	fit	this	route	in	table	so	give	up	*/
												return;
								}
				}
				routingTable[i]	=	*new;
				/*	reset	TTL	*/
				routingTable[i].TTL	=	MAX_TTL;
				/*	account	for	hop	to	get	to	next	node	*/
				++routingTable[i].Cost;
}

Finally,	the	procedure		updateRoutingTable		is	the	main	routine	that	calls		mergeRoute		to	incorporate	all	the	routes
contained	in	a	routing	update	that	is	received	from	a	neighboring	node.

void
updateRoutingTable	(Route	*newRoute,	int	numNewRoutes)
{
				int	i;

				for	(i=0;	i	<	numNewRoutes;	++i)
				{
								mergeRoute(&newRoute[i]);
				}
}

Routing	Information	Protocol	(RIP)

One	of	the	more	widely	used	routing	protocols	in	IP	networks	is	the	Routing	Information	Protocol	(RIP).	Its	widespread
use	in	the	early	days	of	IP	was	due	in	no	small	part	to	the	fact	that	it	was	distributed	along	with	the	popular	Berkeley
Software	Distribution	(BSD)	version	of	Unix,	from	which	many	commercial	versions	of	Unix	were	derived.	It	is	also
extremely	simple.	RIP	is	the	canonical	example	of	a	routing	protocol	built	on	the	distance-vector	algorithm	just
described.

Routing	protocols	in	internetworks	differ	very	slightly	from	the	idealized	graph	model	described	above.	In	an
internetwork,	the	goal	of	the	routers	is	to	learn	how	to	forward	packets	to	various	networks.	Thus,	rather	than
advertising	the	cost	of	reaching	other	routers,	the	routers	advertise	the	cost	of	reaching	networks.	For	example,	in
Figure	3,	router	C	would	advertise	to	router	A	the	fact	that	it	can	reach	networks	2	and	3	(to	which	it	is	directly
connected)	at	a	cost	of	0,	networks	5	and	6	at	cost	1,	and	network	4	at	cost	2.
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Figure	3.	Example	network	running	RIP.

Figure	4.	RIPv2	packet	format.

We	can	see	evidence	of	this	in	the	RIP	(version	2)	packet	format	in	Figure	4.	The	majority	of	the	packet	is	taken	up
with		(address,	mask,	distance)		triples.	However,	the	principles	of	the	routing	algorithm	are	just	the	same.	For	example,
if	router	A	learns	from	router	B	that	network	X	can	be	reached	at	a	lower	cost	via	B	than	via	the	existing	next	hop	in
the	routing	table,	A	updates	the	cost	and	next	hop	information	for	the	network	number	accordingly.

RIP	is	in	fact	a	fairly	straightforward	implementation	of	distance-vector	routing.	Routers	running	RIP	send	their
advertisements	every	30	seconds;	a	router	also	sends	an	update	message	whenever	an	update	from	another	router
causes	it	to	change	its	routing	table.	One	point	of	interest	is	that	it	supports	multiple	address	families,	not	just	IP—that
is	the	reason	for	the		Family		part	of	the	advertisements.	RIP	version	2	(RIPv2)	also	introduced	the	subnet	masks
described	in	an	earlier	section,	whereas	RIP	version	1	worked	with	the	old	classful	addresses	of	IP.

As	we	will	see	below,	it	is	possible	to	use	a	range	of	different	metrics	or	costs	for	the	links	in	a	routing	protocol.	RIP
takes	the	simplest	approach,	with	all	link	costs	being	equal	to	1,	just	as	in	our	example	above.	Thus,	it	always	tries	to
find	the	minimum	hop	route.	Valid	distances	are	1	through	15,	with	16	representing	infinity.	This	also	limits	RIP	to
running	on	fairly	small	networks—those	with	no	paths	longer	than	15	hops.
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Link	State	(OSPF)

Link-state	routing	is	the	second	major	class	of	intradomain	routing	protocol.	The	starting	assumptions	for	link-state
routing	are	rather	similar	to	those	for	distance-vector	routing.	Each	node	is	assumed	to	be	capable	of	finding	out	the
state	of	the	link	to	its	neighbors	(up	or	down)	and	the	cost	of	each	link.	Again,	we	want	to	provide	each	node	with
enough	information	to	enable	it	to	find	the	least-cost	path	to	any	destination.	The	basic	idea	behind	link-state	protocols
is	very	simple:	Every	node	knows	how	to	reach	its	directly	connected	neighbors,	and	if	we	make	sure	that	the	totality
of	this	knowledge	is	disseminated	to	every	node,	then	every	node	will	have	enough	knowledge	of	the	network	to	build
a	complete	map	of	the	network.	This	is	clearly	a	sufficient	condition	(although	not	a	necessary	one)	for	finding	the
shortest	path	to	any	point	in	the	network.	Thus,	link-state	routing	protocols	rely	on	two	mechanisms:	reliable
dissemination	of	link-state	information,	and	the	calculation	of	routes	from	the	sum	of	all	the	accumulated	link-state
knowledge.

Reliable	Flooding

Reliable	flooding	is	the	process	of	making	sure	that	all	the	nodes	participating	in	the	routing	protocol	get	a	copy	of	the
link-state	information	from	all	the	other	nodes.	As	the	term	flooding	suggests,	the	basic	idea	is	for	a	node	to	send	its
link-state	information	out	on	all	of	its	directly	connected	links;	each	node	that	receives	this	information	then	forwards	it
out	on	all	of	its	links.	This	process	continues	until	the	information	has	reached	all	the	nodes	in	the	network.

More	precisely,	each	node	creates	an	update	packet,	also	called	a	link-state	packet	(LSP),	which	contains	the
following	information:

The	ID	of	the	node	that	created	the	LSP

A	list	of	directly	connected	neighbors	of	that	node,	with	the	cost	of	the	link	to	each	one

A	sequence	number

A	time	to	live	for	this	packet

The	first	two	items	are	needed	to	enable	route	calculation;	the	last	two	are	used	to	make	the	process	of	flooding	the
packet	to	all	nodes	reliable.	Reliability	includes	making	sure	that	you	have	the	most	recent	copy	of	the	information,
since	there	may	be	multiple,	contradictory	LSPs	from	one	node	traversing	the	network.	Making	the	flooding	reliable
has	proven	to	be	quite	difficult.	(For	example,	an	early	version	of	link-state	routing	used	in	the	ARPANET	caused	that
network	to	fail	in	1981.)

Flooding	works	in	the	following	way.	First,	the	transmission	of	LSPs	between	adjacent	routers	is	made	reliable	using
acknowledgments	and	retransmissions	just	as	in	the	reliable	link-layer	protocol.	However,	several	more	steps	are
necessary	to	reliably	flood	an	LSP	to	all	nodes	in	a	network.

Consider	a	node	X	that	receives	a	copy	of	an	LSP	that	originated	at	some	other	node	Y.	Note	that	Y	may	be	any	other
router	in	the	same	routing	domain	as	X.	X	checks	to	see	if	it	has	already	stored	a	copy	of	an	LSP	from	Y.	If	not,	it
stores	the	LSP.	If	it	already	has	a	copy,	it	compares	the	sequence	numbers;	if	the	new	LSP	has	a	larger	sequence
number,	it	is	assumed	to	be	the	more	recent,	and	that	LSP	is	stored,	replacing	the	old	one.	A	smaller	(or	equal)
sequence	number	would	imply	an	LSP	older	(or	not	newer)	than	the	one	stored,	so	it	would	be	discarded	and	no
further	action	would	be	needed.	If	the	received	LSP	was	the	newer	one,	X	then	sends	a	copy	of	that	LSP	to	all	of	its
neighbors	except	the	neighbor	from	which	the	LSP	was	just	received.	The	fact	that	the	LSP	is	not	sent	back	to	the
node	from	which	it	was	received	helps	to	bring	an	end	to	the	flooding	of	an	LSP.	Since	X	passes	the	LSP	on	to	all	its
neighbors,	who	then	turn	around	and	do	the	same	thing,	the	most	recent	copy	of	the	LSP	eventually	reaches	all
nodes.
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Figure	5.	Flooding	of	link-state	packets:	(a)	LSP	arrives	at	node	X;	(b)	X
floods	LSP	to	A	and	C;	(c)	A	and	C	flood	LSP	to	B	(but	not	X);	(d)	flooding

is	complete.

Figure	5	shows	an	LSP	being	flooded	in	a	small	network.	Each	node	becomes	shaded	as	it	stores	the	new	LSP.	In
Figure	5(a)	the	LSP	arrives	at	node	X,	which	sends	it	to	neighbors	A	and	C	in	Figure	5(b).	A	and	C	do	not	send	it	back
to	X,	but	send	it	on	to	B.	Since	B	receives	two	identical	copies	of	the	LSP,	it	will	accept	whichever	arrived	first	and
ignore	the	second	as	a	duplicate.	It	then	passes	the	LSP	onto	D,	which	has	no	neighbors	to	flood	it	to,	and	the
process	is	complete.

Just	as	in	RIP,	each	node	generates	LSPs	under	two	circumstances.	Either	the	expiry	of	a	periodic	timer	or	a	change
in	topology	can	cause	a	node	to	generate	a	new	LSP.	However,	the	only	topology-based	reason	for	a	node	to
generate	an	LSP	is	if	one	of	its	directly	connected	links	or	immediate	neighbors	has	gone	down.	The	failure	of	a	link
can	be	detected	in	some	cases	by	the	link-layer	protocol.	The	demise	of	a	neighbor	or	loss	of	connectivity	to	that
neighbor	can	be	detected	using	periodic	"hello"	packets.	Each	node	sends	these	to	its	immediate	neighbors	at	defined
intervals.	If	a	sufficiently	long	time	passes	without	receipt	of	a	"hello"	from	a	neighbor,	the	link	to	that	neighbor	will	be
declared	down,	and	a	new	LSP	will	be	generated	to	reflect	this	fact.

One	of	the	important	design	goals	of	a	link-state	protocol's	flooding	mechanism	is	that	the	newest	information	must	be
flooded	to	all	nodes	as	quickly	as	possible,	while	old	information	must	be	removed	from	the	network	and	not	allowed
to	circulate.	In	addition,	it	is	clearly	desirable	to	minimize	the	total	amount	of	routing	traffic	that	is	sent	around	the
network;	after	all,	this	is	just	overhead	from	the	perspective	of	those	who	actually	use	the	network	for	their
applications.	The	next	few	paragraphs	describe	some	of	the	ways	that	these	goals	are	accomplished.

One	easy	way	to	reduce	overhead	is	to	avoid	generating	LSPs	unless	absolutely	necessary.	This	can	be	done	by
using	very	long	timers—often	on	the	order	of	hours—for	the	periodic	generation	of	LSPs.	Given	that	the	flooding
protocol	is	truly	reliable	when	topology	changes,	it	is	safe	to	assume	that	messages	saying	"nothing	has	changed"	do
not	need	to	be	sent	very	often.

To	make	sure	that	old	information	is	replaced	by	newer	information,	LSPs	carry	sequence	numbers.	Each	time	a	node
generates	a	new	LSP,	it	increments	the	sequence	number	by	1.	Unlike	most	sequence	numbers	used	in	protocols,
these	sequence	numbers	are	not	expected	to	wrap,	so	the	field	needs	to	be	quite	large	(say,	64	bits).	If	a	node	goes
down	and	then	comes	back	up,	it	starts	with	a	sequence	number	of	0.	If	the	node	was	down	for	a	long	time,	all	the	old
LSPs	for	that	node	will	have	timed	out	(as	described	below);	otherwise,	this	node	will	eventually	receive	a	copy	of	its
own	LSP	with	a	higher	sequence	number,	which	it	can	then	increment	and	use	as	its	own	sequence	number.	This	will
ensure	that	its	new	LSP	replaces	any	of	its	old	LSPs	left	over	from	before	the	node	went	down.

LSPs	also	carry	a	time	to	live.	This	is	used	to	ensure	that	old	link-state	information	is	eventually	removed	from	the
network.	A	node	always	decrements	the	TTL	of	a	newly	received	LSP	before	flooding	it	to	its	neighbors.	It	also	"ages"
the	LSP	while	it	is	stored	in	the	node.	When	the	TTL	reaches	0,	the	node	refloods	the	LSP	with	a	TTL	of	0,	which	is
interpreted	by	all	the	nodes	in	the	network	as	a	signal	to	delete	that	LSP.
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Route	Calculation

Once	a	given	node	has	a	copy	of	the	LSP	from	every	other	node,	it	is	able	to	compute	a	complete	map	for	the
topology	of	the	network,	and	from	this	map	it	is	able	to	decide	the	best	route	to	each	destination.	The	question,	then,
is	exactly	how	it	calculates	routes	from	this	information.	The	solution	is	based	on	a	well-known	algorithm	from	graph
theory—Dijkstra's	shortest-path	algorithm.

We	first	define	Dijkstra's	algorithm	in	graph-theoretic	terms.	Imagine	that	a	node	takes	all	the	LSPs	it	has	received	and
constructs	a	graphical	representation	of	the	network,	in	which	N	denotes	the	set	of	nodes	in	the	graph,	l(i,j)	denotes
the	nonnegative	cost	(weight)	associated	with	the	edge	between	nodes	i,	j	in	N	and	l(i,	j)	=	∞	if	no	edge	connects	i
and	j.	In	the	following	description,	we	let	s	in	N	denote	this	node,	that	is,	the	node	executing	the	algorithm	to	find	the
shortest	path	to	all	the	other	nodes	in	N.	Also,	the	algorithm	maintains	the	following	two	variables:	M	denotes	the	set
of	nodes	incorporated	so	far	by	the	algorithm,	and	C(n)	denotes	the	cost	of	the	path	from	s	to	each	node	n.	Given
these	definitions,	the	algorithm	is	defined	as	follows:

M	=	{s}
for	each	n	in	N	-	{s}
				C(n)	=	l(s,n)
while	(N	!=	M)
				M	=	M	+	{w}	such	that	C(w)	is	the	minimum	for	all	w	in	(N-M)
				for	each	n	in	(N-M)
				C(n)	=	MIN(C(n),	C(w)+l(w,n))

Basically,	the	algorithm	works	as	follows.	We	start	with	M	containing	this	node	s	and	then	initialize	the	table	of	costs
(the	array		C(n)	)	to	other	nodes	using	the	known	costs	to	directly	connected	nodes.	We	then	look	for	the	node	that	is
reachable	at	the	lowest	cost	(w)	and	add	it	to	M.	Finally,	we	update	the	table	of	costs	by	considering	the	cost	of
reaching	nodes	through	w.	In	the	last	line	of	the	algorithm,	we	choose	a	new	route	to	node	n	that	goes	through	node	w
if	the	total	cost	of	going	from	the	source	to	w	and	then	following	the	link	from	w	to	n	is	less	than	the	old	route	we	had
to	n.	This	procedure	is	repeated	until	all	nodes	are	incorporated	in	M.

In	practice,	each	switch	computes	its	routing	table	directly	from	the	LSPs	it	has	collected	using	a	realization	of
Dijkstra's	algorithm	called	the	forward	search	algorithm.	Specifically,	each	switch	maintains	two	lists,	known	as
	Tentative		and		Confirmed	.	Each	of	these	lists	contains	a	set	of	entries	of	the	form		(Destination,	Cost,	NextHop)	.	The
algorithm	works	as	follows:

1.	 Initialize	the		Confirmed		list	with	an	entry	for	myself;	this	entry	has	a	cost	of	0.

2.	 For	the	node	just	added	to	the		Confirmed		list	in	the	previous	step,	call	it	node		Next		and	select	its	LSP.

3.	 For	each	neighbor	(	Neighbor	)	of		Next	,	calculate	the	cost	(	Cost	)	to	reach	this		Neighbor		as	the	sum	of	the	cost
from	myself	to		Next		and	from		Next		to		Neighbor	.

i.	 If		Neighbor		is	currently	on	neither	the		Confirmed		nor	the		Tentative		list,	then	add		(Neighbor,	Cost,	NextHop)		to
the		Tentative		list,	where		NextHop		is	the	direction	I	go	to	reach		Next	.

ii.	 If		Neighbor		is	currently	on	the		Tentative		list,	and	the		Cost		is	less	than	the	currently	listed	cost	for		Neighbor	,
then	replace	the	current	entry	with		(Neighbor,	Cost,	NextHop)	,	where		NextHop		is	the	direction	I	go	to	reach
	Next	.

4.	 If	the		Tentative		list	is	empty,	stop.	Otherwise,	pick	the	entry	from	the		Tentative		list	with	the	lowest	cost,	move	it
to	the		Confirmed		list,	and	return	to	step	2.
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Figure	6.	Link-state	routing:	an	example	network.

This	will	become	a	lot	easier	to	understand	when	we	look	at	an	example.	Consider	the	network	depicted	in	Figure	6.
Note	that,	unlike	our	previous	example,	this	network	has	a	range	of	different	edge	costs.	Table	6	traces	the	steps	for
building	the	routing	table	for	node	D.	We	denote	the	two	outputs	of	D	by	using	the	names	of	the	nodes	to	which	they
connect,	B	and	C.	Note	the	way	the	algorithm	seems	to	head	off	on	false	leads	(like	the	11-unit	cost	path	to	B	that
was	the	first	addition	to	the		Tentative		list)	but	ends	up	with	the	least-cost	paths	to	all	nodes.

Table	6.	Steps	for	Building	Routing	Table	for	Node	D.

Step Confirmed Tentative Comments

1 (D,0,--) Since	D	is	the	only	new	member	of	the	confirmed	list,	look	at	its
LSP.

2 (D,0,--) (B,11,B)
(C,2,C)

D's	LSP	says	we	can	reach	B	through	B	at	cost	11,	which	is	better
than	anything	else	on	either	list,	so	put	it	on		Tentative		list;	same
for	C.

3 (D,0,--)
(C,2,C) (B,11,B) Put	lowest-cost	member	of		Tentative		(C)	onto		Confirmed		list.

Next,	examine	LSP	of	newly	confirmed	member	(C).

4 (D,0,--)
(C,2,C)

(B,5,C)
(A,12,C)

Cost	to	reach	B	through	C	is	5,	so	replace	(B,11,B).	C's	LSP	tells
us	that	we	can	reach	A	at	cost	12.

5
(D,0,--)
(C,2,C)
(B,5,C)

(A,12,C) Move	lowest-cost	member	of		Tentative		(B)	to		Confirmed	,	then
look	at	its	LSP.

6
(D,0,--)
(C,2,C)
(B,5,C)

(A,10,C) Since	we	can	reach	A	at	cost	5	through	B,	replace	the		Tentative	
entry.

7

(D,0,--)
(C,2,C)
(B,5,C)
(A,10,C)

Move	lowest-cost	member	of		Tentative		(A)	to		Confirmed	,	and	we
are	all	done.

The	link-state	routing	algorithm	has	many	nice	properties:	It	has	been	proven	to	stabilize	quickly,	it	does	not	generate
much	traffic,	and	it	responds	rapidly	to	topology	changes	or	node	failures.	On	the	downside,	the	amount	of	information
stored	at	each	node	(one	LSP	for	every	other	node	in	the	network)	can	be	quite	large.	This	is	one	of	the	fundamental
problems	of	routing	and	is	an	instance	of	the	more	general	problem	of	scalability.	Some	solutions	to	both	the	specific
problem	(the	amount	of	storage	potentially	required	at	each	node)	and	the	general	problem	(scalability)	will	be
discussed	in	the	next	section.

Key	Takeaway

The	difference	between	the	distance-vector	and	link-state	algorithms	can	be	summarized	as	follows.	In
distance-vector,	each	node	talks	only	to	its	directly	connected	neighbors,	but	it	tells	them	everything	it	has
learned	(i.e.,	distance	to	all	nodes).	In	link-state,	each	node	talks	to	all	other	nodes,	but	it	tells	them	only	what	it
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knows	for	sure	(i.e.,	only	the	state	of	its	directly	connected	links).

The	Open	Shortest	Path	First	Protocol	(OSPF)

One	of	the	most	widely	used	link-state	routing	protocols	is	OSPF.	The	first	word,	"Open,"	refers	to	the	fact	that	it	is	an
open,	nonproprietary	standard,	created	under	the	auspices	of	the	Internet	Engineering	Task	Force	(IETF).	The	"SPF"
part	comes	from	an	alternative	name	for	link-state	routing.	OSPF	adds	quite	a	number	of	features	to	the	basic	link-
state	algorithm	described	above,	including	the	following:

Authentication	of	routing	messages—One	feature	of	distributed	routing	algorithms	is	that	they	disperse
information	from	one	node	to	many	other	nodes,	and	the	entire	network	can	thus	be	impacted	by	bad	information
from	one	node.	For	this	reason,	it's	a	good	idea	to	be	sure	that	all	the	nodes	taking	part	in	the	protocol	can	be
trusted.	Authenticating	routing	messages	helps	achieve	this.	Early	versions	of	OSPF	used	a	simple	8-byte
password	for	authentication.	This	is	not	a	strong	enough	form	of	authentication	to	prevent	dedicated	malicious
users,	but	it	alleviates	some	problems	caused	by	misconfiguration	or	casual	attacks.	(A	similar	form	of
authentication	was	added	to	RIP	in	version	2.)	Strong	cryptographic	authentication	was	later	added.

Additional	hierarchy—Hierarchy	is	one	of	the	fundamental	tools	used	to	make	systems	more	scalable.	OSPF
introduces	another	layer	of	hierarchy	into	routing	by	allowing	a	domain	to	be	partitioned	into	areas.	This	means
that	a	router	within	a	domain	does	not	necessarily	need	to	know	how	to	reach	every	network	within	that	domain—
it	may	be	able	to	get	by	knowing	only	how	to	get	to	the	right	area.	Thus,	there	is	a	reduction	in	the	amount	of
information	that	must	be	transmitted	to	and	stored	in	each	node.

Load	balancing—OSPF	allows	multiple	routes	to	the	same	place	to	be	assigned	the	same	cost	and	will	cause
traffic	to	be	distributed	evenly	over	those	routes,	thus	making	better	use	of	the	available	network	capacity.

Figure	7.	OSPF	header	format.

There	are	several	different	types	of	OSPF	messages,	but	all	begin	with	the	same	header,	as	shown	in	Figure	7.	The
	Version		field	is	currently	set	to	2,	and	the		Type		field	may	take	the	values	1	through	5.	The		SourceAddr		identifies	the
sender	of	the	message,	and	the		AreaId		is	a	32-bit	identifier	of	the	area	in	which	the	node	is	located.	The	entire
packet,	except	the	authentication	data,	is	protected	by	a	16-bit	checksum	using	the	same	algorithm	as	the	IP	header.
The		Authentication	type		is	0	if	no	authentication	is	used;	otherwise,	it	may	be	1,	implying	that	a	simple	password	is
used,	or	2,	which	indicates	that	a	cryptographic	authentication	checksum	is	used.	In	the	latter	cases,	the
	Authentication		field	carries	the	password	or	cryptographic	checksum.

Of	the	five	OSPF	message	types,	type	1	is	the	"hello"	message,	which	a	router	sends	to	its	peers	to	notify	them	that	it
is	still	alive	and	connected	as	described	above.	The	remaining	types	are	used	to	request,	send,	and	acknowledge	the
receipt	of	link-state	messages.	The	basic	building	block	of	link-state	messages	in	OSPF	is	the	link-state	advertisement
(LSA).	One	message	may	contain	many	LSAs.	We	provide	a	few	details	of	the	LSA	here.
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Like	any	internetwork	routing	protocol,	OSPF	must	provide	information	about	how	to	reach	networks.	Thus,	OSPF
must	provide	a	little	more	information	than	the	simple	graph-based	protocol	described	above.	Specifically,	a	router
running	OSPF	may	generate	link-state	packets	that	advertise	one	or	more	of	the	networks	that	are	directly	connected
to	that	router.	In	addition,	a	router	that	is	connected	to	another	router	by	some	link	must	advertise	the	cost	of	reaching
that	router	over	the	link.	These	two	types	of	advertisements	are	necessary	to	enable	all	the	routers	in	a	domain	to
determine	the	cost	of	reaching	all	networks	in	that	domain	and	the	appropriate	next	hop	for	each	network.

Figure	8.	OSPF	link-state	advertisement.

Figure	8	shows	the	packet	format	for	a	type	1	link-state	advertisement.	Type	1	LSAs	advertise	the	cost	of	links
between	routers.	Type	2	LSAs	are	used	to	advertise	networks	to	which	the	advertising	router	is	connected,	while	other
types	are	used	to	support	additional	hierarchy	as	described	in	the	next	section.	Many	fields	in	the	LSA	should	be
familiar	from	the	preceding	discussion.	The		LS	Age		is	the	equivalent	of	a	time	to	live,	except	that	it	counts	up	and	the
LSA	expires	when	the	age	reaches	a	defined	maximum	value.	The		Type		field	tells	us	that	this	is	a	type	1	LSA.

In	a	type	1	LSA,	the		Link	state	ID		and	the		Advertising	router		field	are	identical.	Each	carries	a	32-bit	identifier	for	the
router	that	created	this	LSA.	While	a	number	of	assignment	strategies	may	be	used	to	assign	this	ID,	it	is	essential
that	it	be	unique	in	the	routing	domain	and	that	a	given	router	consistently	uses	the	same	router	ID.	One	way	to	pick	a
router	ID	that	meets	these	requirements	would	be	to	pick	the	lowest	IP	address	among	all	the	IP	addresses	assigned
to	that	router.	(Recall	that	a	router	may	have	a	different	IP	address	on	each	of	its	interfaces.)

The		LS	sequence	number		is	used	exactly	as	described	above	to	detect	old	or	duplicate	LSAs.	The		LS	checksum		is	similar
to	others	we	have	seen	in	other	protocols;	it	is,	of	course,	used	to	verify	that	data	has	not	been	corrupted.	It	covers	all
fields	in	the	packet	except		LS	Age	,	so	it	is	not	necessary	to	recompute	a	checksum	every	time		LS	Age		is	incremented.
	Length		is	the	length	in	bytes	of	the	complete	LSA.

Now	we	get	to	the	actual	link-state	information.	This	is	made	a	little	complicated	by	the	presence	of	TOS	(type	of
service)	information.	Ignoring	that	for	a	moment,	each	link	in	the	LSA	is	represented	by	a		Link	ID	,	some		Link	Data	,
and	a		metric	.	The	first	two	of	these	fields	identify	the	link;	a	common	way	to	do	this	would	be	to	use	the	router	ID	of
the	router	at	the	far	end	of	the	link	as	the		Link	ID		and	then	use	the		Link	Data		to	disambiguate	among	multiple
parallel	links	if	necessary.	The		metric		is	of	course	the	cost	of	the	link.		Type		tells	us	something	about	the	link—for
example,	if	it	is	a	point-to-point	link.

The	TOS	information	is	present	to	allow	OSPF	to	choose	different	routes	for	IP	packets	based	on	the	value	in	their
TOS	field.	Instead	of	assigning	a	single	metric	to	a	link,	it	is	possible	to	assign	different	metrics	depending	on	the	TOS
value	of	the	data.	For	example,	if	we	had	a	link	in	our	network	that	was	very	good	for	delay-sensitive	traffic,	we	could
give	it	a	low	metric	for	the	TOS	value	representing	low	delay	and	a	high	metric	for	everything	else.	OSPF	would	then
pick	a	different	shortest	path	for	those	packets	that	had	their	TOS	field	set	to	that	value.	It	is	worth	noting	that,	at	the
time	of	writing,	this	capability	has	not	been	widely	deployed.
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Metrics

The	preceding	discussion	assumes	that	link	costs,	or	metrics,	are	known	when	we	execute	the	routing	algorithm.	In
this	section,	we	look	at	some	ways	to	calculate	link	costs	that	have	proven	effective	in	practice.	One	example	that	we
have	seen	already,	which	is	quite	reasonable	and	very	simple,	is	to	assign	a	cost	of	1	to	all	links—the	least-cost	route
will	then	be	the	one	with	the	fewest	hops.	Such	an	approach	has	several	drawbacks,	however.	First,	it	does	not
distinguish	between	links	on	a	latency	basis.	Thus,	a	satellite	link	with	250-ms	latency	looks	just	as	attractive	to	the
routing	protocol	as	a	terrestrial	link	with	1-ms	latency.	Second,	it	does	not	distinguish	between	routes	on	a	capacity
basis,	making	a	1-Mbps	link	look	just	as	good	as	a	10-Gbps	link.	Finally,	it	does	not	distinguish	between	links	based
on	their	current	load,	making	it	impossible	to	route	around	overloaded	links.	It	turns	out	that	this	last	problem	is	the
hardest	because	you	are	trying	to	capture	the	complex	and	dynamic	characteristics	of	a	link	in	a	single	scalar	cost.

The	ARPANET	was	the	testing	ground	for	a	number	of	different	approaches	to	link-cost	calculation.	(It	was	also	the
place	where	the	superior	stability	of	link-state	over	distance-vector	routing	was	demonstrated;	the	original	mechanism
used	distance	vector	while	the	later	version	used	link	state.)	The	following	discussion	traces	the	evolution	of	the
ARPANET	routing	metric	and,	in	so	doing,	explores	the	subtle	aspects	of	the	problem.

The	original	ARPANET	routing	metric	measured	the	number	of	packets	that	were	queued	waiting	to	be	transmitted	on
each	link,	meaning	that	a	link	with	10	packets	queued	waiting	to	be	transmitted	was	assigned	a	larger	cost	weight
than	a	link	with	5	packets	queued	for	transmission.	Using	queue	length	as	a	routing	metric	did	not	work	well,	however,
since	queue	length	is	an	artificial	measure	of	load—it	moves	packets	toward	the	shortest	queue	rather	than	toward	the
destination,	a	situation	all	too	familiar	to	those	of	us	who	hop	from	line	to	line	at	the	grocery	store.	Stated	more
precisely,	the	original	ARPANET	routing	mechanism	suffered	from	the	fact	that	it	did	not	take	either	the	bandwidth	or
the	latency	of	the	link	into	consideration.

A	second	version	of	the	ARPANET	routing	algorithm	took	both	link	bandwidth	and	latency	into	consideration	and	used
delay,	rather	than	just	queue	length,	as	a	measure	of	load.	This	was	done	as	follows.	First,	each	incoming	packet	was
timestamped	with	its	time	of	arrival	at	the	router	(	ArrivalTime	);	its	departure	time	from	the	router	(	DepartTime	)	was
also	recorded.	Second,	when	the	link-level	ACK	was	received	from	the	other	side,	the	node	computed	the	delay	for
that	packet	as

Delay	=	(DepartTime	-	ArrivalTime)	+	TransmissionTime	+	Latency

where		TransmissionTime		and		Latency		were	statically	defined	for	the	link	and	captured	the	link's	bandwidth	and	latency,
respectively.	Notice	that	in	this	case,		DepartTime	-	ArrivalTime		represents	the	amount	of	time	the	packet	was	delayed
(queued)	in	the	node	due	to	load.	If	the	ACK	did	not	arrive,	but	instead	the	packet	timed	out,	then		DepartTime		was
reset	to	the	time	the	packet	was	retransmitted.	In	this	case,		DepartTime	-	ArrivalTime		captures	the	reliability	of	the	link
—the	more	frequent	the	retransmission	of	packets,	the	less	reliable	the	link,	and	the	more	we	want	to	avoid	it.	Finally,
the	weight	assigned	to	each	link	was	derived	from	the	average	delay	experienced	by	the	packets	recently	sent	over
that	link.

Although	an	improvement	over	the	original	mechanism,	this	approach	also	had	a	lot	of	problems.	Under	light	load,	it
worked	reasonably	well,	since	the	two	static	factors	of	delay	dominated	the	cost.	Under	heavy	load,	however,	a
congested	link	would	start	to	advertise	a	very	high	cost.	This	caused	all	the	traffic	to	move	off	that	link,	leaving	it	idle,
so	then	it	would	advertise	a	low	cost,	thereby	attracting	back	all	the	traffic,	and	so	on.	The	effect	of	this	instability	was
that,	under	heavy	load,	many	links	would	in	fact	spend	a	great	deal	of	time	being	idle,	which	is	the	last	thing	you	want
under	heavy	load.

Another	problem	was	that	the	range	of	link	values	was	much	too	large.	For	example,	a	heavily	loaded	9.6-kbps	link
could	look	127	times	more	costly	than	a	lightly	loaded	56-kbps	link.	(Keep	in	mind,	we're	talking	about	the	ARPANET
circa	1975.)	This	means	that	the	routing	algorithm	would	choose	a	path	with	126	hops	of	lightly	loaded	56-kbps	links
in	preference	to	a	1-hop	9.6-kbps	path.	While	shedding	some	traffic	from	an	overloaded	line	is	a	good	idea,	making	it
look	so	unattractive	that	it	loses	all	its	traffic	is	excessive.	Using	126	hops	when	1	hop	will	do	is	in	general	a	bad	use
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of	network	resources.	Also,	satellite	links	were	unduly	penalized,	so	that	an	idle	56-kbps	satellite	link	looked
considerably	more	costly	than	an	idle	9.6-kbps	terrestrial	link,	even	though	the	former	would	give	better	performance
for	high-bandwidth	applications.

A	third	approach	addressed	these	problems.	The	major	changes	were	to	compress	the	dynamic	range	of	the	metric
considerably,	to	account	for	the	link	type,	and	to	smooth	the	variation	of	the	metric	with	time.

The	smoothing	was	achieved	by	several	mechanisms.	First,	the	delay	measurement	was	transformed	to	a	link
utilization,	and	this	number	was	averaged	with	the	last	reported	utilization	to	suppress	sudden	changes.	Second,	there
was	a	hard	limit	on	how	much	the	metric	could	change	from	one	measurement	cycle	to	the	next.	By	smoothing	the
changes	in	the	cost,	the	likelihood	that	all	nodes	would	abandon	a	route	at	once	is	greatly	reduced.

The	compression	of	the	dynamic	range	was	achieved	by	feeding	the	measured	utilization,	the	link	type,	and	the	link
speed	into	a	function	that	is	shown	graphically	in	Figure	9.	below.	Observe	the	following:

Figure	9.	Revised	ARPANET	routing	metric	versus	link	utilization.

A	highly	loaded	link	never	shows	a	cost	of	more	than	three	times	its	cost	when	idle.

The	most	expensive	link	is	only	seven	times	the	cost	of	the	least	expensive.

A	high-speed	satellite	link	is	more	attractive	than	a	low-speed	terrestrial	link.

Cost	is	a	function	of	link	utilization	only	at	moderate	to	high	loads.

All	of	these	factors	mean	that	a	link	is	much	less	likely	to	be	universally	abandoned,	since	a	threefold	increase	in	cost
is	likely	to	make	the	link	unattractive	for	some	paths	while	letting	it	remain	the	best	choice	for	others.	The	slopes,
offsets,	and	breakpoints	for	the	curves	in	Figure	9	were	arrived	at	by	a	great	deal	of	trial	and	error,	and	they	were
carefully	tuned	to	provide	good	performance.

Despite	all	these	improvements,	it	turns	out	that	in	the	majority	of	real-world	network	deployments,	metrics	change
rarely	if	at	all	and	only	under	the	control	of	a	network	administrator,	not	automatically	as	described	above.	The	reason
for	this	is	partly	that	conventional	wisdom	now	holds	that	dynamically	changing	metrics	are	too	unstable,	even	though
this	probably	need	not	be	true.	Perhaps	more	significantly,	many	networks	today	lack	the	great	disparity	of	link	speeds
and	latencies	that	prevailed	in	the	ARPANET.	Thus,	static	metrics	are	the	norm.	One	common	approach	to	setting
metrics	is	to	use	a	constant	multiplied	by	(1/link_bandwidth).

Key	Takeaway

Why	do	we	still	tell	the	story	about	a	decades	old	algorithm	that's	no	longer	in	use?	Because	it	perfectly
illustrates	two	valuable	lessons.	The	first	is	that	computer	systems	are	often	designed	iteratively,	based	on
experience.	We	seldom	get	it	right	the	first	time,	so	it's	important	to	deploy	a	simple	solution	sooner	rather	than
later,	and	expect	to	improve	it	over	time.	Staying	stuck	in	the	design	phase	indefinitely	is	usually	not	a	good
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approach.	The	second	is	the	well-know	KISS	principle:	Keep	it	Simple,	Stupid.	When	building	a	complex
system,	less	is	often	more.	Opportunities	to	invent	sophisticated	optimizations	are	plentiful,	and	it's	a	tempting
opportunity	to	pursue.	While	such	optimizations	sometimes	have	short-term	value,	it	is	shocking	how	often	a
simple	approach	proves	best	over	time.	This	is	because	when	a	system	has	many	moving	parts,	as	the	Internet
most	certainly	does,	keeping	each	part	as	simple	as	possible	is	usually	the	best	bet.
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3.4	Implementation

So	far,	we	have	talked	about	what	switches	and	routers	must	do	without	describing	how	they	do	it.	There	is	a
straightforward	way	to	build	a	switch	or	router:	Buy	a	general-purpose	processor	and	equip	it	with	multiple	network
interfaces.	Such	a	device,	running	suitable	software,	can	receive	packets	on	one	of	its	interfaces,	perform	any	of	the
switching	or	forwarding	functions	described	in	this	chapter,	and	send	packets	out	another	of	its	interfaces.	This	so
called	software	switch	is	not	too	far	removed	from	the	architecture	of	many	commercial	mid-	to	low-end	network
devices.	Implementations	that	deliver	high-end	performance	typically	take	advantage	of	additional	hardware
acceleration.	We	refer	to	these	as	hardware	switches,	although	both	approaches	obviously	include	a	combination	of
hardware	and	software.

This	section	gives	an	overview	of	both	software-centric	and	hardware-centric	designs,	but	it	is	worth	noting	that	on	the
question	of	switches	versus	routers,	the	distinction	isn't	such	a	big	deal.	It	turns	out	that	the	implementation	of
switches	and	routers	have	so	much	in	common	that	a	network	administrator	typically	buys	a	single	forwarding	box	and
then	configures	it	to	be	an	L2	switch,	an	L3	router,	or	some	combination	of	the	two.	Since	their	internal	designs	are	so
similar,	we'll	use	the	word	switch	to	cover	both	variants	throughout	this	section,	avoiding	the	tedium	of	saying	"switch
or	router"	all	the	time.	We'll	call	out	the	differences	between	the	two	when	appropriate.

Software	Switch

Figure	1	shows	a	software	switch	built	using	a	general-purpose	processor	with	four	network	interface	cards	(NICs).
The	path	for	a	typical	packet	that	arrives	on,	say,	NIC	1	and	is	forwarded	out	on	NIC	2	is	straightforward:	as	NIC	1
receives	the	packet	it	copies	its	bytes	directly	into	the	main	memory	over	the	I/O	bus	(PCIe	in	this	example)	using	a
technique	called	direct	memory	access	(DMA).	Once	the	packet	is	in	memory,	the	CPU	examines	its	header	to
determine	which	interface	the	packet	should	be	sent	out	on,	and	instructs	NIC	2	to	transmit	the	packet,	again	directly
out	of	main	memory	using	DMA.	The	important	take-away	is	that	the	packet	is	buffered	in	main	memory	(this	is	the
"store"	half	of	store-and-forward),	with	the	CPU	reading	only	the	necessary	header	fields	into	its	internal	registers	for
processing.

Figure	1.	A	general-purpose	processor	used	as	a	software	switch.

There	are	two	potential	bottlenecks	with	this	approach,	one	or	both	of	which	limits	the	aggregate	packet	forwarding
capacity	of	the	software	switch.
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The	first	problem	is	that	performance	is	limited	by	the	fact	that	all	packets	must	pass	into	and	out	of	main	memory.
Your	mileage	will	vary	based	on	how	much	you	are	willing	to	pay	for	hardware,	but	as	an	example,	a	machine	limited
by	a	1333-MHz,	64-bit-wide	memory	bus	can	transmit	data	at	a	peak	rate	of	a	little	over	100	Gbps—enough	to	build	a
switch	with	a	handful	of	10-Gbps	Ethernet	ports,	but	hardly	enough	for	a	high-end	router	in	the	core	of	the	Internet.

Moreover,	this	upper	bound	assumes	that	moving	data	is	the	only	problem.	This	is	a	fair	approximation	for	long
packets	but	a	bad	one	when	packets	are	short,	which	is	the	worst-case	situation	switch	designers	have	to	plan	for.
With	minimum-sized	packets,	the	cost	of	processing	each	packet—parsing	its	header	and	deciding	which	output	link
to	transmit	it	on—is	likely	to	dominate,	and	potentially	become	a	bottleneck.	Suppose,	for	example,	that	a	processor
can	perform	all	the	necessary	processing	to	switch	40	million	packets	each	second.	This	is	sometimes	called	the
packet	per	second	(pps)	rate.	If	the	average	packet	is	64	bytes,	this	would	imply

Throughput	=	pps	x	BitsPerPacket

= 40 × 10 × 64 × 8

= 2048 × 10

that	is,	a	throughput	of	about	20	Gbps—fast,	but	substantially	below	the	range	users	are	demanding	from	their
switches	today.	Bear	in	mind	that	this	20	Gbps	would	be	shared	by	all	users	connected	to	the	switch,	just	as	the
bandwidth	of	a	single	(unswitched)	Ethernet	segment	is	shared	among	all	users	connected	to	the	shared	medium.
Thus,	for	example,	a	16-port	switch	with	this	aggregate	throughput	would	only	be	able	to	cope	with	an	average	data
rate	of	about	1	Gbps	on	each	port.

These	example	performance	numbers	do	not	represent	the	absolute	maximum	throughput	rate	that	highly
tuned	software	running	on	a	high-end	server	could	achieve,	but	they	are	indicative	of	limits	one	ultimately	faces
in	pursuing	this	approach.

One	final	consideration	is	important	to	understand	when	evaluating	switch	implementations.	The	non-trivial	algorithms
discussed	in	this	chapter—the	spanning	tree	algorithm	used	by	learning	bridges,	the	distance-vector	algorithm	used
by	RIP,	and	the	link-state	algorithm	used	by	OSPF—are	not	directly	part	of	the	per-packet	forwarding	decision.	They
run	periodically	in	the	background,	but	switches	do	not	have	to	execute,	say,	OSPF	code	for	every	packet	it	forwards.
The	most	costly	routine	the	CPU	is	likely	to	execute	on	a	per-packet	basis	is	a	table	lookup,	for	example,	looking	up	a
VCI	number	in	a	VC	table,	an	IP	address	in	an	L3	forwarding	table,	or	an	Ethernet	address	in	an	L2	forwarding	table.

Key	Takeaway

The	distinction	between	these	two	kinds	of	processing	is	important	enough	to	give	it	a	name:	the	control	plane
corresponds	to	the	background	processing	required	to	"control"	the	network	(e.g.,	running	OSPF,	RIP,	or	the
BGP	protocol	described	in	the	next	chapter)	and	the	data	plane	corresponds	to	the	per-packet	processing
required	to	move	packets	from	input	port	to	output	port.	For	historical	reasons,	this	distinction	is	called	control
plane	and	user	plane	in	cellular	access	networks,	but	the	idea	is	the	same,	and	in	fact,	the	3GPP	standard
defines	CUPS	(Control/User	Plane	Separation)	as	an	architectural	principle.

These	two	kinds	of	processing	are	easy	to	conflate	when	both	run	on	the	same	CPU,	as	is	the	case	in	software
switch	depicted	in	Figure	1,	but	performance	can	be	dramatically	improved	by	optimizing	how	the	data	plane	is
implemented,	and	correspondingly,	specifying	a	well-defined	interface	between	the	control	and	data	planes.

Hardware	Switch
Throughout	much	of	the	Internet's	history,	high-performance	switches	and	routers	have	been	specialized	devices,	built
with	Application-Specific	Integrated	Circuits	(ASICs).	While	it	was	possible	to	build	low-end	routers	and	switches	using
commodity	servers	running	C	programs,	ASICs	were	required	to	achieve	the	required	throughput	rates.

6
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The	problem	with	ASICs	is	that	hardware	takes	a	long	time	to	design	and	fabricate,	meaning	the	delay	for	adding	new
features	to	a	switch	is	usually	measured	in	years,	not	the	days	or	weeks	today's	software	industry	is	accustom	to.
Ideally,	we'd	like	to	benefit	from	the	performance	of	ASICs	and	the	agility	of	software.

Fortunately,	recent	advances	in	domain	specific	processors	(and	other	commodity	components)	have	made	this
possible.	Just	as	importantly,	the	full	architectural	specification	for	switches	that	take	advantage	of	these	new
processors	is	now	available	on-line—the	hardware	equivalent	of	open	source	software.	This	means	anyone	can	build
a	high-performance	switch	by	pulling	the	blueprint	off	the	web	(see	the	Open	Compute	Project,	OCP,	for	examples)	in
the	same	way	it	is	possible	to	build	your	own	PC.	In	both	cases	you	still	need	software	to	run	on	the	hardware,	but	just
as	Linux	is	available	to	run	on	your	home-built	PC,	there	are	now	open	source	L2	and	L3	stacks	available	on	GitHub
to	run	on	your	home-built	switch.	Alternatively,	you	can	simply	buy	a	pre-built	switch	from	a	commodity	switch
manufacturer	and	then	load	your	own	software	onto	it.	The	following	describes	these	open	white-box	switches,	so
called	to	contrast	them	with	closed	"black-box"	devices	that	have	historically	dominated	the	industry.

Figure	2.	White-box	switch	using	a	Network	Processing	Unit.

Figure	2	is	a	simplified	depiction	of	a	white-box	switch.	The	key	difference	from	the	earlier	implementation	on	a
general-purpose	processor	is	the	addition	of	a	Network	Processor	Unit	(NPU),	a	domain-specific	processor	with	an
architecture	and	instruction	set	that	has	been	optimized	for	processing	packet	headers	(i.e.,	for	implementing	the	data
plane).	NPUs	are	similar	in	spirit	to	GPUs	that	have	an	architecture	optimized	for	rendering	computer	graphics,	but	in
this	case,	the	NPU	is	optimized	for	parsing	packet	headers	and	making	a	forwarding	decision.	NPUs	are	able	to
process	packets	(input,	make	a	forwarding	decision,	and	output)	at	rates	measured	in	Terabits-per-second	(Tbps),
easily	fast	enough	to	keep	up	with	32x100-Gbps	ports,	or	the	48x40-Gbps	ports	shown	in	the	diagram.

Our	use	of	the	term	NPU	is	a	bit	non-standard.	Historically,	NPU	was	the	name	given	more	narrowly-defined
network	processing	chips	used,	for	example,	to	implement	intelligent	firewalls	or	deep	packet	inspection.	They
were	not	as	general-purpose	as	the	NPUs	we're	discussing	here;	nor	were	they	as	high-performance.	It	seems
likely	that	the	current	approach	will	make	purpose-built	network	processors	obsolete,	but	in	any	case,	we	prefer
the	NPU	nomenclator	because	it	is	consistent	with	the	trend	to	build	programmable	domain-specific	processors,
including	GPUs	for	graphics	and	TPUs	(Tensor	Processing	Units)	for	AI.

The	beauty	of	this	new	switch	design	is	that	a	given	white-box	can	now	be	programmed	to	be	an	L2	switch,	and	L3
router,	or	a	combination	of	both,	just	by	a	matter	of	programming.	The	exact	same	control	plane	software	stack	used
in	a	software	switch	still	runs	on	the	control	CPU,	but	in	addition,	data	plane	"programs"	are	loaded	onto	the	NPU	to
reflect	the	forwarding	decisions	made	by	the	control	plane	software.	Exactly	how	one	"programs"	the	NPU	depends	on
the	chip	vendor,	of	which	there	are	currently	several.	In	some	cases,	the	forwarding	pipeline	is	fixed	and	the	control
processor	merely	loads	the	forwarding	table	into	the	NPU	(by	fixed	we	mean	the	NPU	only	knows	how	to	process
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certain	headers,	like	Ethernet	and	IP),	but	in	other	cases,	the	forwarding	pipeline	is	itself	programmable.	P4	is	a	new
programming	language	that	can	be	used	to	program	such	NPU-based	forwarding	pipeline.	Among	other	things,	P4
tries	to	hide	many	of	the	differences	in	the	underlying	NPU	instruction	sets.

Internally,	an	NPU	takes	advantage	of	three	technologies.	First,	a	fast	SRAM-based	memory	buffers	packets	while
they	are	being	processed.	SRAM	(Static	Random	Access	Memory),	is	roughly	an	order	of	magnitude	faster	than	the
DRAM	(Dynamic	Random	Access	Memory)	that	is	used	by	main	memory.	Second,	a	TCAM-based	memory	stores	bit
patterns	to	be	matched	in	the	packets	being	processed.	The	"CAM"	in	TCAM	stands	for	"Content	Addressable
Memory"	which	means	that	the	key	you	want	to	look	up	in	a	table	can	effectively	be	used	as	the	address	into	the
memory	that	implements	the	table.	The	"T"	stands	for	"Ternary"	which	is	a	fancy	way	to	say	the	key	you	want	to	look
up	can	have	wildcards	in	it	(e.g,	key		10*1		matches	both		1001		and		1011	).	Finally,	the	processing	involved	to	forward
each	packet	is	implemented	by	a	forwarding	pipeline.	This	pipeline	is	implemented	by	an	ASIC,	but	when	well-
designed,	the	pipeline's	forwarding	behavior	can	be	modified	by	changing	the	program	it	runs.	At	a	high	level,	this
program	is	expressed	as	a	collection	of	(Match,	Action)	pairs:	if	you	match	such-and-such	field	in	the	header,	then
execute	this-or-that	action.

The	relevance	of	packet	processing	being	implemented	by	a	multi-stage	pipeline	rather	than	a	single-stage	processor
is	that	forwarding	a	single	packet	likely	involves	looking	at	multiple	header	fields.	Each	stage	can	be	programmed	to
look	at	a	different	combination	of	fields.	A	multi-stage	pipeline	adds	a	little	end-to-end	latency	to	each	packet
(measured	in	nanoseconds),	but	also	means	that	multiple	packets	can	be	processed	at	the	same	time.	For	example,
Stage	2	can	be	making	a	second	lookup	on	packet	A	while	Stage	1	is	doing	an	initial	lookup	on	packet	B,	and	so	on.
This	means	the	NPU	as	a	whole	is	able	to	keep	up	with	line	speeds.	As	of	this	writing,	the	state-of-the-art	is	12.8
Tbps.

Finally,	Figure	2	includes	other	commodity	components	that	make	this	all	practical.	In	particular,	it	is	now	possible	to
buy	pluggable	transceiver	modules	that	take	care	of	all	the	media	access	details—be	it	Gigabit	Ethernet,	10-Gigabit
Ethernet,	or	SONET—as	well	as	the	optics.	These	transceivers	all	conform	to	standardized	form	factors,	such	as
SFP+,	that	can	in	turn	be	connected	to	other	components	over	a	standardized	bus	(e.g.,	SFI).	Again,	the	key
takeaway	is	that	the	networking	industry	is	just	now	entering	into	the	same	commoditized	world	that	the	computing
industry	has	enjoyed	for	the	last	two	decades.

Software	Defined	Networks

With	switches	becoming	increasingly	commoditized,	attention	is	rightfully	shifting	to	the	software	that	controls	them.
This	puts	us	squarely	in	the	middle	of	a	trend	to	build	Software	Defined	Networks	(SDN),	an	idea	that	started	to
germinate	about	ten	years	ago.	In	fact,	it	was	the	early	stages	of	SDN	that	triggered	the	networking	industry	to	move
towards	white-box	switches.

The	fundamental	idea	of	SDN	is	one	we've	already	discussed:	to	decouple	the	network	control	plane	(i.e.,	where
routing	algorithms	like	RIP,	OSPF,	and	BGP	run)	from	the	network	data	plane	(i.e.,	where	packet	forwarding	decisions
get	made),	with	the	former	moved	into	software	running	on	commodity	servers	and	the	latter	implemented	by	white-
box	switches.	The	key	enabling	idea	behind	SDN	was	to	take	this	decoupling	a	step	further,	and	to	define	a	standard
interface	between	the	control	plane	and	the	data	plane.	Doing	so	allows	any	implementation	of	the	control	plane	to
talk	to	any	implementation	of	the	data	plane;	this	breaks	the	dependency	on	any	one	vendor’s	bundled	solution.	The
original	interface	is	called	OpenFlow,	and	this	idea	of	decoupling	the	control	and	data	planes	came	to	be	known	as
disaggregation.

The	P4	language	mentioned	in	the	previous	subsection	is	a	second-generation	tempt	to	define	this	interface	by
generalizing	OpenFlow.

Another	important	aspect	of	disaggregation	is	that	a	logically	centralized	control	plane	can	be	used	to	control	a
distributed	network	data	plane.	We	say	logically	centralized	because	while	the	state	collected	by	the	control	plane	is
maintained	in	a	global	data	structure,	such	as	a	Network	Map,	the	implementation	of	this	data	structure	could	still	be
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distributed	over	multiple	servers.	For	example,	it	could	run	in	a	cloud.	This	is	important	for	both	scalability	and
availability,	where	the	key	is	that	the	two	planes	are	configured	and	scaled	independent	of	each	other.	This	idea	took
off	quickly	in	the	cloud,	where	today’s	cloud	providers	run	SDN-based	solutions	both	within	their	datacenters	and
across	the	backbone	networks	that	interconnect	their	datacenters.

One	consequence	of	this	design	that	isn’t	immediately	obvious	is	that	a	logically	centralized	control	plane	doesn’t	just
manage	a	network	of	physical	(hardware)	switches	that	interconnects	physical	servers,	but	it	also	manages	a	network
of	virtual	(software)	switches	that	interconnect	virtual	servers	(e.g.,	Virtual	Machines	and	containers).	If	you’re
counting	“switch	ports”	(a	good	measure	of	all	the	devices	connected	to	your	network)	then	the	number	of	virtual	ports
in	the	Internet	rocketed	past	the	number	of	physical	ports	in	2012.

Figure	3.	Network	Operating	System	(NOS)	hosting	a	set	of	control
applications	and	providing	a	logically	centralized	point	of	control	for	an

underlying	network	data	plane.

One	of	other	key	enablers	for	SDN’s	success,	as	depicted	in	Figure	3,	is	the	Network	Operating	System	(NOS).	Like	a
server	operating	system	(e.g.,	Linux,	IOS,	Android,	Windows)	that	provides	a	set	of	high-level	abstractions	that	make
it	easier	to	implement	applications	(e.g.,	you	can	read	and	write	files	instead	of	directly	accessing	disk	drives),	a	NOS
makes	it	easier	to	implement	network	control	functionality,	otherwise	known	as	Control	Apps.	A	good	NOS	abstracts
the	details	of	the	network	switches	and	provides	a	Network	Map	abstraction	to	the	application	developer.	The	NOS
detects	changes	in	the	underlying	network	(e.g.,	switches,	ports,	and	links	going	up-and-down)	and	the	control
application	simply	implements	the	behavior	it	wants	on	this	abstract	graph.	What	that	means	is	that	the	NOS	takes	on
the	burden	of	collecting	network	state	(the	hard	part	of	distributed	algorithms	like	Link-State	and	Distance-Vector
algorithms)	and	the	app	is	free	to	simply	implement	the	shortest	path	algorithm	and	load	the	forwarding	rules	into	the
underlying	switches.	By	centralizing	this	logic,	the	goal	is	to	come	up	with	a	globally	optimized	solution.	The	published
evidence	from	cloud	providers	that	have	embraced	this	approach	confirms	this	advantage.

As	much	of	an	advantage	as	the	cloud	providers	have	been	able	to	get	out	of	SDN,	its	adoption	in	enterprises	and
Telcos	has	much	much	slower.	This	is	partly	about	the	ability	of	different	markets	to	manage	their	networks.	The
Googles,	Microsofts,	and	Amazons	of	the	world	have	the	engineers	and	DevOps	skills	needed	to	take	advantage	of
this	technology,	whereas	others	still	prefer	pre-packaged	and	integrated	solutions	that	support	the	management	and
command	line	interfaces	they	are	familiar	with.
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3.5	Broader	Perspective

Virtual	Networks	All	the	Way	Down

For	almost	as	long	as	there	have	been	packet-switched	networks,	there	have	been	ideas	about	how	to	virtualize	them,
starting	with	virtual	circuits.	But	what	exactly	does	it	mean	to	virtualize	a	network?

Virtual	memory	is	a	helpful	example.	Virtual	memory	creates	an	abstraction	of	a	large	and	private	pool	of	memory,
even	though	the	underlying	physical	memory	may	be	shared	by	many	applications	and	considerably	smaller	that	the
apparent	pool	of	virtual	memory.	This	abstraction	enables	programmers	to	operate	under	the	illusion	that	there	is
plenty	of	memory	and	that	no-one	else	is	using	it,	while	under	the	covers	the	memory	management	system	takes	care
of	things	like	mapping	the	virtual	memory	to	physical	resources	and	avoiding	conflict	between	users.

Similarly,	server	virtualization	presents	the	abstraction	of	a	virtual	machine	(VM),	which	has	all	the	features	of	a
physical	machine.	Again,	there	may	be	many	VMs	supported	on	a	single	physical	server,	and	the	operating	system
and	users	on	the	virtual	machine	are	happily	unaware	that	the	VM	is	being	mapped	onto	physical	resources.

A	key	point	is	the	virtualization	of	computing	resources	preserves	the	abstractions	and	interfaces	that	existed	before
they	were	virtualized.	This	is	important	because	it	means	that	users	of	those	abstractions	don't	need	to	change—they
see	a	faithful	reproduction	of	the	resource	being	virtualized.	Virtualization	also	means	that	the	different	users
(sometimes	called	tenants)	cannot	interfere	with	each	other.	So	what	happens	when	we	try	to	virtualize	a	network?

VPNs,	as	described	in	Section	3.2,	were	one	early	success	for	virtual	networking.	They	allowed	carriers	to	present
corporate	customers	with	the	illusion	that	they	had	their	own	private	network,	even	though	in	reality	they	were	sharing
underlying	links	and	switches	with	many	other	users.	VPNs,	however,	only	virtualize	a	few	resources,	notably
addressing	and	routing	tables.	Network	virtualization	as	commonly	understood	today	goes	further,	virtualizing	every
aspect	of	networking.	That	means	that	a	virtual	network	should	support	all	the	basic	abstractions	of	a	physical
network.	In	this	sense,	they	are	analogous	to	the	virtual	machine,	with	its	support	of	all	the	resources	of	a	server:
CPU,	storage,	I/O,	and	so	on.

To	this	end,	Virtual	LANs	(VLANs)	are	how	we	typically	virtualize	an	L2	network.	Supporting	VLANs	required	a	fairly
simple	extension	to	the	original	802.1	header	specification,	inserting	a	12-bit	VLAN	ID	(	VID	)	field	between	the
	SrcAddr		and		Type		fields,	as	shown	in	Figure	1.	(This	VID	is	typically	referred	to	as	a	VLAN	Tag.)	There	are	actually
32-bits	inserted	in	the	middle	of	the	header,	but	the	first	16-bits	are	used	to	preserve	backwards	compatibility	with	the
original	specification	(they	use		Type	=	0x8100		to	indicate	that	this	frame	includes	the	VLAN	extension);	the	other	four

bits	hold	control	information	used	to	prioritizing	frames.	This	means	it	is	possible	to	map	2 	=	4096	virtual	networks

onto	a	single	physical	LAN.

Figure	1.	802.1Q	VLAN	tag	embedded	within	an	Ethernet	(802.1)	header.
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VLANs	proved	to	be	quite	useful	to	enterprises	that	wanted	to	isolate	different	internal	groups	(e.g.,	departments,
labs),	giving	each	of	them	the	appearance	of	having	their	own	private	LAN.	VLANs	were	also	seen	as	a	promising
way	to	virtualize	L2	networks	in	cloud	datacenters,	making	it	possible	to	give	each	tenant	their	own	L2	network	so	as
to	isolate	their	traffic	from	the	traffic	of	all	other	tenants.	But	there	was	a	problem:	the	4096	possible	VLANs	was	not
sufficient	to	account	for	all	the	tenants	that	a	cloud	might	host,	and	to	complicate	matters,	in	a	cloud	the	network
needs	to	connect	virtual	machines	rather	than	the	physical	machines	that	those	VMs	run	on.

To	address	this	problem,	another	standard	called	Virtual	Extensible	LAN	(VXLAN)	was	introduced.	Unlike	the	original
approach,	which	effectively	encapsulated	a	virtualized	ethernet	frame	inside	another	ethernet	frame,	VXLAN
encapsulates	a	virtual	ethernet	frame	inside	a	UDP	packet.	This	means	a	VXLAN-based	virtual	network	(which	is
often	referred	to	as	an	overlay	network)	runs	on	top	of	an	IP-based	network,	which	in	turn	runs	on	an	underlying
ethernet	(or	perhaps	in	just	one	VLAN	of	the	underlying	ethernet).	VXLAN	also	makes	it	possible	for	one	cloud	tenant
to	have	multiple	VLANs	of	their	own,	which	allows	them	to	segregate	their	own	internal	traffic.	This	means	it	is
ultimately	possible	to	have	a	VLAN	encapsulated	in	a	VXLAN	overlay	encapsulated	in	a	VLAN.

The	powerful	thing	about	virtualization	is	that	when	done	right,	it	should	be	possible	to	nest	one	virtualized	resource
inside	another	virtualized	resource,	since	after	all,	a	virtual	resource	should	behave	just	like	a	physical	resources	and
we	know	how	to	virtualize	physical	resources!	Said	another	way,	being	able	to	virtualize	a	virtual	resource	is	the	best
proof	that	you	have	done	a	good	job	of	virtualizing	the	original	physical	resource.	To	re-purpose	the	mythology	of	the
World	Turtle:	It's	virtual	networks	all	the	way	down.

The	actual	VXLAN	header	is	simple.	It	includes	a	24-bit	Virtual	Network	Id	(VNI),	plus	some	flag	bits.	It	also	implies	a
particular	setting	of	the	UDP	source	and	destination	port	fields	(see	Section	5.1),	with	the	destination	port	4789
officially	reserved	for	VXLANs.	Figuring	out	how	to	uniquely	identify	virtual	LANs	(VLAN	tags)	and	virtual	networks
(VXLAN	VIDs)	is	the	easy	part.	This	is	because	encapsulation	is	the	fundamental	cornerstone	of	virtualization;	all	you
need	to	add	is	an	identifier	that	tells	you	which	of	many	possible	users	this	encapsulated	packet	belongs	to.

The	hard	part	is	grappling	with	the	idea	of	virtual	networks	being	nested	(encapsulated)	inside	virtual	networks,	which
is	networking’s	version	of	recursion.	The	other	challenge	is	understanding	how	to	automate	the	creation,
management,	migration,	and	deletion	of	virtual	networks,	and	on	this	front	there	is	still	a	lot	of	room	for	improvement.
Mastering	this	challenge	will	be	at	the	heart	of	networking	in	the	next	decade,	and	while	some	of	this	work	will
undoubtedly	happen	in	proprietary	settings,	there	are	open	source	network	virtualization	platforms	(e.g.,	the	Linux
Foundation's	Tungsten	Fabric	project)	leading	the	way.

Broader	Perspective

To	continue	reading	about	the	cloudification	of	the	Internet,	see	The	Cloud	is	Eating	the	Internet.

To	learn	more	about	the	maturation	of	virtual	networks,	we	recommend:

Network	Heresy,	2012.
Tungsten	Fabric,	2018.
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Chapter	4:	Advanced	Internetworking

Every	seeming	equality	conceals	a	hierarchy.	—Mason	Cooley

Problem:	Scaling	to	Billions

We	have	now	seen	how	to	build	an	internetwork	that	consists	of	a	number	of	networks	of	different	types.	That	is,	we
have	dealt	with	the	problem	of	heterogeneity.	The	second	critical	problem	in	internetworking—arguably	the
fundamental	problem	for	all	networking—is	scale.	To	understand	the	problem	of	scaling	a	network,	it	is	worth
considering	the	growth	of	the	Internet,	which	has	roughly	doubled	in	size	each	year	for	30	years.	This	sort	of	growth
forces	us	to	face	a	number	of	challenges.

Chief	among	these	is	how	do	you	build	a	routing	system	that	can	handle	hundreds	of	thousands	of	networks	and
billions	of	end	nodes?	As	we	will	see	in	this	chapter,	most	approaches	to	tackling	the	scalability	of	routing	depend	on
the	introduction	of	hierarchy.	We	can	introduce	hierarchy	in	the	form	of	areas	within	a	domain;	we	also	use	hierarchy
to	scale	the	routing	system	among	domains.	The	interdomain	routing	protocol	that	has	enabled	the	Internet	to	scale	to
its	current	size	is	BGP.	We	will	take	a	look	at	how	BGP	operates,	and	consider	the	challenges	faced	by	BGP	as	the
Internet	continues	to	grow.

Closely	related	to	the	scalability	of	routing	is	the	problem	of	addressing.	Even	two	decades	ago	it	had	become
apparent	that	the	32-bit	addressing	scheme	of	IP	version	4	would	not	last	forever.	That	led	to	the	definition	of	a	new
version	of	IP—version	6,	since	version	5	had	been	used	in	an	earlier	experiment.	IPv6	primarily	expands	the	address
space	but	also	adds	a	number	of	new	features,	some	of	which	have	been	retrofitted	to	IPv4.

While	the	Internet	continues	to	grow	in	size,	it	also	needs	to	evolve	its	functionality.	The	final	sections	of	this	chapter
cover	some	significant	enhancements	to	the	Internet's	capabilities.	The	first,	multicast,	is	an	enhancement	of	the	basic
service	model.	We	show	how	multicast—the	ability	to	deliver	the	same	packets	to	a	group	of	receivers	efficiently—can
be	incorporated	into	an	internet,	and	we	describe	several	of	the	routing	protocols	that	have	been	developed	to	support
multicast.	The	second	enhancement,	Multiprotocol	Label	Switching	(MPLS),	modifies	the	forwarding	mechanism	of	IP
networks.	This	modification	has	enabled	some	changes	in	the	way	IP	routing	is	performed	and	in	the	services	offered
by	IP	networks.	Finally,	we	look	at	the	effects	of	mobility	on	routing	and	describe	some	enhancements	to	IP	to	support
mobile	hosts	and	routers.	For	each	of	these	enhancements,	issues	of	scalability	continue	to	be	important.
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4.1	Global	Internet

At	this	point,	we	have	seen	how	to	connect	a	heterogeneous	collection	of	networks	to	create	an	internetwork	and	how
to	use	the	simple	hierarchy	of	the	IP	address	to	make	routing	in	an	internet	somewhat	scalable.	We	say	"somewhat"
scalable	because,	even	though	each	router	does	not	need	to	know	about	all	the	hosts	connected	to	the	internet,	it
does,	in	the	model	described	so	far,	need	to	know	about	all	the	networks	connected	to	the	internet.	Today's	Internet
has	hundreds	of	thousands	of	networks	connected	to	it	(or	more,	depending	on	how	you	count).	Routing	protocols
such	as	those	we	have	just	discussed	do	not	scale	to	those	kinds	of	numbers.	This	section	looks	at	a	variety	of
techniques	that	greatly	improve	scalability	and	that	have	enabled	the	Internet	to	grow	as	far	as	it	has.

Figure	1.	The	tree	structure	of	the	Internet	in	1990.

Before	getting	to	these	techniques,	we	need	to	have	a	general	picture	in	our	heads	of	what	the	global	Internet	looks
like.	It	is	not	just	a	random	interconnection	of	Ethernets,	but	instead	it	takes	on	a	shape	that	reflects	the	fact	that	it
interconnects	many	different	organizations.	Figure	1	gives	a	simple	depiction	of	the	state	of	the	Internet	in	1990.	Since
that	time,	the	Internet's	topology	has	grown	much	more	complex	than	this	figure	suggests—we	present	a	slightly	more
accurate	picture	of	the	current	Internet	in	a	later	section—but	this	picture	will	do	for	now.

One	of	the	salient	features	of	this	topology	is	that	it	consists	of	end-user	sites	(e.g.,	Stanford	University)	that	connect
to	service	provider	networks	(e.g.,	BARRNET	was	a	provider	network	that	served	sites	in	the	San	Francisco	Bay
Area).	In	1990,	many	providers	served	a	limited	geographic	region	and	were	thus	known	as	regional	networks.	The
regional	networks	were,	in	turn,	connected	by	a	nationwide	backbone.	In	1990,	this	backbone	was	funded	by	the
National	Science	Foundation	(NSF)	and	was	therefore	called	the	NSFNET	backbone.

NSFNET	gave	way	to	Internet2,	which	still	runs	a	backbone	on	behalf	of	Research	and	Education	institutions	in	the
US	(there	are	similar	R&E	networks	in	other	countries),	but	of	course	most	people	get	their	Internet	connectivity	from
commercial	providers.	Although	the	detail	is	not	shown	in	the	figure,	today	the	largest	provider	networks	(they	are
called	tier-1)	are	typically	built	from	dozens	of	high-end	routers	located	in	major	meteropolitan	areas	(colloquially
referred	to	as	"NFL	cities")	connected	by	point-to-point	links	(often	with	100	Gbps	capacity).	Similarly,	each	end-user
site	is	typically	not	a	single	network	but	instead	consists	of	multiple	physical	networks	connected	by	switches	and
routers.

Notice	in	that	each	provider	and	end-user	is	likely	to	be	an	administratively	independent	entity.	This	has	some
significant	consequences	on	routing.	For	example,	it	is	quite	likely	that	different	providers	will	have	different	ideas
about	the	best	routing	protocol	to	use	within	their	networks	and	on	how	metrics	should	be	assigned	to	links	in	their
network.	Because	of	this	independence,	each	provider's	network	is	usually	a	single	autonomous	system	(AS).	We	will
define	this	term	more	precisely	in	a	later	section,	but	for	now	it	is	adequate	to	think	of	an	AS	as	a	network	that	is
administered	independently	of	other	ASs.

The	fact	that	the	Internet	has	a	discernible	structure	can	be	used	to	our	advantage	as	we	tackle	the	problem	of
scalability.	In	fact,	we	need	to	deal	with	two	related	scaling	issues.	The	first	is	the	scalability	of	routing.	We	need	to
find	ways	to	minimize	the	number	of	network	numbers	that	get	carried	around	in	routing	protocols	and	stored	in	the
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routing	tables	of	routers.	The	second	is	address	utilization—that	is,	making	sure	that	the	IP	address	space	does	not
get	consumed	too	quickly.

Throughout	this	book,	we	see	the	principle	of	hierarchy	used	again	and	again	to	improve	scalability.	We	saw	in	the
previous	chapter	how	the	hierarchical	structure	of	IP	addresses,	especially	with	the	flexibility	provided	by	Classless
Interdomain	Routing	(CIDR)	and	subnetting,	can	improve	the	scalability	of	routing.	In	the	next	two	sections,	we'll	see
further	uses	of	hierarchy	(and	its	partner,	aggregation)	to	provide	greater	scalability,	first	in	a	single	domain	and	then
between	domains.	Our	final	subsection	looks	at	IP	version	6,	the	invention	of	which	was	largely	the	result	of	scalability
concerns.

Routing	Areas

As	a	first	example	of	using	hierarchy	to	scale	up	the	routing	system,	we'll	examine	how	link-state	routing	protocols
(such	as	OSPF	and	IS-IS)	can	be	used	to	partition	a	routing	domain	into	subdomains	called	areas.	(The	terminology
varies	somewhat	among	protocols—we	use	the	OSPF	terminology	here.)	By	adding	this	extra	level	of	hierarchy,	we
enable	single	domains	to	grow	larger	without	overburdening	the	routing	protocols	or	resorting	to	the	more	complex
interdomain	routing	protocols	described	later.

An	area	is	a	set	of	routers	that	are	administratively	configured	to	exchange	link-state	information	with	each	other.
There	is	one	special	area—the	backbone	area,	also	known	as	area	0.	An	example	of	a	routing	domain	divided	into
areas	is	shown	in	Figure	2	.	Routers	R1,	R2,	and	R3	are	members	of	the	backbone	area.	They	are	also	members	of
at	least	one	nonbackbone	area;	R1	is	actually	a	member	of	both	area	1	and	area	2.	A	router	that	is	a	member	of	both
the	backbone	area	and	a	nonbackbone	area	is	an	area	border	router	(ABR).	Note	that	these	are	distinct	from	the
routers	that	are	at	the	edge	of	an	AS,	which	are	referred	to	as	AS	border	routers	for	clarity.

Figure	2.	A	domain	divided	into	areas.

Routing	within	a	single	area	is	exactly	as	described	in	the	previous	chapter.	All	the	routers	in	the	area	send	link-state
advertisements	to	each	other	and	thus	develop	a	complete,	consistent	map	of	the	area.	However,	the	link-state
advertisements	of	routers	that	are	not	area	border	routers	do	not	leave	the	area	in	which	they	originated.	This	has	the
effect	of	making	the	flooding	and	route	calculation	processes	considerably	more	scalable.	For	example,	router	R4	in
area	3	will	never	see	a	link-state	advertisement	from	router	R8	in	area	1.	As	a	consequence,	it	will	know	nothing	about
the	detailed	topology	of	areas	other	than	its	own.

How,	then,	does	a	router	in	one	area	determine	the	right	next	hop	for	a	packet	destined	to	a	network	in	another	area?
The	answer	to	this	becomes	clear	if	we	imagine	the	path	of	a	packet	that	has	to	travel	from	one	nonbackbone	area	to
another	as	being	split	into	three	parts.	First,	it	travels	from	its	source	network	to	the	backbone	area,	then	it	crosses	the
backbone,	then	it	travels	from	the	backbone	to	the	destination	network.	To	make	this	work,	the	area	border	routers
summarize	routing	information	that	they	have	learned	from	one	area	and	make	it	available	in	their	advertisements	to
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other	areas.	For	example,	R1	receives	link-state	advertisements	from	all	the	routers	in	area	1	and	can	thus	determine
the	cost	of	reaching	any	network	in	area	1.	When	R1	sends	link-state	advertisements	into	area	0,	it	advertises	the
costs	of	reaching	the	networks	in	area	1	much	as	if	all	those	networks	were	directly	connected	to	R1.	This	enables	all
the	area	0	routers	to	learn	the	cost	to	reach	all	networks	in	area	1.	The	area	border	routers	then	summarize	this
information	and	advertise	it	into	the	nonbackbone	areas.	Thus,	all	routers	learn	how	to	reach	all	networks	in	the
domain.

Note	that,	in	the	case	of	area	2,	there	are	two	ABRs	and	that	routers	in	area	2	will	thus	have	to	make	a	choice	as	to
which	one	they	use	to	reach	the	backbone.	This	is	easy	enough,	since	both	R1	and	R2	will	be	advertising	costs	to
various	networks,	so	it	will	become	clear	which	is	the	better	choice	as	the	routers	in	area	2	run	their	shortest-path
algorithm.	For	example,	it	is	pretty	clear	that	R1	is	going	to	be	a	better	choice	than	R2	for	destinations	in	area	1.

When	dividing	a	domain	into	areas,	the	network	administrator	makes	a	tradeoff	between	scalability	and	optimality	of
routing.	The	use	of	areas	forces	all	packets	traveling	from	one	area	to	another	to	go	via	the	backbone	area,	even	if	a
shorter	path	might	have	been	available.	For	example,	even	if	R4	and	R5	were	directly	connected,	packets	would	not
flow	between	them	because	they	are	in	different	nonbackbone	areas.	It	turns	out	that	the	need	for	scalability	is	often
more	important	than	the	need	to	use	the	absolute	shortest	path.

Key	Takeaway

This	illustrates	an	important	principle	in	network	design.	There	is	frequently	a	trade-off	between	scalability	and
some	sort	of	optimality.	When	hierarchy	is	introduced,	information	is	hidden	from	some	nodes	in	the	network,
hindering	their	ability	to	make	perfect	decisions.	However,	information	hiding	is	essential	to	scalability,	since	it
saves	all	nodes	from	having	global	knowledge.	It	is	invariably	true	in	large	networks	that	scalability	is	a	more
pressing	design	goal	than	selecting	the	optimal	route.

Finally,	we	note	that	there	is	a	trick	by	which	network	administrators	can	more	flexibly	decide	which	routers	go	in	area
0.	This	trick	uses	the	idea	of	a	virtual	link	between	routers.	Such	a	virtual	link	is	obtained	by	configuring	a	router	that	is
not	directly	connected	to	area	0	to	exchange	backbone	routing	information	with	a	router	that	is.	For	example,	a	virtual
link	could	be	configured	from	R8	to	R1,	thus	making	R8	part	of	the	backbone.	R8	would	now	participate	in	link-state
advertisement	flooding	with	the	other	routers	in	area	0.	The	cost	of	the	virtual	link	from	R8	to	R1	is	determined	by	the
exchange	of	routing	information	that	takes	place	in	area	1.	This	technique	can	help	to	improve	the	optimality	of
routing.

Interdomain	Routing	(BGP)

At	the	beginning	of	this	chapter,	we	introduced	the	notion	that	the	Internet	is	organized	as	autonomous	systems,	each
of	which	is	under	the	control	of	a	single	administrative	entity.	A	corporation's	complex	internal	network	might	be	a
single	AS,	as	may	the	national	network	of	any	single	Internet	Service	Provider	(ISP).	Figure	3	shows	a	simple	network
with	two	autonomous	systems.
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Figure	3.	A	network	with	two	autonomous	systems.

The	basic	idea	behind	autonomous	systems	is	to	provide	an	additional	way	to	hierarchically	aggregate	routing
information	in	a	large	internet,	thus	improving	scalability.	We	now	divide	the	routing	problem	into	two	parts:	routing
within	a	single	autonomous	system	and	routing	between	autonomous	systems.	Since	another	name	for	autonomous
systems	in	the	Internet	is	routing	domains,	we	refer	to	the	two	parts	of	the	routing	problem	as	interdomain	routing	and
intradomain	routing.	In	addition	to	improving	scalability,	the	AS	model	decouples	the	intradomain	routing	that	takes
place	in	one	AS	from	that	taking	place	in	another.	Thus,	each	AS	can	run	whatever	intradomain	routing	protocols	it
chooses.	It	can	even	use	static	routes	or	multiple	protocols,	if	desired.	The	interdomain	routing	problem	is	then	one	of
having	different	ASs	share	reachability	information—descriptions	of	the	set	of	IP	addresses	that	can	be	reached	via	a
given	AS—with	each	other.

Challenges	in	Interdomain	Routing

Perhaps	the	most	important	challenge	of	interdomain	routing	today	is	the	need	for	each	AS	to	determine	its	own
routing	policies.	A	simple	example	routing	policy	implemented	at	a	particular	AS	might	look	like	this:	"Whenever
possible,	I	prefer	to	send	traffic	via	AS	X	than	via	AS	Y,	but	I'll	use	AS	Y	if	it	is	the	only	path,	and	I	never	want	to	carry
traffic	from	AS	X	to	AS	Y	or	vice	versa."	Such	a	policy	would	be	typical	when	I	have	paid	money	to	both	AS	X	and	AS
Y	to	connect	my	AS	to	the	rest	of	the	Internet,	and	AS	X	is	my	preferred	provider	of	connectivity,	with	AS	Y	being	the
fallback.	Because	I	view	both	AS	X	and	AS	Y	as	providers	(and	presumably	I	paid	them	to	play	this	role),	I	don't
expect	to	help	them	out	by	carrying	traffic	between	them	across	my	network	(this	is	called	transit	traffic).	The	more
autonomous	systems	I	connect	to,	the	more	complex	policies	I	might	have,	especially	when	you	consider	backbone
providers,	who	may	interconnect	with	dozens	of	other	providers	and	hundreds	of	customers	and	have	different
economic	arrangements	(which	affect	routing	policies)	with	each	one.

A	key	design	goal	of	interdomain	routing	is	that	policies	like	the	example	above,	and	much	more	complex	ones,
should	be	supported	by	the	interdomain	routing	system.	To	make	the	problem	harder,	I	need	to	be	able	to	implement
such	a	policy	without	any	help	from	other	autonomous	systems,	and	in	the	face	of	possible	misconfiguration	or
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malicious	behavior	by	other	autonomous	systems.	Furthermore,	there	is	often	a	desire	to	keep	the	policies	private,
because	the	entities	that	run	the	autonomous	systems—mostly	ISPs—are	often	in	competition	with	each	other	and
don't	want	their	economic	arrangements	made	public.

There	have	been	two	major	interdomain	routing	protocols	in	the	history	of	the	Internet.	The	first	was	the	Exterior
Gateway	Protocol	(EGP),	which	had	a	number	of	limitations,	perhaps	the	most	severe	of	which	was	that	it	constrained
the	topology	of	the	Internet	rather	significantly.	EGP	was	designed	when	the	Internet	had	a	treelike	topology,	such	as
that	illustrated	in	Figure	1,	and	did	not	allow	for	the	topology	to	become	more	general.	Note	that	in	this	simple	treelike
structure	there	is	a	single	backbone,	and	autonomous	systems	are	connected	only	as	parents	and	children	and	not	as
peers.

The	replacement	for	EGP	was	the	Border	Gateway	Protocol	(BGP),	which	has	iterated	through	four	versions	(BGP-4).
BGP	is	often	regarded	as	one	of	the	more	complex	parts	of	the	Internet.	We'll	cover	some	of	its	high	points	here.

Unlike	its	predecessor	EGP,	BGP	makes	virtually	no	assumptions	about	how	autonomous	systems	are	interconnected
—they	form	an	arbitrary	graph.	This	model	is	clearly	general	enough	to	accommodate	non-tree-structured
internetworks,	like	the	simplified	picture	of	a	multi-provider	Internet	shown	in	Figure	4.	(It	turns	out	there	is	still	some
sort	of	structure	to	the	Internet,	as	we'll	see	below,	but	it's	nothing	like	as	simple	as	a	tree,	and	BGP	makes	no
assumptions	about	such	structure.)

Figure	4.	A	simple	multi-provider	Internet.

Unlike	the	simple	tree-structured	Internet	shown	in	Figure	1,	or	even	the	fairly	simple	picture	in	Figure	4,	today's
Internet	consists	of	a	richly	interconnected	set	of	networks,	mostly	operated	by	private	companies	(ISPs)	rather	than
governments.	Many	Internet	Service	Providers	(ISPs)	exist	mainly	to	provide	service	to	"consumers"	(i.e.,	individuals
with	computers	in	their	homes),	while	others	offer	something	more	like	the	old	backbone	service,	interconnecting	other
providers	and	sometimes	larger	corporations.	Often,	many	providers	arrange	to	interconnect	with	each	other	at	a
single	peering	point.

To	get	a	better	sense	of	how	we	might	manage	routing	among	this	complex	interconnection	of	autonomous	systems,
we	can	start	by	defining	a	few	terms.	We	define	local	traffic	as	traffic	that	originates	at	or	terminates	on	nodes	within
an	AS,	and	transit	traffic	as	traffic	that	passes	through	an	AS.	We	can	classify	autonomous	systems	into	three	broad
types:

Stub	AS—an	AS	that	has	only	a	single	connection	to	one	other	AS;	such	an	AS	will	only	carry	local	traffic.	The
small	corporation	in	Figure	4	is	an	example	of	a	stub	AS.

Multihomed	AS—an	AS	that	has	connections	to	more	than	one	other	AS	but	that	refuses	to	carry	transit	traffic,
such	as	the	large	corporation	at	the	top	of	Figure	4.

Transit	AS—an	AS	that	has	connections	to	more	than	one	other	AS	and	that	is	designed	to	carry	both	transit	and
local	traffic,	such	as	the	backbone	providers	in	Figure	4.
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Whereas	the	discussion	of	routing	in	the	previous	chapter	focused	on	finding	optimal	paths	based	on	minimizing	some
sort	of	link	metric,	the	goals	of	interdomain	routing	are	rather	more	complex.	First,	it	is	necessary	to	find	some	path	to
the	intended	destination	that	is	loop	free.	Second,	paths	must	be	compliant	with	the	policies	of	the	various
autonomous	systems	along	the	path—and,	as	we	have	already	seen,	those	policies	might	be	almost	arbitrarily
complex.	Thus,	while	intradomain	focuses	on	a	well-defined	problem	of	optimizing	the	scalar	cost	of	the	path,
interdomain	focuses	on	finding	a	non-looping,	policy-compliant	path—a	much	more	complex	optimization	problem.

There	are	additional	factors	that	make	interdomain	routing	hard.	The	first	is	simply	a	matter	of	scale.	An	Internet
backbone	router	must	be	able	to	forward	any	packet	destined	anywhere	in	the	Internet.	That	means	having	a	routing
table	that	will	provide	a	match	for	any	valid	IP	address.	While	CIDR	has	helped	to	control	the	number	of	distinct
prefixes	that	are	carried	in	the	Internet's	backbone	routing,	there	is	inevitably	a	lot	of	routing	information	to	pass
around—roughly	700,000	prefixes	in	mid-2018.

A	further	challenge	in	interdomain	routing	arises	from	the	autonomous	nature	of	the	domains.	Note	that	each	domain
may	run	its	own	interior	routing	protocols	and	use	any	scheme	it	chooses	to	assign	metrics	to	paths.	This	means	that
it	is	impossible	to	calculate	meaningful	path	costs	for	a	path	that	crosses	multiple	autonomous	systems.	A	cost	of
1000	across	one	provider	might	imply	a	great	path,	but	it	might	mean	an	unacceptably	bad	one	from	another	provider.
As	a	result,	interdomain	routing	advertises	only	reachability.	The	concept	of	reachability	is	basically	a	statement	that
"you	can	reach	this	network	through	this	AS."	This	means	that	for	interdomain	routing	to	pick	an	optimal	path	is
essentially	impossible.

The	autonomous	nature	of	interdomain	raises	issue	of	trust.	Provider	A	might	be	unwilling	to	believe	certain
advertisements	from	provider	B	for	fear	that	provider	B	will	advertise	erroneous	routing	information.	For	example,
trusting	provider	B	when	he	advertises	a	great	route	to	anywhere	in	the	Internet	can	be	a	disastrous	choice	if	provider
B	turns	out	to	have	made	a	mistake	configuring	his	routers	or	to	have	insufficient	capacity	to	carry	the	traffic.

The	issue	of	trust	is	also	related	to	the	need	to	support	complex	policies	as	noted	above.	For	example,	I	might	be
willing	to	trust	a	particular	provider	only	when	he	advertises	reachability	to	certain	prefixes,	and	thus	I	would	have	a
policy	that	says,	"Use	AS	X	to	reach	only	prefixes	$p$	and	$q$,	if	and	only	if	AS	X	advertises	reachability	to	those
prefixes."

Basics	of	BGP

Each	AS	has	one	or	more	border	routers	through	which	packets	enter	and	leave	the	AS.	In	our	simple	example	in
Figure	3,	routers	R2	and	R4	would	be	border	routers.	(Over	the	years,	routers	have	sometimes	also	been	known	as
gateways,	hence	the	names	of	the	protocols	BGP	and	EGP).	A	border	router	is	simply	an	IP	router	that	is	charged
with	the	task	of	forwarding	packets	between	autonomous	systems.

Each	AS	that	participates	in	BGP	must	also	have	at	least	one	BGP	speaker,	a	router	that	"speaks"	BGP	to	other	BGP
speakers	in	other	autonomous	systems.	It	is	common	to	find	that	border	routers	are	also	BGP	speakers,	but	that	does
not	have	to	be	the	case.

BGP	does	not	belong	to	either	of	the	two	main	classes	of	routing	protocols,	distance-vector	or	link-state.	Unlike	these
protocols,	BGP	advertises	complete	paths	as	an	enumerated	list	of	autonomous	systems	to	reach	a	particular
network.	It	is	sometimes	called	a	path-vector	protocol	for	this	reason.	The	advertisement	of	complete	paths	is
necessary	to	enable	the	sorts	of	policy	decisions	described	above	to	be	made	in	accordance	with	the	wishes	of	a
particular	AS.	It	also	enables	routing	loops	to	be	readily	detected.
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Figure	5.	Example	of	a	network	running	BGP.

To	see	how	this	works,	consider	the	very	simple	example	network	in	Figure	5.	Assume	that	the	providers	are	transit
networks,	while	the	customer	networks	are	stubs.	A	BGP	speaker	for	the	AS	of	provider	A	(AS	2)	would	be	able	to
advertise	reachability	information	for	each	of	the	network	numbers	assigned	to	customers	P	and	Q.	Thus,	it	would
say,	in	effect,	"The	networks	128.96,	192.4.153,	192.4.32,	and	192.4.3	can	be	reached	directly	from	AS	2."	The
backbone	network,	on	receiving	this	advertisement,	can	advertise,	"The	networks	128.96,	192.4.153,	192.4.32,	and
192.4.3	can	be	reached	along	the	path	(AS	1,	AS	2)."	Similarly,	it	could	advertise,	"The	networks	192.12.69,	192.4.54,
and	192.4.23	can	be	reached	along	the	path	(AS	1,	AS	3)."

Figure	6.	Example	of	loop	among	autonomous	systems.

An	important	job	of	BGP	is	to	prevent	the	establishment	of	looping	paths.	For	example,	consider	the	network
illustrated	in	Figure	6.	It	differs	from	Figure	5	only	in	the	addition	of	an	extra	link	between	AS	2	and	AS	3,	but	the	effect
now	is	that	the	graph	of	autonomous	systems	has	a	loop	in	it.	Suppose	AS	1	learns	that	it	can	reach	network	128.96
through	AS	2,	so	it	advertises	this	fact	to	AS	3,	who	in	turn	advertises	it	back	to	AS	2.	In	the	absence	of	any	loop
prevention	mechanism,	AS	2	could	now	decide	that	AS	3	was	the	preferred	route	for	packets	destined	for	128.96.	If
AS	2	starts	sending	packets	addressed	to	128.96	to	AS	3,	AS	3	would	send	them	to	AS	1;	AS	1	would	send	them
back	to	AS	2;	and	they	would	loop	forever.	This	is	prevented	by	carrying	the	complete	AS	path	in	the	routing
messages.	In	this	case,	the	advertisement	for	a	path	to	128.96	received	by	AS	2	from	AS	3	would	contain	an	AS	path
of	(AS	3,	AS	1,	AS	2,	AS	4).	AS	2	sees	itself	in	this	path,	and	thus	concludes	that	this	is	not	a	useful	path	for	it	to	use.

In	order	for	this	loop	prevention	technique	to	work,	the	AS	numbers	carried	in	BGP	clearly	need	to	be	unique.	For
example,	AS	2	can	only	recognize	itself	in	the	AS	path	in	the	above	example	if	no	other	AS	identifies	itself	in	the	same
way.	AS	numbers	are	now	32-bits	long,	and	they	are	assigned	by	a	central	authority	to	assure	uniqueness.

A	given	AS	will	only	advertise	routes	that	it	considers	good	enough	for	itself.	That	is,	if	a	BGP	speaker	has	a	choice	of
several	different	routes	to	a	destination,	it	will	choose	the	best	one	according	to	its	own	local	policies,	and	then	that
will	be	the	route	it	advertises.	Furthermore,	a	BGP	speaker	is	under	no	obligation	to	advertise	any	route	to	a
destination,	even	if	it	has	one.	This	is	how	an	AS	can	implement	a	policy	of	not	providing	transit—by	refusing	to
advertise	routes	to	prefixes	that	are	not	contained	within	that	AS,	even	if	it	knows	how	to	reach	them.
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Given	that	links	fail	and	policies	change,	BGP	speakers	need	to	be	able	to	cancel	previously	advertised	paths.	This	is
done	with	a	form	of	negative	advertisement	known	as	a	withdrawn	route.	Both	positive	and	negative	reachability
information	are	carried	in	a	BGP	update	message,	the	format	of	which	is	shown	in	Figure	7.	(Note	that	the	fields	in	this
figure	are	multiples	of	16	bits,	unlike	other	packet	formats	in	this	chapter.)

Figure	7.	BGP-4	update	packet	format.

Unlike	the	routing	protocols	described	in	the	previous	chapter,	BGP	is	defined	to	run	on	top	of	TCP,	the	reliable
transport	protocol.	Because	BGP	speakers	can	count	on	TCP	to	be	reliable,	this	means	that	any	information	that	has
been	sent	from	one	speaker	to	another	does	not	need	to	be	sent	again.	Thus,	as	long	as	nothing	has	changed,	a	BGP
speaker	can	simply	send	an	occasional	keepalive	message	that	says,	in	effect,	"I'm	still	here	and	nothing	has
changed."	If	that	router	were	to	crash	or	become	disconnected	from	its	peer,	it	would	stop	sending	the	keepalives,	and
the	other	routers	that	had	learned	routes	from	it	would	assume	that	those	routes	were	no	longer	valid.

Common	AS	Relationships	and	Policies

Having	said	that	policies	may	be	arbitrarily	complex,	there	turn	out	to	be	a	few	common	ones,	reflecting	common
relationships	between	autonomous	systems.	The	most	common	relationships	are	illustrated	in	Figure	8.	The	three
common	relationships	and	the	policies	that	go	with	them	are	as	follows:

Figure	8.	Common	AS	relationships.
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Provider-Customer—Providers	are	in	the	business	of	connecting	their	customers	to	the	rest	of	the	Internet.	A
customer	might	be	a	corporation,	or	it	might	be	a	smaller	ISP	(which	may	have	customers	of	its	own).	So	the
common	policy	is	to	advertise	all	the	routes	I	know	about	to	my	customer,	and	advertise	routes	I	learn	from	my
customer	to	everyone.

Customer-Provider—In	the	other	direction,	the	customer	wants	to	get	traffic	directed	to	him	(and	his	customers,	if
he	has	them)	by	his	provider,	and	he	wants	to	be	able	to	send	traffic	to	the	rest	of	the	Internet	through	his
provider.	So	the	common	policy	in	this	case	is	to	advertise	my	own	prefixes	and	routes	learned	from	my
customers	to	my	provider,	advertise	routes	learned	from	my	provider	to	my	customers,	but	don't	advertise	routes
learned	from	one	provider	to	another	provider.	That	last	part	is	to	make	sure	the	customer	doesn't	find	himself	in
the	business	of	carrying	traffic	from	one	provider	to	another,	which	isn't	in	his	interests	if	he	is	paying	the
providers	to	carry	traffic	for	him.

Peer—The	third	option	is	a	symmetrical	peering	between	autonomous	systems.	Two	providers	who	view
themselves	as	equals	usually	peer	so	that	they	can	get	access	to	each	other's	customers	without	having	to	pay
another	provider.	The	typical	policy	here	is	to	advertise	routes	learned	from	my	customers	to	my	peer,	advertise
routes	learned	from	my	peer	to	my	customers,	but	don't	advertise	routes	from	my	peer	to	any	provider	or	vice
versa.

One	thing	to	note	about	this	figure	is	the	way	it	has	brought	back	some	structure	to	the	apparently	unstructured
Internet.	At	the	bottom	of	the	hierarchy	we	have	the	stub	networks	that	are	customers	of	one	or	more	providers,	and
as	we	move	up	the	hierarchy	we	see	providers	who	have	other	providers	as	their	customers.	At	the	top,	we	have
providers	who	have	customers	and	peers	but	are	not	customers	of	anyone.	These	providers	are	known	as	the	Tier-1
providers.

Key	Takeaway

Let's	return	to	the	real	question:	How	does	all	this	help	us	to	build	scalable	networks?	First,	the	number	of
nodes	participating	in	BGP	is	on	the	order	of	the	number	of	autonomous	systems,	which	is	much	smaller	than
the	number	of	networks.	Second,	finding	a	good	interdomain	route	is	only	a	matter	of	finding	a	path	to	the	right
border	router,	of	which	there	are	only	a	few	per	AS.	Thus,	we	have	neatly	subdivided	the	routing	problem	into
manageable	parts,	once	again	using	a	new	level	of	hierarchy	to	increase	scalability.	The	complexity	of
interdomain	routing	is	now	on	the	order	of	the	number	of	autonomous	systems,	and	the	complexity	of
intradomain	routing	is	on	the	order	of	the	number	of	networks	in	a	single	AS.

Integrating	Interdomain	and	Intradomain	Routing

While	the	preceding	discussion	illustrates	how	a	BGP	speaker	learns	interdomain	routing	information,	the	question	still
remains	as	to	how	all	the	other	routers	in	a	domain	get	this	information.	There	are	several	ways	this	problem	can	be
addressed.

Let's	start	with	a	very	simple	situation,	which	is	also	very	common.	In	the	case	of	a	stub	AS	that	only	connects	to	other
autonomous	systems	at	a	single	point,	the	border	router	is	clearly	the	only	choice	for	all	routes	that	are	outside	the
AS.	Such	a	router	can	inject	a	default	route	into	the	intradomain	routing	protocol.	In	effect,	this	is	a	statement	that	any
network	that	has	not	been	explicitly	advertised	in	the	intradomain	protocol	is	reachable	through	the	border	router.
Recall	from	the	discussion	of	IP	forwarding	in	the	previous	chapter	that	the	default	entry	in	the	forwarding	table	comes
after	all	the	more	specific	entries,	and	it	matches	anything	that	failed	to	match	a	specific	entry.

The	next	step	up	in	complexity	is	to	have	the	border	routers	inject	specific	routes	they	have	learned	from	outside	the
AS.	Consider,	for	example,	the	border	router	of	a	provider	AS	that	connects	to	a	customer	AS.	That	router	could	learn
that	the	network	prefix	192.4.54/24	is	located	inside	the	customer	AS,	either	through	BGP	or	because	the	information
is	configured	into	the	border	router.	It	could	inject	a	route	to	that	prefix	into	the	routing	protocol	running	inside	the
provider	AS.	This	would	be	an	advertisement	of	the	sort,	"I	have	a	link	to	192.4.54/24	of	cost	X."	This	would	cause
other	routers	in	the	provider	AS	to	learn	that	this	border	router	is	the	place	to	send	packets	destined	for	that	prefix.
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The	final	level	of	complexity	comes	in	backbone	networks,	which	learn	so	much	routing	information	from	BGP	that	it
becomes	too	costly	to	inject	it	into	the	intradomain	protocol.	For	example,	if	a	border	router	wants	to	inject	10,000
prefixes	that	it	learned	about	from	another	AS,	it	will	have	to	send	very	big	link-state	packets	to	the	other	routers	in
that	AS,	and	their	shortest-path	calculations	are	going	to	become	very	complex.	For	this	reason,	the	routers	in	a
backbone	network	use	a	variant	of	BGP	called	interior	BGP	(iBGP)	to	effectively	redistribute	the	information	that	is
learned	by	the	BGP	speakers	at	the	edges	of	the	AS	to	all	the	other	routers	in	the	AS.	(The	other	variant	of	BGP,
discussed	above,	runs	between	autonomous	systems	and	is	called	exterior	BGP,	or	eBGP).	iBGP	enables	any	router
in	the	AS	to	learn	the	best	border	router	to	use	when	sending	a	packet	to	any	address.	At	the	same	time,	each	router
in	the	AS	keeps	track	of	how	to	get	to	each	border	router	using	a	conventional	intradomain	protocol	with	no	injected
information.	By	combining	these	two	sets	of	information,	each	router	in	the	AS	is	able	to	determine	the	appropriate
next	hop	for	all	prefixes.

Figure	9.	Example	of	interdomain	and	intradomain	routing.	All	routers	run
iBGP	and	an	intradomain	routing	protocol.	Border	routers	A,	D,	and	E	also

run	eBGP	to	other	autonomous	systems.

To	see	how	this	all	works,	consider	the	simple	example	network,	representing	a	single	AS,	in	Figure	9.	The	three
border	routers,	A,	D,	and	E,	speak	eBGP	to	other	autonomous	systems	and	learn	how	to	reach	various	prefixes.
These	three	border	routers	communicate	with	other	and	with	the	interior	routers	B	and	C	by	building	a	mesh	of	iBGP
sessions	among	all	the	routers	in	the	AS.	Let's	now	focus	in	on	how	router	B	builds	up	its	complete	view	of	how	to
forward	packets	to	any	prefix.	Look	at	the	top	left	of	Figure	10,	which	shows	the	information	that	router	B	learns	from
its	iBGP	sessions.	It	learns	that	some	prefixes	are	best	reached	via	router	A,	some	via	D,	and	some	via	E.	At	the
same	time,	all	the	routers	in	the	AS	are	also	running	some	intradomain	routing	protocol	such	as	Routing	Information
Protocol	(RIP)	or	Open	Shortest	Path	First	(OSPF).	(A	generic	term	for	intradomain	protocols	is	an	interior	gateway
protocol,	or	IGP.)	From	this	completely	separate	protocol,	B	learns	how	to	reach	other	nodes	inside	the	domain,	as
shown	in	the	top	right	table.	For	example,	to	reach	router	E,	B	needs	to	send	packets	toward	router	C.	Finally,	in	the
bottom	table,	B	puts	the	whole	picture	together,	combining	the	information	about	external	prefixes	learned	from	iBGP
with	the	information	about	interior	routes	to	the	border	routers	learned	from	the	IGP.	Thus,	if	a	prefix	like	18.0/16	is
reachable	via	border	router	E,	and	the	best	interior	path	to	E	is	via	C,	then	it	follows	that	any	packet	destined	for
18.0/16	should	be	forwarded	toward	C.	In	this	way,	any	router	in	the	AS	can	build	up	a	complete	routing	table	for	any
prefix	that	is	reachable	via	some	border	router	of	the	AS.

4.1	Global	Internet

171



Figure	10.	BGP	routing	table,	IGP	routing	table,	and	combined	table	at
router	B.

IP	Version	6	(IPv6)

In	many	respects,	the	motivation	for	a	new	version	of	IP	is	simple:	to	deal	with	exhaustion	of	the	IP	address	space.
CIDR	helped	considerably	to	contain	the	rate	at	which	the	Internet	address	space	is	being	consumed	and	also	helped
to	control	the	growth	of	routing	table	information	needed	in	the	Internet's	routers.	However,	there	will	come	a	point	at
which	these	techniques	are	no	longer	adequate.	In	particular,	it	is	virtually	impossible	to	achieve	100%	address
utilization	efficiency,	so	the	address	space	will	be	exhausted	well	before	the	4	billionth	host	is	connected	to	the
Internet.	Even	if	we	were	able	to	use	all	4	billion	addresses,	it's	not	too	hard	to	imagine	ways	that	that	number	could
be	exhausted,	now	that	IP	addresses	are	assigned	not	just	to	full-blown	computers	but	also	to	mobile	phones,
televisions,	and	other	household	appliances.	All	of	these	possibilities	argue	that	a	bigger	address	space	than	that
provided	by	32	bits	will	eventually	be	needed.

Historical	Perspective

The	IETF	began	looking	at	the	problem	of	expanding	the	IP	address	space	in	1991,	and	several	alternatives	were
proposed.	Since	the	IP	address	is	carried	in	the	header	of	every	IP	packet,	increasing	the	size	of	the	address	dictates
a	change	in	the	packet	header.	This	means	a	new	version	of	the	Internet	Protocol	and,	as	a	consequence,	a	need	for
new	software	for	every	host	and	router	in	the	Internet.	This	is	clearly	not	a	trivial	matter—it	is	a	major	change	that
needs	to	be	thought	about	very	carefully.

The	effort	to	define	a	new	version	of	IP	was	known	as	IP	Next	Generation,	or	IPng.	As	the	work	progressed,	an	official
IP	version	number	was	assigned,	so	IPng	is	now	known	as	IPv6.	Note	that	the	version	of	IP	discussed	so	far	in	this
chapter	is	version	4	(IPv4).	The	apparent	discontinuity	in	numbering	is	the	result	of	version	number	5	being	used	for
an	experimental	protocol	many	years	ago.
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The	significance	of	changing	to	a	new	version	of	IP	caused	a	snowball	effect.	The	general	feeling	among	network
designers	was	that	if	you	are	going	to	make	a	change	of	this	magnitude	you	might	as	well	fix	as	many	other	things	in
IP	as	possible	at	the	same	time.	Consequently,	the	IETF	solicited	white	papers	from	anyone	who	cared	to	write	one,
asking	for	input	on	the	features	that	might	be	desired	in	a	new	version	of	IP.	In	addition	to	the	need	to	accommodate
scalable	routing	and	addressing,	some	of	the	other	wish	list	items	for	IPng	included:

Support	for	real-time	services

Security	support

Autoconfiguration	(i.e.,	the	ability	of	hosts	to	automatically	configure	themselves	with	such	information	as	their
own	IP	address	and	domain	name)

Enhanced	routing	functionality,	including	support	for	mobile	hosts

It	is	interesting	to	note	that,	while	many	of	these	features	were	absent	from	IPv4	at	the	time	IPv6	was	being	designed,
support	for	all	of	them	has	made	its	way	into	IPv4	in	recent	years,	often	using	similar	techniques	in	both	protocols.	It
can	be	argued	that	the	freedom	to	think	of	IPv6	as	a	clean	slate	facilitated	the	design	of	new	capabilities	for	IP	that
were	then	retrofitted	into	IPv4.

In	addition	to	the	wish	list,	one	absolutely	non-negotiable	feature	for	IPng	was	that	there	must	be	a	transition	plan	to
move	from	the	current	version	of	IP	(version	4)	to	the	new	version.	With	the	Internet	being	so	large	and	having	no
centralized	control,	it	would	be	completely	impossible	to	have	a	"flag	day"	on	which	everyone	shut	down	their	hosts
and	routers	and	installed	a	new	version	of	IP.	Thus,	we	can	expect	there	to	be	a	long	transition	period	in	which	some
hosts	and	routers	will	run	IPv4	only,	some	will	run	IPv4	and	IPv6,	and	some	will	run	IPv6	only.	(So	far,	that	transition
period	has	lasted	over	20	years!)

The	IETF	appointed	a	committee	called	the	IPng	Directorate	to	collect	all	the	inputs	on	IPng	requirements	and	to
evaluate	proposals	for	a	protocol	to	become	IPng.	Over	the	life	of	this	committee	there	were	numerous	proposals,
some	of	which	merged	with	other	proposals,	and	eventually	one	was	chosen	by	the	Directorate	to	be	the	basis	for
IPng.	That	proposal	was	called	Simple	Internet	Protocol	Plus	(SIPP).	SIPP	originally	called	for	a	doubling	of	the	IP
address	size	to	64	bits.	When	the	Directorate	selected	SIPP,	they	stipulated	several	changes,	one	of	which	was
another	doubling	of	the	address	to	128	bits	(16	bytes).	It	was	around	this	time	that	version	number	6	was	assigned.
The	rest	of	this	section	describes	some	of	the	main	features	of	IPv6.	At	the	time	of	this	writing,	most	of	the	key
specifications	for	IPv6	are	Proposed	or	Draft	Standards	in	the	IETF.

Addresses	and	Routing

First	and	foremost,	IPv6	provides	a	128-bit	address	space,	as	opposed	to	the	32	bits	of	version	4.	Thus,	while	version

4	can	potentially	address	4	billion	nodes	if	address	assignment	efficiency	reaches	100%,	IPv6	can	address	3.4 × 10

nodes,	again	assuming	100%	efficiency.	As	we	have	seen,	though,	100%	efficiency	in	address	assignment	is	not
likely.	Some	analysis	of	other	addressing	schemes,	such	as	those	of	the	French	and	U.S.	telephone	networks,	as	well
as	that	of	IPv4,	have	turned	up	some	empirical	numbers	for	address	assignment	efficiency.	Based	on	the	most
pessimistic	estimates	of	efficiency	drawn	from	this	study,	the	IPv6	address	space	is	predicted	to	provide	over	1500
addresses	per	square	foot	of	the	Earth's	surface,	which	certainly	seems	like	it	should	serve	us	well	even	when
toasters	on	Venus	have	IP	addresses.

Address	Space	Allocation

Drawing	on	the	effectiveness	of	CIDR	in	IPv4,	IPv6	addresses	are	also	classless,	but	the	address	space	is	still
subdivided	in	various	ways	based	on	the	leading	bits.	Rather	than	specifying	different	address	classes,	the	leading
bits	specify	different	uses	of	the	IPv6	address.	The	current	assignment	of	prefixes	is	listed	in	Table	1.

Prefix Use

38
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00...0	(128	bits) Unspecified

00...1	(128	bits) Loopback

1111	1111 Multicast	addresses

1111	1110	10 Link-local	unicast

Everything	else Global	Unicast

Table	1.	Address	Prefix	Assignments	for	IPv6

This	allocation	of	the	address	space	warrants	a	little	discussion.	First,	the	entire	functionality	of	IPv4's	three	main
address	classes	(A,	B,	and	C)	is	contained	inside	the	"everything	else"	range.	Global	Unicast	Addresses,	as	we	will
see	shortly,	are	a	lot	like	classless	IPv4	addresses,	only	much	longer.	These	are	the	main	ones	of	interest	at	this
point,	with	over	99%	of	the	total	IPv6	address	space	available	to	this	important	form	of	address.	(At	the	time	of	writing,
IPv6	unicast	addresses	are	being	allocated	from	the	block	that	begins		001	,	with	the	remaining	address	space—about
87%—being	reserved	for	future	use.)

The	multicast	address	space	is	(obviously)	for	multicast,	thereby	serving	the	same	role	as	class	D	addresses	in	IPv4.
Note	that	multicast	addresses	are	easy	to	distinguish—they	start	with	a	byte	of	all	1s.	We	will	see	how	these
addresses	are	used	in	a	later	section.

The	idea	behind	link-local	use	addresses	is	to	enable	a	host	to	construct	an	address	that	will	work	on	the	network	to
which	it	is	connected	without	being	concerned	about	the	global	uniqueness	of	the	address.	This	may	be	useful	for
autoconfiguration,	as	we	will	see	below.	Similarly,	the	site-local	use	addresses	are	intended	to	allow	valid	addresses
to	be	constructed	on	a	site	(e.g.,	a	private	corporate	network)	that	is	not	connected	to	the	larger	Internet;	again,	global
uniqueness	need	not	be	an	issue.

Within	the	global	unicast	address	space	are	some	important	special	types	of	addresses.	A	node	may	be	assigned	an
IPv4-compatible	IPv6	address	by	zero-extending	a	32-bit	IPv4	address	to	128	bits.	A	node	that	is	only	capable	of
understanding	IPv4	can	be	assigned	an	IPv4-mapped	IPv6	address	by	prefixing	the	32-bit	IPv4	address	with	2	bytes
of	all	1s	and	then	zero-extending	the	result	to	128	bits.	These	two	special	address	types	have	uses	in	the	IPv4-to-IPv6
transition	(see	the	sidebar	on	this	topic).

Address	Notation

Just	as	with	IPv4,	there	is	some	special	notation	for	writing	down	IPv6	addresses.	The	standard	representation	is
	x:x:x:x:x:x:x:x	,	where	each		x		is	a	hexadecimal	representation	of	a	16-bit	piece	of	the	address.	An	example	would
be

47CD:1234:4422:ACO2:0022:1234:A456:0124

Any	IPv6	address	can	be	written	using	this	notation.	Since	there	are	a	few	special	types	of	IPv6	addresses,	there	are
some	special	notations	that	may	be	helpful	in	certain	circumstances.	For	example,	an	address	with	a	large	number	of
contiguous	0s	can	be	written	more	compactly	by	omitting	all	the	0	fields.	Thus,

47CD:0000:0000:0000:0000:0000:A456:0124

could	be	written

47CD::A456:0124

Clearly,	this	form	of	shorthand	can	only	be	used	for	one	set	of	contiguous	0s	in	an	address	to	avoid	ambiguity.
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The	two	types	of	IPv6	addresses	that	contain	an	embedded	IPv4	address	have	their	own	special	notation	that	makes
extraction	of	the	IPv4	address	easier.	For	example,	the	IPv4-mapped	IPv6	address	of	a	host	whose	IPv4	address	was
128.96.33.81	could	be	written	as

::FFFF:128.96.33.81

That	is,	the	last	32	bits	are	written	in	IPv4	notation,	rather	than	as	a	pair	of	hexadecimal	numbers	separated	by	a
colon.	Note	that	the	double	colon	at	the	front	indicates	the	leading	0s.

Global	Unicast	Addresses

By	far	the	most	important	sort	of	addressing	that	IPv6	must	provide	is	plain	old	unicast	addressing.	It	must	do	this	in	a
way	that	supports	the	rapid	rate	of	addition	of	new	hosts	to	the	Internet	and	that	allows	routing	to	be	done	in	a
scalable	way	as	the	number	of	physical	networks	in	the	Internet	grows.	Thus,	at	the	heart	of	IPv6	is	the	unicast
address	allocation	plan	that	determines	how	unicast	addresses	will	be	assigned	to	service	providers,	autonomous
systems,	networks,	hosts,	and	routers.

In	fact,	the	address	allocation	plan	that	is	proposed	for	IPv6	unicast	addresses	is	extremely	similar	to	that	being
deployed	with	CIDR	in	IPv4.	To	understand	how	it	works	and	how	it	provides	scalability,	it	is	helpful	to	define	some
new	terms.	We	may	think	of	a	nontransit	AS	(i.e.,	a	stub	or	multihomed	AS)	as	a	subscriber,	and	we	may	think	of	a
transit	AS	as	a	provider.	Furthermore,	we	may	subdivide	providers	into	direct	and	indirect.	The	former	are	directly
connected	to	subscribers.	The	latter	primarily	connect	other	providers,	are	not	connected	directly	to	subscribers,	and
are	often	known	as	backbone	networks.

With	this	set	of	definitions,	we	can	see	that	the	Internet	is	not	just	an	arbitrarily	interconnected	set	of	autonomous
systems;	it	has	some	intrinsic	hierarchy.	The	difficulty	lies	in	making	use	of	this	hierarchy	without	inventing
mechanisms	that	fail	when	the	hierarchy	is	not	strictly	observed,	as	happened	with	EGP.	For	example,	the	distinction
between	direct	and	indirect	providers	becomes	blurred	when	a	subscriber	connects	to	a	backbone	or	when	a	direct
provider	starts	connecting	to	many	other	providers.

As	with	CIDR,	the	goal	of	the	IPv6	address	allocation	plan	is	to	provide	aggregation	of	routing	information	to	reduce
the	burden	on	intradomain	routers.	Again,	the	key	idea	is	to	use	an	address	prefix—a	set	of	contiguous	bits	at	the
most	significant	end	of	the	address—to	aggregate	reachability	information	to	a	large	number	of	networks	and	even	to
a	large	number	of	autonomous	systems.	The	main	way	to	achieve	this	is	to	assign	an	address	prefix	to	a	direct
provider	and	then	for	that	direct	provider	to	assign	longer	prefixes	that	begin	with	that	prefix	to	its	subscribers.	Thus,	a
provider	can	advertise	a	single	prefix	for	all	of	its	subscribers.

Of	course,	the	drawback	is	that	if	a	site	decides	to	change	providers,	it	will	need	to	obtain	a	new	address	prefix	and
renumber	all	the	nodes	in	the	site.	This	could	be	a	colossal	undertaking,	enough	to	dissuade	most	people	from	ever
changing	providers.	For	this	reason,	there	is	ongoing	research	on	other	addressing	schemes,	such	as	geographic
addressing,	in	which	a	site's	address	is	a	function	of	its	location	rather	than	the	provider	to	which	it	attaches.	At
present,	however,	provider-based	addressing	is	necessary	to	make	routing	work	efficiently.

Note	that	while	IPv6	address	assignment	is	essentially	equivalent	to	the	way	address	assignment	has	happened	in
IPv4	since	the	introduction	of	CIDR,	IPv6	has	the	significant	advantage	of	not	having	a	large	installed	base	of
assigned	addresses	to	fit	into	its	plans.

One	question	is	whether	it	makes	sense	for	hierarchical	aggregation	to	take	place	at	other	levels	in	the	hierarchy.	For
example,	should	all	providers	obtain	their	address	prefixes	from	within	a	prefix	allocated	to	the	backbone	to	which	they
connect?	Given	that	most	providers	connect	to	multiple	backbones,	this	probably	doesn't	make	sense.	Also,	since	the
number	of	providers	is	much	smaller	than	the	number	of	sites,	the	benefits	of	aggregating	at	this	level	are	much	fewer.
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One	place	where	aggregation	may	make	sense	is	at	the	national	or	continental	level.	Continental	boundaries	form
natural	divisions	in	the	Internet	topology.	If	all	addresses	in	Europe,	for	example,	had	a	common	prefix,	then	a	great
deal	of	aggregation	could	be	done,	and	most	routers	in	other	continents	would	only	need	one	routing	table	entry	for	all
networks	with	the	Europe	prefix.	Providers	in	Europe	would	all	select	their	prefixes	such	that	they	began	with	the
European	prefix.	Using	this	scheme,	an	IPv6	address	might	look	like	Figure	11.	The		RegistryID		might	be	an	identifier
assigned	to	a	European	address	registry,	with	different	IDs	assigned	to	other	continents	or	countries.	Note	that
prefixes	would	be	of	different	lengths	under	this	scenario.	For	example,	a	provider	with	few	customers	could	have	a
longer	prefix	(and	thus	less	total	address	space	available)	than	one	with	many	customers.

Figure	11.	An	IPv6	provider-based	unicast	address.

One	tricky	situation	could	occur	when	a	subscriber	is	connected	to	more	than	one	provider.	Which	prefix	should	the
subscriber	use	for	his	or	her	site?	There	is	no	perfect	solution	to	the	problem.	For	example,	suppose	a	subscriber	is
connected	to	two	providers,	X	and	Y.	If	the	subscriber	takes	his	prefix	from	X,	then	Y	has	to	advertise	a	prefix	that	has
no	relationship	to	its	other	subscribers	and	that	as	a	consequence	cannot	be	aggregated.	If	the	subscriber	numbers
part	of	his	AS	with	the	prefix	of	X	and	part	with	the	prefix	of	Y,	he	runs	the	risk	of	having	half	his	site	become
unreachable	if	the	connection	to	one	provider	goes	down.	One	solution	that	works	fairly	well	if	X	and	Y	have	a	lot	of
subscribers	in	common	is	for	them	to	have	three	prefixes	between	them:	one	for	subscribers	of	X	only,	one	for
subscribers	of	Y	only,	and	one	for	the	sites	that	are	subscribers	of	both	X	and	Y.

Packet	Format

Despite	the	fact	that	IPv6	extends	IPv4	in	several	ways,	its	header	format	is	actually	simpler.	This	simplicity	is	due	to	a
concerted	effort	to	remove	unnecessary	functionality	from	the	protocol.	Figure	12	shows	the	result.

As	with	many	headers,	this	one	starts	with	a		Version		field,	which	is	set	to	6	for	IPv6.	The		Version		field	is	in	the	same
place	relative	to	the	start	of	the	header	as	IPv4's		Version		field	so	that	header-processing	software	can	immediately
decide	which	header	format	to	look	for.	The		TrafficClass		and		FlowLabel		fields	both	relate	to	quality	of	service	issues.

The		PayloadLen		field	gives	the	length	of	the	packet,	excluding	the	IPv6	header,	measured	in	bytes.	The		NextHeader	
field	cleverly	replaces	both	the	IP	options	and	the		Protocol		field	of	IPv4.	If	options	are	required,	then	they	are	carried
in	one	or	more	special	headers	following	the	IP	header,	and	this	is	indicated	by	the	value	of	the		NextHeader		field.	If
there	are	no	special	headers,	the		NextHeader		field	is	the	demux	key	identifying	the	higher-level	protocol	running	over
IP	(e.g.,	TCP	or	UDP);	that	is,	it	serves	the	same	purpose	as	the	IPv4		Protocol		field.	Also,	fragmentation	is	now
handled	as	an	optional	header,	which	means	that	the	fragmentation-related	fields	of	IPv4	are	not	included	in	the	IPv6
header.	The		HopLimit		field	is	simply	the		TTL		of	IPv4,	renamed	to	reflect	the	way	it	is	actually	used.
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Figure	12.	IPv6	packet	header.

Finally,	the	bulk	of	the	header	is	taken	up	with	the	source	and	destination	addresses,	each	of	which	is	16	bytes	(128
bits)	long.	Thus,	the	IPv6	header	is	always	40	bytes	long.	Considering	that	IPv6	addresses	are	four	times	longer	than
those	of	IPv4,	this	compares	quite	well	with	the	IPv4	header,	which	is	20	bytes	long	in	the	absence	of	options.

The	way	that	IPv6	handles	options	is	quite	an	improvement	over	IPv4.	In	IPv4,	if	any	options	were	present,	every
router	had	to	parse	the	entire	options	field	to	see	if	any	of	the	options	were	relevant.	This	is	because	the	options	were
all	buried	at	the	end	of	the	IP	header,	as	an	unordered	collection	of	'(type,	length,	value)'	tuples.	In	contrast,	IPv6
treats	options	as	extension	headers	that	must,	if	present,	appear	in	a	specific	order.	This	means	that	each	router	can
quickly	determine	if	any	of	the	options	are	relevant	to	it;	in	most	cases,	they	will	not	be.	Usually	this	can	be	determined
by	just	looking	at	the		NextHeader		field.	The	end	result	is	that	option	processing	is	much	more	efficient	in	IPv6,	which	is
an	important	factor	in	router	performance.	In	addition,	the	new	formatting	of	options	as	extension	headers	means	that
they	can	be	of	arbitrary	length,	whereas	in	IPv4	they	were	limited	to	44	bytes	at	most.	We	will	see	how	some	of	the
options	are	used	below.

Figure	13.	IPv6	fragmentation	extension	header.

Each	option	has	its	own	type	of	extension	header.	The	type	of	each	extension	header	is	identified	by	the	value	of	the
	NextHeader		field	in	the	header	that	precedes	it,	and	each	extension	header	contains	a		NextHeader		field	to	identify	the
header	following	it.	The	last	extension	header	will	be	followed	by	a	transport-layer	header	(e.g.,	TCP)	and	in	this	case
the	value	of	the		NextHeader		field	is	the	same	as	the	value	of	the		Protocol		field	would	be	in	an	IPv4	header.	Thus,	the
	NextHeader		field	does	double	duty;	it	may	either	identify	the	type	of	extension	header	to	follow,	or,	in	the	last	extension
header,	it	serves	as	a	demux	key	to	identify	the	higher-layer	protocol	running	over	IPv6.
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Consider	the	example	of	the	fragmentation	header,	shown	in	Figure	13.	This	header	provides	functionality	similar	to
the	fragmentation	fields	in	the	IPv4	header,	but	it	is	only	present	if	fragmentation	is	necessary.	Assuming	it	is	the	only
extension	header	present,	then	the		NextHeader		field	of	the	IPv6	header	would	contain	the	value		44	,	which	is	the
value	assigned	to	indicate	the	fragmentation	header.	The		NextHeader		field	of	the	fragmentation	header	itself	contains
a	value	describing	the	header	that	follows	it.	Again,	assuming	no	other	extension	headers	are	present,	then	the	next
header	might	be	the	TCP	header,	which	results	in		NextHeader		containing	the	value		6	,	just	as	the		Protocol		field
would	in	IPv4.	If	the	fragmentation	header	were	followed	by,	say,	an	authentication	header,	then	the	fragmentation
header's		NextHeader		field	would	contain	the	value		51	.

Autoconfiguration

While	the	Internet's	growth	has	been	impressive,	one	factor	that	has	inhibited	faster	acceptance	of	the	technology	is
the	fact	that	getting	connected	to	the	Internet	has	typically	required	a	fair	amount	of	system	administration	expertise.
In	particular,	every	host	that	is	connected	to	the	Internet	needs	to	be	configured	with	a	certain	minimum	amount	of
information,	such	as	a	valid	IP	address,	a	subnet	mask	for	the	link	to	which	it	attaches,	and	the	address	of	a	name
server.	Thus,	it	has	not	been	possible	to	unpack	a	new	computer	and	connect	it	to	the	Internet	without	some
preconfiguration.	One	goal	of	IPv6,	therefore,	is	to	provide	support	for	autoconfiguration,	sometimes	referred	to	as
plug-and-play	operation.

As	we	saw	in	the	previous	chapter,	autoconfiguration	is	possible	for	IPv4,	but	it	depends	on	the	existence	of	a	server
that	is	configured	to	hand	out	addresses	and	other	configuration	information	to	Dynamic	Host	Configuration	Protocol
(DHCP)	clients.	The	longer	address	format	in	IPv6	helps	provide	a	useful,	new	form	of	autoconfiguration	called
stateless	autoconfiguration,	which	does	not	require	a	server.

Recall	that	IPv6	unicast	addresses	are	hierarchical,	and	that	the	least	significant	portion	is	the	interface	ID.	Thus,	we
can	subdivide	the	autoconfiguration	problem	into	two	parts:

1.	 Obtain	an	interface	ID	that	is	unique	on	the	link	to	which	the	host	is	attached.

2.	 Obtain	the	correct	address	prefix	for	this	subnet.

The	first	part	turns	out	to	be	rather	easy,	since	every	host	on	a	link	must	have	a	unique	link-level	address.	For
example,	all	hosts	on	an	Ethernet	have	a	unique	48-bit	Ethernet	address.	This	can	be	turned	into	a	valid	link-local	use
address	by	adding	the	appropriate	prefix	from	Table	(	1111	1110	10	)	followed	by	enough	0s	to	make	up	128	bits.	For
some	devices—for	example,	printers	or	hosts	on	a	small	routerless	network	that	do	not	connect	to	any	other	networks
—this	address	may	be	perfectly	adequate.	Those	devices	that	need	a	globally	valid	address	depend	on	a	router	on
the	same	link	to	periodically	advertise	the	appropriate	prefix	for	the	link.	Clearly,	this	requires	that	the	router	be
configured	with	the	correct	address	prefix,	and	that	this	prefix	be	chosen	in	such	a	way	that	there	is	enough	space	at
the	end	(e.g.,	48	bits)	to	attach	an	appropriate	link-level	address.

The	ability	to	embed	link-level	addresses	as	long	as	48	bits	into	IPv6	addresses	was	one	of	the	reasons	for	choosing
such	a	large	address	size.	Not	only	does	128	bits	allow	the	embedding,	but	it	leaves	plenty	of	space	for	the	multilevel
hierarchy	of	addressing	that	we	discussed	above.

Advanced	Routing	Capabilities

Another	of	IPv6's	extension	headers	is	the	routing	header.	In	the	absence	of	this	header,	routing	for	IPv6	differs	very
little	from	that	of	IPv4	under	CIDR.	The	routing	header	contains	a	list	of	IPv6	addresses	that	represent	nodes	or
topological	areas	that	the	packet	should	visit	en	route	to	its	destination.	A	topological	area	may	be,	for	example,	a
backbone	provider's	network.	Specifying	that	packets	must	visit	this	network	would	be	a	way	of	implementing	provider
selection	on	a	packet-by-packet	basis.	Thus,	a	host	could	say	that	it	wants	some	packets	to	go	through	a	provider	that
is	cheap,	others	through	a	provider	that	provides	high	reliability,	and	still	others	through	a	provider	that	the	host	trusts
to	provide	security.
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To	provide	the	ability	to	specify	topological	entities	rather	than	individual	nodes,	IPv6	defines	an	anycast	address.	An
anycast	address	is	assigned	to	a	set	of	interfaces,	and	packets	sent	to	that	address	will	go	to	the	"nearest"	of	those
interfaces,	with	nearest	being	determined	by	the	routing	protocols.	For	example,	all	the	routers	of	a	backbone	provider
could	be	assigned	a	single	anycast	address,	which	would	be	used	in	the	routing	header.

The	anycast	address	and	the	routing	header	are	also	expected	to	be	used	to	provide	enhanced	routing	support	to
mobile	hosts.	The	detailed	mechanisms	for	providing	this	support	are	still	being	defined.

Other	Features

As	mentioned	at	the	beginning	of	this	section,	the	primary	motivation	behind	the	development	of	IPv6	was	to	support
the	continued	growth	of	the	Internet.	Once	the	IP	header	had	to	be	changed	for	the	sake	of	the	addresses,	however,
the	door	was	open	for	a	wide	variety	of	other	changes,	two	of	which	we	have	just	described—autoconfiguration	and
source-directed	routing.	IPv6	includes	several	additional	features,	most	of	which	are	covered	elsewhere	in	this	book;
e.g.,	mobility,	security,	quality-of-service.	It	is	interesting	to	note	that,	in	most	of	these	areas,	the	IPv4	and	IPv6
capabilities	have	become	virtually	indistinguishable,	so	that	the	main	driver	for	IPv6	remains	the	need	for	larger
addresses.
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4.2	Multicast

Multi-access	networks	like	Ethernet	implement	multicast	in	hardware.	There	are,	however,	applications	that	need	a
broader	multicasting	capability	that	is	effective	at	the	scale	of	the	Internet.	For	example,	when	a	radio	station	is
broadcast	over	the	Internet,	the	same	data	must	be	sent	to	all	the	hosts	where	a	user	has	tuned	in	to	that	station.	In
that	example,	the	communication	is	one-to-many.	Other	examples	of	one-to-many	applications	include	transmitting
the	same	news,	current	stock	prices,	software	updates,	or	TV	channels	to	multiple	hosts.	The	latter	example	is
commonly	called	IPTV.

There	are	also	applications	whose	communication	is	many-to-many,	such	as	multimedia	teleconferencing,	online
multiplayer	gaming,	or	distributed	simulations.	In	such	cases,	members	of	a	group	receive	data	from	multiple	senders,
typically	each	other.	From	any	particular	sender,	they	all	receive	the	same	data.

Normal	IP	communication,	in	which	each	packet	must	be	addressed	and	sent	to	a	single	host,	is	not	well	suited	to
such	applications.	If	an	application	has	data	to	send	to	a	group,	it	would	have	to	send	a	separate	packet	with	the
identical	data	to	each	member	of	the	group.	This	redundancy	consumes	more	bandwidth	than	necessary.
Furthermore,	the	redundant	traffic	is	not	distributed	evenly	but	rather	is	focused	around	the	sending	host,	and	may
easily	exceed	the	capacity	of	the	sending	host	and	the	nearby	networks	and	routers.

To	better	support	many-to-many	and	one-to-many	communication,	IP	provides	an	IP-level	multicast	analogous	to	the
link-level	multicast	provided	by	multi-access	networks	like	Ethernet.	Now	that	we	are	introducing	the	concept	of
multicast	for	IP,	we	also	need	a	term	for	the	traditional	one-to-one	service	of	IP	that	has	been	described	so	far:	That
service	is	referred	to	as	unicast.

The	basic	IP	multicast	model	is	a	many-to-many	model	based	on	multicast	groups,	where	each	group	has	its	own	IP
multicast	address.	The	hosts	that	are	members	of	a	group	receive	copies	of	any	packets	sent	to	that	group's	multicast
address.	A	host	can	be	in	multiple	groups,	and	it	can	join	and	leave	groups	freely	by	telling	its	local	router	using	a
protocol	that	we	will	discuss	shortly.	Thus,	while	we	think	of	unicast	addresses	as	being	associated	with	a	node	or	an
interface,	multicast	addresses	are	associated	with	an	abstract	group,	the	membership	of	which	changes	dynamically
over	time.	Further,	the	original	IP	multicast	service	model	allows	any	host	to	send	multicast	traffic	to	a	group;	it	doesn't
have	to	be	a	member	of	the	group,	and	there	may	be	any	number	of	such	senders	to	a	given	group.

Using	IP	multicast	to	send	the	identical	packet	to	each	member	of	the	group,	a	host	sends	a	single	copy	of	the	packet
addressed	to	the	group's	multicast	address.	The	sending	host	doesn't	need	to	know	the	individual	unicast	IP	address
of	each	member	of	the	group	because,	as	we	will	see,	that	knowledge	is	distributed	among	the	routers	in	the
internetwork.	Similarly,	the	sending	host	doesn't	need	to	send	multiple	copies	of	the	packet	because	the	routers	will
make	copies	whenever	they	have	to	forward	the	packet	over	more	than	one	link.	Compared	to	using	unicast	IP	to
deliver	the	same	packets	to	many	receivers,	IP	multicast	is	more	scalable	because	it	eliminates	the	redundant	traffic
(packets)	that	would	have	been	sent	many	times	over	the	same	links,	especially	those	near	to	the	sending	host.

IP's	original	many-to-many	multicast	has	been	supplemented	with	support	for	a	form	of	one-to-many	multicast.	In	this
model	of	one-to-many	multicast,	called	Source-Specific	Multicast	(SSM),	a	receiving	host	specifies	both	a	multicast
group	and	a	specific	sending	host.	The	receiving	host	would	then	receive	multicasts	addressed	to	the	specified	group,
but	only	if	they	are	from	the	specified	sender.	Many	Internet	multicast	applications	(e.g.,	radio	broadcasts)	fit	the	SSM
model.	To	contrast	it	with	SSM,	IP's	original	many-to-many	model	is	sometimes	referred	to	as	Any	Source	Multicast
(ASM).

A	host	signals	its	desire	to	join	or	leave	a	multicast	group	by	communicating	with	its	local	router	using	a	special
protocol	for	just	that	purpose.	In	IPv4,	that	protocol	is	the	Internet	Group	Management	Protocol	(IGMP);	in	IPv6,	it	is
Multicast	Listener	Discovery	(MLD).	The	router	then	has	the	responsibility	for	making	multicast	behave	correctly	with
regard	to	that	host.	Because	a	host	may	fail	to	leave	a	multicast	group	when	it	should	(after	a	crash	or	other	failure,	for
example),	the	router	periodically	polls	the	network	to	determine	which	groups	are	still	of	interest	to	the	attached	hosts.
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Multicast	Addresses

IP	has	a	subrange	of	its	address	space	reserved	for	multicast	addresses.	In	IPv4,	these	addresses	are	assigned	in
the	class	D	address	space,	and	IPv6	also	has	a	portion	of	its	address	space	reserved	for	multicast	group	addresses.
Some	subranges	of	the	multicast	ranges	are	reserved	for	intradomain	multicast,	so	they	can	be	reused	independently
by	different	domains.

There	are	thus	28	bits	of	possible	multicast	address	in	IPv4	when	we	ignore	the	prefix	shared	by	all	multicast
addresses.	This	presents	a	problem	when	attempting	to	take	advantage	of	hardware	multicasting	on	a	local	area
network	(LAN).	Let's	take	the	case	of	Ethernet.	Ethernet	multicast	addresses	have	only	23	bits	when	we	ignore	their
shared	prefix.	In	other	words,	to	take	advantage	of	Ethernet	multicasting,	IP	has	to	map	28-bit	IP	multicast	addresses
into	23-bit	Ethernet	multicast	addresses.	This	is	implemented	by	taking	the	low-order	23	bits	of	any	IP	multicast

address	to	use	as	its	Ethernet	multicast	address	and	ignoring	the	high-order	5	bits.	Thus,	32	(2 )	IP	addresses	map

into	each	one	of	the	Ethernet	addresses.

In	this	section	we	use	Ethernet	as	a	canonical	example	of	a	networking	technology	that	supports	multicast	in
hardware,	but	the	same	is	also	true	of	PON	(Passive	Optical	Networks),	which	is	the	access	network
technology	often	used	to	deliver	fiber-to-the-home.	In	fact,	IP	Multicast	over	PON	is	now	a	common	way	to
deliver	IPTV	to	homes.

When	a	host	on	an	Ethernet	joins	an	IP	multicast	group,	it	configures	its	Ethernet	interface	to	receive	any	packets	with
the	corresponding	Ethernet	multicast	address.	Unfortunately,	this	causes	the	receiving	host	to	receive	not	only	the
multicast	traffic	it	desired	but	also	traffic	sent	to	any	of	the	other	31	IP	multicast	groups	that	map	to	the	same	Ethernet
address,	if	they	are	routed	to	that	Ethernet.	Therefore,	IP	at	the	receiving	host	must	examine	the	IP	header	of	any
multicast	packet	to	determine	whether	the	packet	really	belongs	to	the	desired	group.	In	summary,	the	mismatch	of
multicast	address	sizes	means	that	multicast	traffic	may	place	a	burden	on	hosts	that	are	not	even	interested	in	the
group	to	which	the	traffic	was	sent.	Fortunately,	in	some	switched	networks	(such	as	switched	Ethernet)	this	problem
can	be	mitigated	by	schemes	wherein	the	switches	recognize	unwanted	packets	and	discard	them.

One	perplexing	question	is	how	senders	and	receivers	learn	which	multicast	addresses	to	use	in	the	first	place.	This	is
normally	handled	by	out-of-band	means,	and	there	are	some	quite	sophisticated	tools	to	enable	group	addresses	to
be	advertised	on	the	Internet.

Multicast	Routing	(DVMRP,	PIM,	MSDP)

A	router's	unicast	forwarding	tables	indicate,	for	any	IP	address,	which	link	to	use	to	forward	the	unicast	packet.	To
support	multicast,	a	router	must	additionally	have	multicast	forwarding	tables	that	indicate,	based	on	multicast
address,	which	links—possibly	more	than	one—to	use	to	forward	the	multicast	packet	(the	router	duplicates	the
packet	if	it	is	to	be	forwarded	over	multiple	links).	Thus,	where	unicast	forwarding	tables	collectively	specify	a	set	of
paths,	multicast	forwarding	tables	collectively	specify	a	set	of	trees:	multicast	distribution	trees.	Furthermore,	to
support	Source-Specific	Multicast	(and,	it	turns	out,	for	some	types	of	Any	Source	Multicast),	the	multicast	forwarding
tables	must	indicate	which	links	to	use	based	on	the	combination	of	multicast	address	and	the	(unicast)	IP	address	of
the	source,	again	specifying	a	set	of	trees.

Multicast	routing	is	the	process	by	which	the	multicast	distribution	trees	are	determined	or,	more	concretely,	the
process	by	which	the	multicast	forwarding	tables	are	built.	As	with	unicast	routing,	it	is	not	enough	that	a	multicast
routing	protocol	"work";	it	must	also	scale	reasonably	well	as	the	network	grows,	and	it	must	accommodate	the
autonomy	of	different	routing	domains.

DVMRP

5
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Distance-vector	routing	used	in	unicast	can	be	extended	to	support	multicast.	The	resulting	protocol	is	called	Distance
Vector	Multicast	Routing	Protocol,	or	DVMRP.	DVMRP	was	the	first	multicast	routing	protocol	to	see	widespread	use.

Recall	that,	in	the	distance-vector	algorithm,	each	router	maintains	a	table	of		Destination,	Cost,	NextHop		tuples,	and
exchanges	a	list	of		(Destination,	Cost)		pairs	with	its	directly	connected	neighbors.	Extending	this	algorithm	to	support
multicast	is	a	two-stage	process.	First,	we	create	a	broadcast	mechanism	that	allows	a	packet	to	be	forwarded	to	all
the	networks	on	the	internet.	Second,	we	need	to	refine	this	mechanism	so	that	it	prunes	back	networks	that	do	not
have	hosts	that	belong	to	the	multicast	group.	Consequently,	DVMRP	is	one	of	several	multicast	routing	protocols
described	as	flood-and-prune	protocols.

Given	a	unicast	routing	table,	each	router	knows	that	the	current	shortest	path	to	a	given		destination		goes	through
	NextHop	.	Thus,	whenever	it	receives	a	multicast	packet	from	source	S,	the	router	forwards	the	packet	on	all	outgoing
links	(except	the	one	on	which	the	packet	arrived)	if	and	only	if	the	packet	arrived	over	the	link	that	is	on	the	shortest
path	to	S	(i.e.,	the	packet	came	from	the		NextHop		associated	with	S	in	the	routing	table).	This	strategy	effectively
floods	packets	outward	from	S	but	does	not	loop	packets	back	toward	S.

There	are	two	major	shortcomings	to	this	approach.	The	first	is	that	it	truly	floods	the	network;	it	has	no	provision	for
avoiding	LANs	that	have	no	members	in	the	multicast	group.	We	address	this	problem	below.	The	second	limitation	is
that	a	given	packet	will	be	forwarded	over	a	LAN	by	each	of	the	routers	connected	to	that	LAN.	This	is	due	to	the
forwarding	strategy	of	flooding	packets	on	all	links	other	than	the	one	on	which	the	packet	arrived,	without	regard	to
whether	or	not	those	links	are	part	of	the	shortest-path	tree	rooted	at	the	source.

The	solution	to	this	second	limitation	is	to	eliminate	the	duplicate	broadcast	packets	that	are	generated	when	more
than	one	router	is	connected	to	a	given	LAN.	One	way	to	do	this	is	to	designate	one	router	as	the	parent	router	for
each	link,	relative	to	the	source,	where	only	the	parent	router	is	allowed	to	forward	multicast	packets	from	that	source
over	the	LAN.	The	router	that	has	the	shortest	path	to	source	S	is	selected	as	the	parent;	a	tie	between	two	routers
would	be	broken	according	to	which	router	has	the	smallest	address.	A	given	router	can	learn	if	it	is	the	parent	for	the
LAN	(again	relative	to	each	possible	source)	based	upon	the	distance-vector	messages	it	exchanges	with	its
neighbors.

Notice	that	this	refinement	requires	that	each	router	keep,	for	each	source,	a	bit	for	each	of	its	incident	links	indicating
whether	or	not	it	is	the	parent	for	that	source/link	pair.	Keep	in	mind	that	in	an	internet	setting,	a	source	is	a	network,
not	a	host,	since	an	internet	router	is	only	interested	in	forwarding	packets	between	networks.	The	resulting
mechanism	is	sometimes	called	Reverse	Path	Broadcast	(RPB)	or	Reverse	Path	Forwarding	(RPF).	The	path	is
reverse	because	we	are	considering	the	shortest	path	toward	the	source	when	making	our	forwarding	decisions,	as
compared	to	unicast	routing,	which	looks	for	the	shortest	path	to	a	given	destination.

The	RPB	mechanism	just	described	implements	shortest-path	broadcast.	We	now	want	to	prune	the	set	of	networks
that	receives	each	packet	addressed	to	group	G	to	exclude	those	that	have	no	hosts	that	are	members	of	G.	This	can
be	accomplished	in	two	stages.	First,	we	need	to	recognize	when	a	leaf	network	has	no	group	members.	Determining
that	a	network	is	a	leaf	is	easy—if	the	parent	router	as	described	above	is	the	only	router	on	the	network,	then	the
network	is	a	leaf.	Determining	if	any	group	members	reside	on	the	network	is	accomplished	by	having	each	host	that
is	a	member	of	group	G	periodically	announce	this	fact	over	the	network,	as	described	in	our	earlier	description	of	link-
state	multicast.	The	router	then	uses	this	information	to	decide	whether	or	not	to	forward	a	multicast	packet	addressed
to	G	over	this	LAN.

The	second	stage	is	to	propagate	this	"no	members	of	G	here"	information	up	the	shortest-path	tree.	This	is	done	by
having	the	router	augment	the		(Destination,	Cost)		pairs	it	sends	to	its	neighbors	with	the	set	of	groups	for	which	the
leaf	network	is	interested	in	receiving	multicast	packets.	This	information	can	then	be	propagated	from	router	to
router,	so	that	for	each	of	its	links	a	given	router	knows	for	what	groups	it	should	forward	multicast	packets.

Note	that	including	all	of	this	information	in	the	routing	update	is	a	fairly	expensive	thing	to	do.	In	practice,	therefore,
this	information	is	exchanged	only	when	some	source	starts	sending	packets	to	that	group.	In	other	words,	the
strategy	is	to	use	RPB,	which	adds	a	small	amount	of	overhead	to	the	basic	distance-vector	algorithm,	until	a
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particular	multicast	address	becomes	active.	At	that	time,	routers	that	are	not	interested	in	receiving	packets
addressed	to	that	group	speak	up,	and	that	information	is	propagated	to	the	other	routers.

PIM-SM

Protocol	Independent	Multicast,	or	PIM,	was	developed	in	response	to	the	scaling	problems	of	earlier	multicast	routing
protocols.	In	particular,	it	was	recognized	that	the	existing	protocols	did	not	scale	well	in	environments	where	a
relatively	small	proportion	of	routers	want	to	receive	traffic	for	a	certain	group.	For	example,	broadcasting	traffic	to	all
routers	until	they	explicitly	ask	to	be	removed	from	the	distribution	is	not	a	good	design	choice	if	most	routers	don't
want	to	receive	the	traffic	in	the	first	place.	This	situation	is	sufficiently	common	that	PIM	divides	the	problem	space
into	sparse	mode	and	dense	mode,	where	sparse	and	dense	refer	to	the	proportion	of	routers	that	will	want	the
multicast.	PIM	dense	mode	(PIM-DM)	uses	a	flood-and-prune	algorithm	like	DVMRP	and	suffers	from	the	same
scalability	problem.	PIM	sparse	mode	(PIM-SM)	has	become	the	dominant	multicast	routing	protocol	and	is	the	focus
of	our	discussion	here.	The	"protocol	independent"	aspect	of	PIM,	by	the	way,	refers	to	the	fact	that,	unlike	earlier
protocols	such	as	DVMRP,	PIM	does	not	depend	on	any	particular	sort	of	unicast	routing—it	can	be	used	with	any
unicast	routing	protocol,	as	we	will	see	below.

In	PIM-SM,	routers	explicitly	join	the	multicast	distribution	tree	using	PIM	protocol	messages	known	as		Join	
messages.	Note	the	contrast	to	DVMRP's	approach	of	creating	a	broadcast	tree	first	and	then	pruning	the
uninterested	routers.	The	question	that	arises	is	where	to	send	those		Join		messages	because,	after	all,	any	host
(and	any	number	of	hosts)	could	send	to	the	multicast	group.	To	address	this,	PIM-SM	assigns	to	each	group	a
special	router	known	as	the	rendezvous	point	(RP).	In	general,	a	number	of	routers	in	a	domain	are	configured	to	be
candidate	RPs,	and	PIM-SM	defines	a	set	of	procedures	by	which	all	the	routers	in	a	domain	can	agree	on	the	router
to	use	as	the	RP	for	a	given	group.	These	procedures	are	rather	complex,	as	they	must	deal	with	a	wide	variety	of
scenarios,	such	as	the	failure	of	a	candidate	RP	and	the	partitioning	of	a	domain	into	two	separate	networks	due	to	a
number	of	link	or	node	failures.	For	the	rest	of	this	discussion,	we	assume	that	all	routers	in	a	domain	know	the
unicast	IP	address	of	the	RP	for	a	given	group.

A	multicast	forwarding	tree	is	built	as	a	result	of	routers	sending		Join		messages	to	the	RP.	PIM-SM	allows	two	types
of	trees	to	be	constructed:	a	shared	tree,	which	may	be	used	by	all	senders,	and	a	source-specific	tree,	which	may	be
used	only	by	a	specific	sending	host.	The	normal	mode	of	operation	creates	the	shared	tree	first,	followed	by	one	or
more	source-specific	trees	if	there	is	enough	traffic	to	warrant	it.	Because	building	trees	installs	state	in	the	routers
along	the	tree,	it	is	important	that	the	default	is	to	have	only	one	tree	for	a	group,	not	one	for	every	sender	to	a	group.

Figure	1.	PIM	operation:	(a)	R4	sends	a	Join	message	to	RP	and	joins
shared	tree;	(b)	R5	joins	shared	tree;	(c)	RP	builds	source-specific	tree	to
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R1	by	sending	a	Join	message	to	R1;	(d)	R4	and	R5	build	source-specific
tree	to	R1	by	sending	Join	messages	to	R1.

When	a	router	sends	a		Join		message	toward	the	RP	for	a	group	G,	it	is	sent	using	normal	IP	unicast	transmission.
This	is	illustrated	in	Figure	1(a),	in	which	router	R4	is	sending	a		Join		to	the	rendezvous	point	for	some	group.	The
initial		Join		message	is	"wildcarded";	that	is,	it	applies	to	all	senders.	A		Join		message	clearly	must	pass	through
some	sequence	of	routers	before	reaching	the	RP	(e.g.,	R2).	Each	router	along	the	path	looks	at	the		Join		and
creates	a	forwarding	table	entry	for	the	shared	tree,	called	a	(*,	G)	entry	(where	*	means	"all	senders").	To	create	the
forwarding	table	entry,	it	looks	at	the	interface	on	which	the		Join		arrived	and	marks	that	interface	as	one	on	which	it
should	forward	data	packets	for	this	group.	It	then	determines	which	interface	it	will	use	to	forward	the		Join		toward
the	RP.	This	will	be	the	only	acceptable	interface	for	incoming	packets	sent	to	this	group.	It	then	forwards	the		Join	
toward	the	RP.	Eventually,	the	message	arrives	at	the	RP,	completing	the	construction	of	the	tree	branch.	The	shared
tree	thus	constructed	is	shown	as	a	solid	line	from	the	RP	to	R4	in	Figure	1(a).

As	more	routers	send		Join	s	toward	the	RP,	they	cause	new	branches	to	be	added	to	the	tree,	as	illustrated	in	Figure
1(b).	Note	that,	in	this	case,	the		Join		only	needs	to	travel	to	R2,	which	can	add	the	new	branch	to	the	tree	simply	by
adding	a	new	outgoing	interface	to	the	forwarding	table	entry	created	for	this	group.	R2	need	not	forward	the		Join		on
to	the	RP.	Note	also	that	the	end	result	of	this	process	is	to	build	a	tree	whose	root	is	the	RP.

At	this	point,	suppose	a	host	wishes	to	send	a	message	to	the	group.	To	do	so,	it	constructs	a	packet	with	the
appropriate	multicast	group	address	as	its	destination	and	sends	it	to	a	router	on	its	local	network	known	as	the
designated	router	(DR).	Suppose	the	DR	is	R1	in	Figure	1.	There	is	no	state	for	this	multicast	group	between	R1	and
the	RP	at	this	point,	so	instead	of	simply	forwarding	the	multicast	packet,	R1	tunnels	it	to	the	RP.	That	is,	R1
encapsulates	the	multicast	packet	inside	a	PIM		Register		message	that	it	sends	to	the	unicast	IP	address	of	the	RP.
Just	like	an	IP	tunnel	endpoint,	the	RP	receives	the	packet	addressed	to	it,	looks	at	the	payload	of	the		Register	
message,	and	finds	inside	an	IP	packet	addressed	to	the	multicast	address	of	this	group.	The	RP,	of	course,	does
know	what	to	do	with	such	a	packet—it	sends	it	out	onto	the	shared	tree	of	which	the	RP	is	the	root.	In	the	example	of
Figure	1,	this	means	that	the	RP	sends	the	packet	on	to	R2,	which	is	able	to	forward	it	on	to	R4	and	R5.	The	complete
delivery	of	a	packet	from	R1	to	R4	and	R5	is	shown	in	Figure	2.	We	see	the	tunneled	packet	travel	from	R1	to	the	RP
with	an	extra	IP	header	containing	the	unicast	address	of	RP,	and	then	the	multicast	packet	addressed	to	G	making
its	way	along	the	shared	tree	to	R4	and	R5.

At	this	point,	we	might	be	tempted	to	declare	success,	since	all	hosts	can	send	to	all	receivers	this	way.	However,
there	is	some	bandwidth	inefficiency	and	processing	cost	in	the	encapsulation	and	decapsulation	of	packets	on	the
way	to	the	RP,	so	the	RP	forces	knowledge	about	this	group	into	the	intervening	routers	so	tunneling	can	be	avoided.
It	sends	a		Join		message	toward	the	sending	host	(Figure	1(c)).	As	this		Join		travels	toward	the	host,	it	causes	the
routers	along	the	path	(R3)	to	learn	about	the	group,	so	that	it	will	be	possible	for	the	DR	to	send	the	packet	to	the
group	as	native	(i.e.,	not	tunneled)	multicast	packets.
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Figure	2.	Delivery	of	a	packet	along	a	shared	tree.	R1	tunnels	the	packet	to
the	RP,	which	forwards	it	along	the	shared	tree	to	R4	and	R5.

An	important	detail	to	note	at	this	stage	is	that	the		Join		message	sent	by	the	RP	to	the	sending	host	is	specific	to	that
sender,	whereas	the	previous	ones	sent	by	R4	and	R5	applied	to	all	senders.	Thus,	the	effect	of	the	new		Join		is	to
create	sender-specific	state	in	the	routers	between	the	identified	source	and	the	RP.	This	is	referred	to	as	(S,	G)	state,
since	it	applies	to	one	sender	to	one	group,	and	contrasts	with	the	(*,	G)	state	that	was	installed	between	the	receivers
and	the	RP	that	applies	to	all	senders.	Thus,	in	Figure	1(c),	we	see	a	source-specific	route	from	R1	to	the	RP
(indicated	by	the	dashed	line)	and	a	tree	that	is	valid	for	all	senders	from	the	RP	to	the	receivers	(indicated	by	the
solid	line).

The	next	possible	optimization	is	to	replace	the	entire	shared	tree	with	a	source-specific	tree.	This	is	desirable
because	the	path	from	sender	to	receiver	via	the	RP	might	be	significantly	longer	than	the	shortest	possible	path.	This
again	is	likely	to	be	triggered	by	a	high	data	rate	being	observed	from	some	sender.	In	this	case,	the	router	at	the
downstream	end	of	the	tree—say,	R4	in	our	example—sends	a	source-specific		Join		toward	the	source.	As	it	follows
the	shortest	path	toward	the	source,	the	routers	along	the	way	create	(S,	G)	state	for	this	tree,	and	the	result	is	a	tree
that	has	its	root	at	the	source,	rather	than	the	RP.	Assuming	both	R4	and	R5	made	the	switch	to	the	source-specific
tree,	we	would	end	up	with	the	tree	shown	in	Figure	1(d).	Note	that	this	tree	no	longer	involves	the	RP	at	all.	We	have
removed	the	shared	tree	from	this	picture	to	simplify	the	diagram,	but	in	reality	all	routers	with	receivers	for	a	group
must	stay	on	the	shared	tree	in	case	new	senders	show	up.

We	can	now	see	why	PIM	is	protocol	independent.	All	of	its	mechanisms	for	building	and	maintaining	trees	take
advantage	of	unicast	routing	without	depending	on	any	particular	unicast	routing	protocol.	The	formation	of	trees	is
entirely	determined	by	the	paths	that		Join		messages	follow,	which	is	determined	by	the	choice	of	shortest	paths
made	by	unicast	routing.	Thus,	to	be	precise,	PIM	is	"unicast	routing	protocol	independent,"	as	compared	to	DVMRP.
Note	that	PIM	is	very	much	bound	up	with	the	Internet	Protocol—it	is	not	protocol	independent	in	terms	of	network-
layer	protocols.

The	design	of	PIM-SM	again	illustrates	the	challenges	in	building	scalable	networks	and	how	scalability	is	sometimes
pitted	against	some	sort	of	optimality.	The	shared	tree	is	certainly	more	scalable	than	a	source-specific	tree,	in	the
sense	that	it	reduces	the	total	state	in	routers	to	be	on	the	order	of	the	number	of	groups	rather	than	the	number	of
senders	times	the	number	of	groups.	However,	the	source-specific	tree	is	likely	to	be	necessary	to	achieve	efficient
routing	and	effective	use	of	link	bandwidth.

Interdomain	Multicast	(MSDP)
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PIM-SM	has	some	significant	shortcomings	when	it	comes	to	interdomain	multicast.	In	particular,	the	existence	of	a
single	RP	for	a	group	goes	against	the	principle	that	domains	are	autonomous.	For	a	given	multicast	group,	all	the
participating	domains	would	be	dependent	on	the	domain	where	the	RP	is	located.	Furthermore,	if	there	is	a	particular
multicast	group	for	which	a	sender	and	some	receivers	shared	a	single	domain,	the	multicast	traffic	would	still	have	to
be	routed	initially	from	the	sender	to	those	receivers	via	whatever	domain	has	the	RP	for	that	multicast	group.
Consequently,	the	PIM-SM	protocol	is	typically	not	used	across	domains,	only	within	a	domain.

To	extend	multicast	across	domains	using	PIM-SM,	the	Multicast	Source	Discovery	Protocol	(MSDP)	was	devised.
MSDP	is	used	to	connect	different	domains—each	running	PIM-SM	internally,	with	its	own	RPs—by	connecting	the
RPs	of	the	different	domains.	Each	RP	has	one	or	more	MSDP	peer	RPs	in	other	domains.	Each	pair	of	MSDP	peers
is	connected	by	a	TCP	connection	over	which	the	MSDP	protocol	runs.	Together,	all	the	MSDP	peers	for	a	given
multicast	group	form	a	loose	mesh	that	is	used	as	a	broadcast	network.	MSDP	messages	are	broadcast	through	the
mesh	of	peer	RPs	using	the	Reverse	Path	Broadcast	algorithm	that	we	discussed	in	the	context	of	DVMRP.

What	information	does	MSDP	broadcast	through	the	mesh	of	RPs?	Not	group	membership	information;	when	a	host
joins	a	group,	the	furthest	that	information	will	flow	is	its	own	domain's	RP.	Instead,	it	is	source—multicast	sender—
information.	Each	RP	knows	the	sources	in	its	own	domain	because	it	receives	a		Register		message	whenever	a	new
source	arises.	Each	RP	periodically	uses	MSDP	to	broadcast		Source	Active		messages	to	its	peers,	giving	the	IP
address	of	the	source,	the	multicast	group	address,	and	the	IP	address	of	the	originating	RP.

Figure	3.	MSDP	operation:	(a)	The	source	SR	sends	a	Register	message
to	its	domain's	RP,	RP1;	then	RP1	sends	a	source-specific	Join	message
to	SR	and	an	MSDP	Source	Active	message	to	its	MSDP	peer	in	Domain
B,	RP2;	then	RP2	sends	a	source-specific	Join	message	to	SR.	(b)	As	a

result,	RP1	and	RP2	are	in	the	source-specific	tree	for	source	SR.

If	an	MSDP	peer	RP	that	receives	one	of	these	broadcasts	has	active	receivers	for	that	multicast	group,	it	sends	a
source-specific		Join	,	on	that	RP's	own	behalf,	to	the	source	host,	as	shown	in	Figure	3(a).	The		Join		message	builds
a	branch	of	the	source-specific	tree	to	this	RP,	as	shown	in	Figure	3(b).	The	result	is	that	every	RP	that	is	part	of	the
MSDP	network	and	has	active	receivers	for	a	particular	multicast	group	is	added	to	the	source-specific	tree	of	the	new
source.	When	an	RP	receives	a	multicast	from	the	source,	the	RP	uses	its	shared	tree	to	forward	the	multicast	to	the
receivers	in	its	domain.

Source-Specific	Multicast	(PIM-SSM)
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The	original	service	model	of	PIM	was,	like	earlier	multicast	protocols,	a	many-to-many	model.	Receivers	joined	a
group,	and	any	host	could	send	to	the	group.	However,	it	was	recognized	in	the	late	1990s	that	it	might	be	useful	to
add	a	one-to-many	model.	Lots	of	multicast	applications,	after	all,	have	only	one	legitimate	sender,	such	as	the
speaker	at	a	conference	being	sent	over	the	Internet.	We	already	saw	that	PIM-SM	can	create	source-specific
shortest	path	trees	as	an	optimization	after	using	the	shared	tree	initially.	In	the	original	PIM	design,	this	optimization
was	invisible	to	hosts—only	routers	joined	source-specific	trees.	However,	once	the	need	for	a	one-to-many	service
model	was	recognized,	it	was	decided	to	make	the	source-specific	routing	capability	of	PIM-SM	explicitly	available	to
hosts.	It	turns	out	that	this	mainly	required	changes	to	IGMP	and	its	IPv6	analog,	MLD,	rather	than	PIM	itself.	The
newly	exposed	capability	is	now	known	as	PIM-SSM	(PIM	Source-Specific	Multicast).

PIM-SSM	introduces	a	new	concept,	the	channel,	which	is	the	combination	of	a	source	address	S	and	a	group
address	G.	The	group	address	G	looks	just	like	a	normal	IP	multicast	address,	and	both	IPv4	and	IPv6	have	allocated
subranges	of	the	multicast	address	space	for	SSM.	To	use	PIM-SSM,	a	host	specifies	both	the	group	and	the	source
in	an	IGMP	Membership	Report	message	to	its	local	router.	That	router	then	sends	a	PIM-SM	source-specific		Join	
message	toward	the	source,	thereby	adding	a	branch	to	itself	in	the	source-specific	tree,	just	as	was	described	above
for	"normal"	PIM-SM,	but	bypassing	the	whole	shared-tree	stage.	Since	the	tree	that	results	is	source	specific,	only
the	designated	source	can	send	packets	on	that	tree.

The	introduction	of	PIM-SSM	has	provided	some	significant	benefits,	particularly	since	there	is	relatively	high	demand
for	one-to-many	multicasting:

Multicasts	travel	more	directly	to	receivers.

The	address	of	a	channel	is	effectively	a	multicast	group	address	plus	a	source	address.	Therefore,	given	that	a
certain	range	of	multicast	group	addresses	will	be	used	for	SSM	exclusively,	multiple	domains	can	use	the	same
multicast	group	address	independently	and	without	conflict,	as	long	as	they	use	it	only	with	sources	in	their	own
domains.

Because	only	the	specified	source	can	send	to	an	SSM	group,	there	is	less	risk	of	attacks	based	on	malicious
hosts	overwhelming	the	routers	or	receivers	with	bogus	multicast	traffic.

PIM-SSM	can	be	used	across	domains	exactly	as	it	is	used	within	a	domain,	without	reliance	on	anything	like
MSDP.

SSM,	therefore,	is	quite	a	useful	addition	to	the	multicast	service	model.

Bidirectional	Trees	(BIDIR-PIM)

We	round	off	our	discussion	of	multicast	with	another	enhancement	to	PIM	known	as	Bidirectional	PIM.	BIDIR-PIM	is
a	recent	variant	of	PIM-SM	that	is	well	suited	to	many-to-many	multicasting	within	a	domain,	especially	when	senders
and	receivers	to	a	group	may	be	the	same,	as	in	a	multiparty	videoconference,	for	example.	As	in	PIM-SM,	would-be
receivers	join	groups	by	sending	IGMP	Membership	Report	messages	(which	must	not	be	source	specific),	and	a
shared	tree	rooted	at	an	RP	is	used	to	forward	multicast	packets	to	receivers.	Unlike	PIM-SM,	however,	the	shared
tree	also	has	branches	to	the	sources.	That	wouldn't	make	any	sense	with	PIM-SM's	unidirectional	tree,	but	BIDIR-
PIM's	trees	are	bidirectional—a	router	that	receives	a	multicast	packet	from	a	downstream	branch	can	forward	it	both
up	the	tree	and	down	other	branches.	The	route	followed	to	deliver	a	packet	to	any	particular	receiver	goes	only	as	far
up	the	tree	as	necessary	before	going	down	the	branch	to	that	receiver.	See	the	multicast	route	from	R1	to	R2	in
Figure	4(b)	for	an	example.	R4	forwards	a	multicast	packet	downstream	to	R2	at	the	same	time	that	it	forwards	a	copy
of	the	same	packet	upstream	to	R5.

A	surprising	aspect	of	BIDIR-PIM	is	that	there	need	not	actually	be	an	RP.	All	that	is	needed	is	a	routable	address,
which	is	known	as	an	RP	address	even	though	it	need	not	be	the	address	of	an	RP	or	anything	at	all.	How	can	this
be?	A		Join		from	a	receiver	is	forwarded	toward	the	RP	address	until	it	reaches	a	router	with	an	interface	on	the	link
where	the	RP	address	would	reside,	where	the	Join	terminates.	Figure	4(a)	shows	a		Join		from	R2	terminating	at	R5,
and	a		Join		from	R3	terminating	at	R6.	The	upstream	forwarding	of	a	multicast	packet	similarly	flows	toward	the	RP
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address	until	it	reaches	a	router	with	an	interface	on	the	link	where	the	RP	address	would	reside,	but	then	the	router
forwards	the	multicast	packet	onto	that	link	as	the	final	step	of	upstream	forwarding,	ensuring	that	all	other	routers	on
that	link	receive	the	packet.	Figure	4(b)	illustrates	the	flow	of	multicast	traffic	originating	at	R1.

Figure	4.	BIDIR-PIM	operation:	(a)	R2	and	R3	send	Join	messages	toward
the	RP	address	that	terminate	when	they	reach	a	router	on	the	RP

address's	link.	(b)	A	multicast	packet	from	R1	is	forwarded	upstream	to	the
RP	address's	link	and	downstream	wherever	it	intersects	a	group	member

branch.

BIDIR-PIM	cannot	thus	far	be	used	across	domains.	On	the	other	hand,	it	has	several	advantages	over	PIM-SM	for
many-to-many	multicast	within	a	domain:

There	is	no	source	registration	process	because	the	routers	already	know	how	to	route	a	multicast	packet	toward
the	RP	address.

The	routes	are	more	direct	than	those	that	use	PIM-SM's	shared	tree	because	they	go	only	as	far	up	the	tree	as
necessary,	not	all	the	way	to	the	RP.

Bidirectional	trees	use	much	less	state	than	the	source-specific	trees	of	PIM-SM	because	there	is	never	any
source-specific	state.	(On	the	other	hand,	the	routes	will	be	longer	than	those	of	source-specific	trees.)

The	RP	cannot	be	a	bottleneck,	and	indeed	no	actual	RP	is	needed.

One	conclusion	to	draw	from	the	fact	that	there	are	so	many	different	approaches	to	multicast	just	within	PIM	is	that
multicast	is	a	difficult	problem	space	in	which	to	find	optimal	solutions.	You	need	to	decide	which	criteria	you	want	to
optimize	(bandwidth	usage,	router	state,	path	length,	etc.)	and	what	sort	of	application	you	are	trying	to	support	(one-
to-many,	many-to-many,	etc.)	before	you	can	make	a	choice	of	the	"best"	multicast	mode	for	the	task.
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4.3	Multiprotocol	Label	Switching

We	continue	our	discussion	of	enhancements	to	IP	by	describing	an	addition	to	the	Internet	architecture	that	is	very
widely	used	but	largely	hidden	from	end	users.	The	enhancement,	called	Multiprotocol	Label	Switching	(MPLS),
combines	some	of	the	properties	of	virtual	circuits	with	the	flexibility	and	robustness	of	datagrams.	On	the	one	hand,
MPLS	is	very	much	associated	with	the	Internet	Protocol's	datagram-based	architecture—it	relies	on	IP	addresses
and	IP	routing	protocols	to	do	its	job.	On	the	other	hand,	MPLS-enabled	routers	also	forward	packets	by	examining
relatively	short,	fixed-length	labels,	and	these	labels	have	local	scope,	just	like	in	a	virtual	circuit	network.	It	is	perhaps
this	marriage	of	two	seemingly	opposed	technologies	that	has	caused	MPLS	to	have	a	somewhat	mixed	reception	in
the	Internet	engineering	community.

Before	looking	at	how	MPLS	works,	it	is	reasonable	to	ask	"what	is	it	good	for?"	Many	claims	have	been	made	for
MPLS,	but	there	are	three	main	things	that	it	is	used	for	today:

To	enable	IP	capabilities	on	devices	that	do	not	have	the	capability	to	forward	IP	datagrams	in	the	normal	manner

To	forward	IP	packets	along	explicit	routes—precalculated	routes	that	don't	necessarily	match	those	that	normal
IP	routing	protocols	would	select

To	support	certain	types	of	virtual	private	network	services

It	is	worth	noting	that	one	of	the	original	goals—improving	performance—is	not	on	the	list.	This	has	a	lot	to	do	with	the
advances	that	have	been	made	in	forwarding	algorithms	for	IP	routers	in	recent	years	and	with	the	complex	set	of
factors	beyond	header	processing	that	determine	performance.

The	best	way	to	understand	how	MPLS	works	is	to	look	at	some	examples	of	its	use.	In	the	next	three	sections,	we
will	look	at	examples	to	illustrate	the	three	applications	of	MPLS	mentioned	above.

Destination-Based	Forwarding

One	of	the	earliest	publications	to	introduce	the	idea	of	attaching	labels	to	IP	packets	was	a	paper	by	Chandranmenon
and	Vargese	that	described	an	idea	called	threaded	indices.	A	very	similar	idea	is	now	implemented	in	MPLS-enabled
routers.	The	following	example	shows	how	this	idea	works.

Figure	1.	Routing	tables	in	example	network.

Consider	the	network	in	Figure	1.	Each	of	the	two	routers	on	the	far	right	(R3	and	R4)	has	one	connected	network,
with	prefixes		18.1.1/24		and		18.3.3/24	.	The	remaining	routers	(R1	and	R2)	have	routing	tables	that	indicate	which
outgoing	interface	each	router	would	use	when	forwarding	packets	to	one	of	those	two	networks.
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When	MPLS	is	enabled	on	a	router,	the	router	allocates	a	label	for	each	prefix	in	its	routing	table	and	advertises	both
the	label	and	the	prefix	that	it	represents	to	its	neighboring	routers.	This	advertisement	is	carried	in	the	Label
Distribution	Protocol.	This	is	illustrated	in	Figure	2.	Router	R2	has	allocated	the	label	value		15		for	the	prefix		18.1.1	
and	the	label	value		16		for	the	prefix		18.3.3	.	These	labels	can	be	chosen	at	the	convenience	of	the	allocating	router
and	can	be	thought	of	as	indices	into	the	routing	table.	After	allocating	the	labels,	R2	advertises	the	label	bindings	to
its	neighbors;	in	this	case,	we	see	R2	advertising	a	binding	between	the	label		15		and	the	prefix		18.1.1		to	R1.	The
meaning	of	such	an	advertisement	is	that	R2	has	said,	in	effect,	"Please	attach	the	label		15		to	all	packets	sent	to	me
that	are	destined	to	prefix		18.1.1	."	R1	stores	the	label	in	a	table	alongside	the	prefix	that	it	represents	as	the	remote
or	outgoing	label	for	any	packets	that	it	sends	to	that	prefix.

In	Figure	2(c),	we	see	another	label	advertisement	from	router	R3	to	R2	for	the	prefix		18.1.1	,	and	R2	places	the
remote	label	that	it	learned	from	R3	in	the	appropriate	place	in	its	table.

Figure	2.	(a)	R2	allocates	labels	and	advertises	bindings	to	R1.	(b)	R1
stores	the	received	labels	in	a	table.	(c)	R3	advertises	another	binding,	and

R2	stores	the	received	label	in	a	table.

At	this	point,	we	can	look	at	what	happens	when	a	packet	is	forwarded	in	this	network.	Suppose	a	packet	destined	to
the	IP	address		18.1.1.5		arrives	from	the	left	to	router	R1.	R1	in	this	case	is	referred	to	as	a	Label	Edge	Router	(LER);
an	LER	performs	a	complete	IP	lookup	on	arriving	IP	packets	and	then	applies	labels	to	them	as	a	result	of	the
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lookup.	In	this	case,	R1	would	see	that		18.1.1.5		matches	the	prefix		18.1.1		in	its	forwarding	table	and	that	this	entry
contains	both	an	outgoing	interface	and	a	remote	label	value.	R1	therefore	attaches	the	remote	label		15		to	the
packet	before	sending	it.

When	the	packet	arrives	at	R2,	R2	looks	only	at	the	label	in	the	packet,	not	the	IP	address.	The	forwarding	table	at	R2
indicates	that	packets	arriving	with	a	label	value	of		15		should	be	sent	out	interface	1	and	that	they	should	carry	the
label	value		24	,	as	advertised	by	router	R3.	R2	therefore	rewrites,	or	swaps,	the	label	and	forwards	it	on	to	R3.

What	has	been	accomplished	by	all	this	application	and	swapping	of	labels?	Observe	that	when	R2	forwarded	the
packet	in	this	example	it	never	actually	needed	to	examine	the	IP	address.	Instead,	R2	looked	only	at	the	incoming
label.	Thus,	we	have	replaced	the	normal	IP	destination	address	lookup	with	a	label	lookup.	To	understand	why	this	is
significant,	it	helps	to	recall	that,	although	IP	addresses	are	always	the	same	length,	IP	prefixes	are	of	variable	length,
and	the	IP	destination	address	lookup	algorithm	needs	to	find	the	longest	match—the	longest	prefix	that	matches	the
high	order	bits	in	the	IP	address	of	the	packet	being	forwarded.	By	contrast,	the	label	forwarding	mechanism	just
described	is	an	exact	match	algorithm.	It	is	possible	to	implement	a	very	simple	exact	match	algorithm,	for	example,
by	using	the	label	as	an	index	into	an	array,	where	each	element	in	the	array	is	one	line	in	the	forwarding	table.

Note	that,	while	the	forwarding	algorithm	has	been	changed	from	longest	match	to	exact	match,	the	routing	algorithm
can	be	any	standard	IP	routing	algorithm	(e.g.,	OSPF).	The	path	that	a	packet	will	follow	in	this	environment	is	the
exact	same	path	that	it	would	have	followed	if	MPLS	were	not	involved:	the	path	chosen	by	the	IP	routing	algorithms.
All	that	has	changed	is	the	forwarding	algorithm.

An	important	fundamental	concept	of	MPLS	is	illustrated	by	this	example.	Every	MPLS	label	is	associated	with	a
forwarding	equivalence	class	(FEC)—a	set	of	packets	that	are	to	receive	the	same	forwarding	treatment	in	a	particular
router.	In	this	example,	each	prefix	in	the	routing	table	is	an	FEC;	that	is,	all	packets	that	match	the	prefix	18.1.1—no
matter	what	the	low	order	bits	of	the	IP	address	are—get	forwarded	along	the	same	path.	Thus,	each	router	can
allocate	one	label	that	maps	to	18.1.1,	and	any	packet	that	contains	an	IP	address	whose	high	order	bits	match	that
prefix	can	be	forwarded	using	that	label.

As	we	will	see	in	the	subsequent	examples,	FECs	are	a	very	powerful	and	flexible	concept.	FECs	can	be	formed
using	almost	any	criteria;	for	example,	all	the	packets	corresponding	to	a	particular	customer	could	be	considered	to
be	in	the	same	FEC.

Returning	to	the	example	at	hand,	we	observe	that	changing	the	forwarding	algorithm	from	normal	IP	forwarding	to
label	swapping	has	an	important	consequence:	Devices	that	previously	didn't	know	how	to	forward	IP	packets	can	be
used	to	forward	IP	traffic	in	an	MPLS	network.	The	most	notable	early	application	of	this	result	was	to	ATM	switches,
which	can	support	MPLS	without	any	changes	to	their	forwarding	hardware.	ATM	switches	support	the	label-swapping
forwarding	algorithm	just	described,	and	by	providing	these	switches	with	IP	routing	protocols	and	a	method	to
distribute	label	bindings	they	could	be	turned	into	Label	Switching	Routers	(LSRs)—devices	that	run	IP	control
protocols	but	use	the	label	switching	forwarding	algorithm.	More	recently,	the	same	idea	has	been	applied	to	optical
switches.

Before	we	consider	the	purported	benefits	of	turning	an	ATM	switch	into	an	LSR,	we	should	tie	up	some	loose	ends.
We	have	said	that	labels	are	"attached"	to	packets,	but	where	exactly	are	they	attached?	The	answer	depends	on	the
type	of	link	on	which	packets	are	carried.	Two	common	methods	for	carrying	labels	on	packets	are	shown	in	Figure	3.
When	IP	packets	are	carried	as	complete	frames,	as	they	are	on	most	link	types	including	Ethernet	and	PPP,	the	label
is	inserted	as	a	"shim"	between	the	layer	2	header	and	the	IP	(or	other	layer	3)	header,	as	shown	in	the	lower	part	of
the	figure.	However,	if	an	ATM	switch	is	to	function	as	an	MPLS	LSR,	then	the	label	needs	to	be	in	a	place	where	the
switch	can	use	it,	and	that	means	it	needs	to	be	in	the	ATM	cell	header,	exactly	where	one	would	normally	find	the
virtual	circuit	identifier	(VCI)	and	virtual	path	identifier	(VPI)	fields.
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Figure	3.	(a)	Label	on	an	ATM-encapsulated	packet;	(b)	label	on	a	frame-
encapsulated	packet.

Having	now	devised	a	scheme	by	which	an	ATM	switch	can	function	as	an	LSR,	what	have	we	gained?	One	thing	to
note	is	that	we	could	now	build	a	network	that	uses	a	mixture	of	conventional	IP	routers,	label	edge	routers,	and	ATM
switches	functioning	as	LSRs,	and	they	would	all	use	the	same	routing	protocols.	To	understand	the	benefits	of	using
the	same	protocols,	consider	the	alternative.	In	Figure	4(a),	we	see	a	set	of	routers	interconnected	by	virtual	circuits
over	an	ATM	network,	a	configuration	called	an	overlay	network.	At	one	point	in	time,	networks	of	this	type	were	often
built	because	commercially	available	ATM	switches	supported	higher	total	throughput	than	routers.	Today,	networks
like	this	are	less	common	because	routers	have	caught	up	with	and	even	surpassed	ATM	switches.	However,	these
networks	still	exist	because	of	the	significant	installed	base	of	ATM	switches	in	network	backbones,	which	in	turn	is
partly	a	result	of	ATM's	ability	to	support	a	range	of	capabilities	such	as	circuit	emulation	and	virtual	circuit	services.

Figure	4.	(a)	Routers	connect	to	each	other	using	an	overlay	of	virtual
circuits.	(b)	Routers	peer	directly	with	LSRs.

In	an	overlay	network,	each	router	would	potentially	be	connected	to	each	of	the	other	routers	by	a	virtual	circuit,	but
in	this	case	for	clarity	we	have	just	shown	the	circuits	from	R1	to	all	of	its	peer	routers.	R1	has	five	routing	neighbors
and	needs	to	exchange	routing	protocol	messages	with	all	of	them—we	say	that	R1	has	five	routing	adjacencies.	By
contrast,	in	Figure	4(b),	the	ATM	switches	have	been	replaced	with	LSRs.	There	are	no	longer	virtual	circuits
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interconnecting	the	routers.	Thus,	R1	has	only	one	adjacency,	with	LSR1.	In	large	networks,	running	MPLS	on	the
switches	leads	to	a	significant	reduction	in	the	number	of	adjacencies	that	each	router	must	maintain	and	can	greatly
reduce	the	amount	of	work	that	the	routers	have	to	do	to	keep	each	other	informed	of	topology	changes.

A	second	benefit	of	running	the	same	routing	protocols	on	edge	routers	and	on	the	LSRs	is	that	the	edge	routers	now
have	a	full	view	of	the	topology	of	the	network.	This	means	that	if	some	link	or	node	fails	inside	the	network,	the	edge
routers	will	have	a	better	chance	of	picking	a	good	new	path	than	if	the	ATM	switches	rerouted	the	affected	VCs
without	the	knowledge	of	the	edge	routers.

Note	that	the	step	of	"replacing"	ATM	switches	with	LSRs	is	actually	achieved	by	changing	the	protocols	running	on
the	switches,	but	typically	no	change	to	the	forwarding	hardware	is	needed;	that	is,	an	ATM	switch	can	often	be
converted	to	an	MPLS	LSR	by	upgrading	only	its	software.	Furthermore,	an	MPLS	LSR	might	continue	to	support
standard	ATM	capabilities	at	the	same	time	as	it	runs	the	MPLS	control	protocols,	in	what	is	referred	to	as	"ships	in
the	night"	mode.

The	idea	of	running	IP	control	protocols	on	devices	that	are	unable	to	forward	IP	packets	natively	has	been	extended
to	Wavelength	Division	Multiplexing	(WDM)	and	Time	Division	Multiplexing	(TDM)	networks	(e.g.,	SONET).	This	is
known	as	Generalized	MPLS	(GMPLS).	Part	of	the	motivation	for	GMPLS	was	to	provide	routers	with	topological
knowledge	of	an	optical	network,	just	as	in	the	ATM	case.	Even	more	important	was	the	fact	that	there	were	no
standard	protocols	for	controlling	optical	devices,	so	MPLS	proved	to	be	a	natural	fit	for	that	job.

Explicit	Routing

IP	has	a	source	routing	option,	but	it	is	not	widely	used	for	several	reasons,	including	the	fact	that	only	a	limited
number	of	hops	can	be	specified	and	because	it	is	usual	processed	outside	the	"fast	path"	on	most	routers.

MPLS	provides	a	convenient	way	to	add	capabilities	similar	to	source-routing	to	IP	networks,	although	the	capability	is
more	often	referred	to	as	explicit	routing	rather	than	source	routing.	One	reason	for	the	distinction	is	that	it	usually	isn't
the	real	source	of	the	packet	that	picks	the	route.	More	often	it	is	one	of	the	routers	inside	a	service	provider's
network.	Figure	5	shows	an	example	of	how	the	explicit	routing	capability	of	MPLS	might	be	applied.	This	sort	of
network	is	often	called	a	fish	network	because	of	its	shape	(the	routers	R1	and	R2	form	the	tail;	R7	is	at	the	head).

Figure	5.	A	network	requiring	explicit	routing.

Suppose	that	the	operator	of	the	network	in	Figure	5	has	determined	that	any	traffic	flowing	from	R1	to	R7	should
follow	the	path	R1-R3-R6-R7	and	that	any	traffic	going	from	R2	to	R7	should	follow	the	path	R2-R3-R4-R5-R7.	One
reason	for	such	a	choice	would	be	to	make	good	use	of	the	capacity	available	along	the	two	distinct	paths	from	R3	to
R7.	We	can	think	of	the	R1-to-R7	traffic	as	constituting	one	forwarding	equivalence	class,	and	the	R2-to-R7	traffic
constitutes	a	second	FEC.	Forwarding	traffic	in	these	two	classes	along	different	paths	is	difficult	with	normal	IP
routing,	because	R3	doesn't	normally	look	at	where	traffic	came	from	in	making	its	forwarding	decisions.

Because	MPLS	uses	label	swapping	to	forward	packets,	it	is	easy	enough	to	achieve	the	desired	routing	if	the	routers
are	MPLS	enabled.	If	R1	and	R2	attach	distinct	labels	to	packets	before	sending	them	to	R3—thus	identifying	them	as
being	in	different	FECs—then	R3	can	forward	packets	from	R1	and	R2	along	different	paths.	The	question	that	then
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arises	is	how	do	all	the	routers	in	the	network	agree	on	what	labels	to	use	and	how	to	forward	packets	with	particular
labels?	Clearly,	we	can't	use	the	same	procedures	as	described	in	the	preceding	section	to	distribute	labels,	because
those	procedures	establish	labels	that	cause	packets	to	follow	the	normal	paths	picked	by	IP	routing,	which	is	exactly
what	we	are	trying	to	avoid.	Instead,	a	new	mechanism	is	needed.	It	turns	out	that	the	protocol	used	for	this	task	is	the
Resource	Reservation	Protocol	(RSVP).	For	now	it	suffices	to	say	that	it	is	possible	to	send	an	RSVP	message	along
an	explicitly	specified	path	(e.g.,	R1-R3-R6-R7)	and	use	it	to	set	up	label	forwarding	table	entries	all	along	that	path.
This	is	very	similar	to	the	process	of	establishing	a	virtual	circuit.

One	of	the	applications	of	explicit	routing	is	traffic	engineering,	which	refers	to	the	task	of	ensuring	that	sufficient
resources	are	available	in	a	network	to	meet	the	demands	placed	on	it.	Controlling	exactly	which	paths	the	traffic
flows	on	is	an	important	part	of	traffic	engineering.	Explicit	routing	can	also	help	to	make	networks	more	resilient	in	the
face	of	failure,	using	a	capability	called	fast	reroute.	For	example,	it	is	possible	to	precalculate	a	path	from	router	A	to
router	B	that	explicitly	avoids	a	certain	link	L.	In	the	event	that	link	L	fails,	router	A	could	send	all	traffic	destined	to	B
down	the	precalculated	path.	The	combination	of	precalculation	of	the	backup	path	and	the	explicit	routing	of	packets
along	the	path	means	that	A	doesn't	need	to	wait	for	routing	protocol	packets	to	make	their	way	across	the	network	or
for	routing	algorithms	to	be	executed	by	various	other	nodes	in	the	network.	In	certain	circumstances,	this	can
significantly	reduce	the	time	taken	to	reroute	packets	around	a	point	of	failure.

One	final	point	to	note	about	explicit	routing	is	that	explicit	routes	need	not	be	calculated	by	a	network	operator	as	in
the	above	example.	Routers	can	use	various	algorithms	to	calculate	explicit	routes	automatically.	The	most	common
of	these	is	constrained	shortest	path	first	(CSPF),	which	is	a	link-state	algorithm,	but	which	also	takes	various
constraints	into	account.	For	example,	if	it	was	required	to	find	a	path	from	R1	to	R7	that	could	carry	an	offered	load	of
100	Mbps,	we	could	say	that	the	constraint	is	that	each	link	must	have	at	least	100	Mbps	of	available	capacity.	CSPF
addresses	this	sort	of	problem.

Virtual	Private	Networks	and	Tunnels
One	way	to	build	virtual	private	networks	(VPNs)	is	to	use	tunnels.	It	turns	out	that	MPLS	can	be	thought	of	as	a	way
to	build	tunnels,	and	this	makes	it	suitable	for	building	VPNs	of	various	types.

The	simplest	form	of	MPLS	VPN	to	understand	is	a	layer	2	VPN.	In	this	type	of	VPN,	MPLS	is	used	to	tunnel	layer	2
data	(such	as	Ethernet	frames	or	ATM	cells)	across	a	network	of	MPLS-enabled	routers.	One	reason	for	tunnels	is	to
provide	some	sort	of	network	service	(such	as	multicast)	that	is	not	supported	by	some	routers	in	the	network.	The
same	logic	applies	here:	IP	routers	are	not	ATM	switches,	so	you	cannot	provide	an	ATM	virtual	circuit	service	across
a	network	of	conventional	routers.	However,	if	you	had	a	pair	of	routers	interconnected	by	a	tunnel,	they	could	send
ATM	cells	across	the	tunnel	and	emulate	an	ATM	circuit.	The	term	for	this	technique	within	the	IETF	is	pseudowire
emulation.	Figure	6	illustrates	the	idea.

Figure	6.	An	ATM	circuit	is	emulated	by	a	tunnel.

We	have	already	seen	how	IP	tunnels	are	built:	The	router	at	the	entrance	of	the	tunnel	wraps	the	data	to	be	tunneled
in	an	IP	header	(the	tunnel	header),	which	represents	the	address	of	the	router	at	the	far	end	of	the	tunnel	and	sends
the	data	like	any	other	IP	packet.	The	receiving	router	receives	the	packet	with	its	own	address	in	the	header,	strips
the	tunnel	header,	and	finds	the	data	that	was	tunneled,	which	it	then	processes.	Exactly	what	it	does	with	that	data
depends	on	what	it	is.	For	example,	if	it	were	another	IP	packet,	it	would	then	be	forwarded	on	like	a	normal	IP	packet.
However,	it	need	not	be	an	IP	packet,	as	long	as	the	receiving	router	knows	what	to	do	with	non-IP	packets.	We'll
return	to	the	issue	of	how	to	handle	non-IP	data	in	a	moment.
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An	MPLS	tunnel	is	not	too	different	from	an	IP	tunnel,	except	that	the	tunnel	header	consists	of	an	MPLS	header
rather	than	an	IP	header.	Looking	back	to	our	first	example,	in	Figure	2,	we	saw	that	router	R1	attached	a	label	(	15	)
to	every	packet	that	it	sent	towards	prefix	18.1.1.	Such	a	packet	would	then	follow	the	path	R1-R2-R3,	with	each
router	in	the	path	examining	only	the	MPLS	label.	Thus,	we	observe	that	there	was	no	requirement	that	R1	only	send
IP	packets	along	this	path—any	data	could	be	wrapped	up	in	the	MPLS	header	and	it	would	follow	the	same	path,
because	the	intervening	routers	never	look	beyond	the	MPLS	header.	In	this	regard,	an	MPLS	header	is	just	like	an	IP
tunnel	header	(except	only	4	bytes	long	instead	of	20	bytes).	The	only	issue	with	sending	non-IP	traffic	along	a	tunnel,
MPLS	or	otherwise,	is	what	to	do	with	non-IP	traffic	when	it	reaches	the	end	of	the	tunnel.	The	general	solution	is	to
carry	some	sort	of	demultiplexing	identifier	in	the	tunnel	payload	that	tells	the	router	at	the	end	of	the	tunnel	what	to
do.	It	turns	out	that	an	MPLS	label	is	a	perfect	fit	for	such	an	identifier.	An	example	will	make	this	clear.

Let's	assume	we	want	to	tunnel	ATM	cells	from	one	router	to	another	across	a	network	of	MPLS-enabled	routers,	as
in	Figure	6.	Further,	we	assume	that	the	goal	is	to	emulate	an	ATM	virtual	circuit;	that	is,	cells	arrive	at	the	entrance,
or	head,	of	the	tunnel	on	a	certain	input	port	with	a	certain	VCI	and	should	leave	the	tail	end	of	the	tunnel	on	a	certain
output	port	and	potentially	different	VCI.	This	can	be	accomplished	by	configuring	the	head	and	tail	routers	as	follows:

The	head	router	needs	to	be	configured	with	the	incoming	port,	the	incoming	VCI,	the	demultiplexing	label	for	this
emulated	circuit,	and	the	address	of	the	tunnel	end	router.

The	tail	router	needs	to	be	configured	with	the	outgoing	port,	the	outgoing	VCI,	and	the	demultiplexing	label.

Once	the	routers	are	provided	with	this	information,	we	can	see	how	an	ATM	cell	would	be	forwarded.	Figure	7
illustrates	the	steps.

1.	 An	ATM	cell	arrives	on	the	designated	input	port	with	the	appropriate	VCI	value	(101	in	this	example).

2.	 The	head	router	attaches	the	demultiplexing	label	that	identifies	the	emulated	circuit.

3.	 The	head	router	then	attaches	a	second	label,	which	is	the	tunnel	label	that	will	get	the	packet	to	the	tail	router.
This	label	is	learned	by	mechanisms	just	like	those	described	elsewhere	in	this	section.

4.	 Routers	between	the	head	and	tail	forward	the	packet	using	only	the	tunnel	label.

5.	 The	tail	router	removes	the	tunnel	label,	finds	the	demultiplexing	label,	and	recognizes	the	emulated	circuit.

6.	 The	tail	router	modifies	the	ATM	VCI	to	the	correct	value	(202	in	this	case)	and	sends	it	out	the	correct	port.

Figure	7.	Forward	ATM	cells	along	a	tunnel.

One	item	in	this	example	that	might	be	surprising	is	that	the	packet	has	two	labels	attached	to	it.	This	is	one	of	the
interesting	features	of	MPLS—labels	may	be	stacked	on	a	packet	to	any	depth.	This	provides	some	useful	scaling
capabilities.	In	this	example,	it	allows	a	single	tunnel	to	carry	a	potentially	large	number	of	emulated	circuits.

The	same	techniques	described	here	can	be	applied	to	emulate	many	other	layer	2	services,	including	Frame	Relay
and	Ethernet.	It	is	worth	noting	that	virtually	identical	capabilities	can	be	provided	using	IP	tunnels;	the	main
advantage	of	MPLS	here	is	the	shorter	tunnel	header.
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Figure	8.	Example	of	a	layer	3	VPN.	Customers	A	and	B	each	obtain	a
virtually	private	IP	service	from	a	single	provider.

Before	MPLS	was	used	to	tunnel	layer	2	services,	it	was	also	being	used	to	support	layer	3	VPNs.	We	won't	go	into
the	details	of	layer	3	VPNs,	which	are	quite	complex,	but	we	will	note	that	they	represent	one	of	the	most	popular	uses
of	MPLS	today.	Layer	3	VPNs	also	use	stacks	of	MPLS	labels	to	tunnel	packets	across	an	IP	network.	However,	the
packets	that	are	tunneled	are	themselves	IP	packets—hence,	the	name	layer	3	VPNs.	In	a	layer	3	VPN,	a	single
service	provider	operates	a	network	of	MPLS-enabled	routers	and	provides	a	"virtually	private"	IP	network	service	to
any	number	of	distinct	customers.	That	is,	each	customer	of	the	provider	has	some	number	of	sites,	and	the	service
provider	creates	the	illusion	for	each	customer	that	there	are	no	other	customers	on	the	network.	The	customer	sees
an	IP	network	interconnecting	his	own	sites	and	no	other	sites.	This	means	that	each	customer	is	isolated	from	all
other	customers	in	terms	of	both	routing	and	addressing.	Customer	A	can't	sent	packets	directly	to	customer	B,	and
vice	versa.	Customer	A	can	even	use	IP	addresses	that	have	also	been	used	by	customer	B.	The	basic	idea	is
illustrated	in	Figure	8.	As	in	layer	2	VPNs,	MPLS	is	used	to	tunnel	packets	from	one	site	to	another;	however,	the
configuration	of	the	tunnels	is	performed	automatically	by	some	fairly	elaborate	use	of	BGP,	which	is	beyond	the
scope	of	this	book.

Customer	A	in	fact	usually	can	send	data	to	customer	B	in	some	restricted	way.	Most	likely,	both	customer	A
and	customer	B	have	some	connection	to	the	global	Internet,	and	thus	it	is	probably	possible	for	customer	A	to
send	email	messages,	for	example,	to	the	mail	server	inside	customer	B's	network.	The	"privacy"	offered	by	a
VPN	prevents	customer	A	from	having	unrestricted	access	to	all	the	machines	and	subnets	inside	customer	B's
network.

In	summary,	MPLS	is	a	rather	versatile	tool	that	has	been	applied	to	a	wide	range	of	different	networking	problems.	It
combines	the	label-swapping	forwarding	mechanism	that	is	normally	associated	with	virtual	circuit	networks	with	the
routing	and	control	protocols	of	IP	datagram	networks	to	produce	a	class	of	network	that	is	somewhere	between	the
two	conventional	extremes.	This	extends	the	capabilities	of	IP	networks	to	enable,	among	other	things,	more	precise
control	of	routing	and	the	support	of	a	range	of	VPN	services.
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4.4	Routing	Among	Mobile	Devices

It	probably	should	not	be	a	great	surprise	to	learn	that	mobile	devices	present	some	challenges	for	the	Internet
architecture.	The	Internet	was	designed	in	an	era	when	computers	were	large,	immobile	devices,	and,	while	the
Internet's	designers	probably	had	some	notion	that	mobile	devices	might	appear	in	the	future,	it's	fair	to	assume	it	was
not	a	top	priority	to	accommodate	them.	Today,	of	course,	mobile	computers	are	everywhere,	notably	in	the	form	of
laptops	and	smartphones,	and	increasingly	in	other	forms,	such	as	drones.	In	this	section,	we	will	look	at	some	of	the
challenges	posed	by	the	appearance	of	mobile	devices	and	some	of	the	current	approaches	to	accommodating	them.

Challenges	for	Mobile	Networking

It	is	easy	enough	today	to	turn	up	in	a	wireless	hotspot,	connect	to	the	Internet	using	802.11	or	some	other	wireless
networking	protocol,	and	obtain	pretty	good	Internet	service.	One	key	enabling	technology	that	made	the	hotspot
feasible	is	DHCP.	You	can	settle	in	at	a	coffee	shop,	open	your	laptop,	obtain	an	IP	address	for	your	laptop,	and	get
your	laptop	talking	to	a	default	router	and	a	Domain	Name	System	(DNS)	server,	and	for	a	broad	class	of	applications
you	have	everything	you	need.

If	we	look	a	little	more	closely,	however,	it's	clear	that	for	some	application	scenarios,	just	getting	a	new	IP	address
every	time	you	move—which	is	what	DHCP	does	for	you—isn't	always	enough.	Suppose	you	are	using	your	laptop	or
smartphone	for	a	Voice	over	IP	telephone	call,	and	while	talking	on	the	phone	you	move	from	one	hotspot	to	another,
or	even	switch	from	Wi-Fi	to	the	cellular	network	for	your	Internet	connection.

Clearly,	when	you	move	from	one	access	network	to	another,	you	need	to	get	a	new	IP	address—one	that
corresponds	to	the	new	network.	But,	the	computer	or	telephone	at	the	other	end	of	your	conversation	doesn't
immediately	know	where	you	have	moved	or	what	your	new	IP	address	is.	Consequently,	in	the	absence	of	some
other	mechanism,	packets	would	continue	to	be	sent	to	the	address	where	you	used	to	be,	not	where	you	are	now.
This	problem	is	illustrated	in	Figure	1;	as	the	mobile	node	moves	from	the	802.11	network	in	Figure	1(a)	to	the	cellular
network	in	Figure	1(b),	somehow	packets	from	the	correspondent	node	need	to	find	their	way	to	the	new	network	and
then	on	to	the	mobile	node.

Figure	1.	Forwarding	packets	from	a	correspondent	node	to	a	mobile	node.
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There	are	many	different	ways	to	tackle	the	problem	just	described,	and	we	will	look	at	some	of	them	below.
Assuming	that	there	is	some	way	to	redirect	packets	so	that	they	come	to	your	new	address	rather	than	your	old
address,	the	next	immediately	apparent	problems	relate	to	security.	For	example,	if	there	is	a	mechanism	by	which	I
can	say,	"My	new	IP	address	is	X,"	how	do	I	prevent	some	attacker	from	making	such	a	statement	without	my
permission,	thus	enabling	him	to	either	receive	my	packets,	or	to	redirect	my	packets	to	some	unwitting	third	party?
Thus,	we	see	that	security	and	mobility	are	quite	closely	related.

One	issue	that	the	above	discussion	highlights	is	the	fact	that	IP	addresses	actually	serve	two	tasks.	They	are	used
as	an	identifier	of	an	endpoint,	and	they	are	also	used	to	locate	the	endpoint.	Think	of	the	identifier	as	a	long-lived
name	for	the	endpoint,	and	the	locator	as	some	possibly	more	temporary	information	about	how	to	route	packets	to
the	endpoint.	As	long	as	devices	do	not	move,	or	do	not	move	often,	using	a	single	address	for	both	jobs	seem	pretty
reasonable.	But	once	devices	start	to	move,	you	would	rather	like	to	have	an	identifier	that	does	not	change	as	you
move—this	is	sometimes	called	an	Endpoint	Identifier	or	Host	Identifier—and	a	separate	locator.	This	idea	of
separating	locators	from	identifiers	has	been	around	for	a	long	time,	and	most	of	the	approaches	to	handling	mobility
described	below	provide	such	a	separation	in	some	form.

The	assumption	that	IP	addresses	don't	change	shows	up	in	many	different	places.	For	example,	transport	protocols
like	TCP	have	historically	made	assumptions	about	the	IP	address	staying	constant	for	the	life	of	a	connection,	so	one
approach	could	be	to	redesign	transport	protocols	so	they	can	operate	with	changing	end-point	addresses.

But	rather	than	try	to	change	TCP,	a	common	alternative	is	for	the	application	to	periodically	re-establish	the	TCP
connection	in	case	the	client's	IP	address	has	changed.	As	strange	as	this	sounds,	if	the	application	is	HTTP-based
(e.g.,	a	web	browser	like	Chrome	or	a	streaming	application	like	Netflix)	then	that	is	exactly	what	happens.	In	other
words,	the	strategy	is	for	the	application	to	work	around	situations	where	the	user's	IP	address	may	have	changed,
instead	of	trying	to	maintain	the	appearance	that	it	does	not	change.

While	we	are	all	familiar	with	endpoints	that	move,	it	is	worth	noting	that	routers	can	also	move.	This	is	certainly	less
common	today	than	endpoint	mobility,	but	there	are	plenty	of	environments	where	a	mobile	router	might	make	sense.
One	example	might	be	an	emergency	response	team	trying	to	deploy	a	network	after	some	natural	disaster	has
knocked	out	all	the	fixed	infrastructure.	There	are	additional	considerations	when	all	the	nodes	in	a	network,	not	just
the	endpoints,	are	mobile,	a	topic	we	will	discuss	later	in	this	section.

Before	we	start	to	look	at	some	of	the	approaches	to	supporting	mobile	devices,	a	couple	of	points	of	clarification.	It	is
common	to	find	that	people	confuse	wireless	networks	with	mobility.	After	all,	mobility	and	wireless	often	are	found
together	for	obvious	reasons.	But	wireless	communication	is	really	about	getting	data	from	A	to	B	without	a	wire,	while
mobility	is	about	dealing	with	what	happens	when	a	node	moves	around	as	it	communicates.	Certainly	many	nodes
that	use	wireless	communication	channels	are	not	mobile,	and	sometimes	mobile	nodes	will	use	wired	communication
(although	this	is	less	common).

Finally,	in	this	chapter	we	are	mostly	interested	in	what	we	might	call	network-layer	mobility.	That	is,	we	are	interested
in	how	to	deal	with	nodes	that	move	from	one	network	to	another.	Moving	from	one	access	point	to	another	in	the
same	802.11	network	can	be	handled	by	mechanisms	specific	to	802.11,	and	cellular	networks	also	have	ways	to
handle	mobility,	of	course,	but	in	large	heterogeneous	systems	like	the	Internet	we	need	to	support	mobility	more
broadly	across	networks.

Routing	to	Mobile	Hosts	(Mobile	IP)

Mobile	IP	is	the	primary	mechanism	in	today's	Internet	architecture	to	tackle	the	problem	of	routing	packets	to	mobile
hosts.	It	introduces	a	few	new	capabilities	but	does	not	require	any	change	from	non-mobile	hosts	or	most	routers—
thus	making	it	incrementally	deployable.
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The	mobile	host	is	assumed	to	have	a	permanent	IP	address,	called	its	home	address,	which	has	a	network	prefix
equal	to	that	of	its	home	network.	This	is	the	address	that	will	be	used	by	other	hosts	when	they	initially	send	packets
to	the	mobile	host;	because	it	does	not	change,	it	can	be	used	by	long-lived	applications	as	the	host	roams.	We	can
think	of	this	as	the	long-lived	identifier	of	the	host.

When	the	host	moves	to	a	new	foreign	network	away	from	its	home	network,	it	typically	acquires	a	new	address	on
that	network	using	some	means	such	as	DHCP.	This	address	is	going	to	change	every	time	the	host	roams	to	a	new
network,	so	we	can	think	of	this	as	being	more	like	the	locator	for	the	host,	but	it	is	important	to	note	that	the	host	does
not	lose	its	permanent	home	address	when	it	acquires	a	new	address	on	the	foreign	network.	This	home	address	is
critical	to	its	ability	to	sustain	communications	as	it	moves,	as	we'll	see	below.

Because	DHCP	was	developed	around	the	same	time	as	Mobile	IP,	the	original	Mobile	IP	standards	did	not
require	DHCP,	but	DHCP	is	ubiquitous	today.

While	the	majority	of	routers	remain	unchanged,	mobility	support	does	require	some	new	functionality	in	at	least	one
router,	known	as	the	home	agent	of	the	mobile	node.	This	router	is	located	on	the	home	network	of	the	mobile	host.	In
some	cases,	a	second	router	with	enhanced	functionality,	the	foreign	agent,	is	also	required.	This	router	is	located	on
a	network	to	which	the	mobile	node	attaches	itself	when	it	is	away	from	its	home	network.	We	will	consider	first	the
operation	of	Mobile	IP	when	a	foreign	agent	is	used.	An	example	network	with	both	home	and	foreign	agents	is	shown
in	Figure	2.

Figure	2.	Mobile	host	and	mobility	agents.

Both	home	and	foreign	agents	periodically	announce	their	presence	on	the	networks	to	which	they	are	attached	using
agent	advertisement	messages.	A	mobile	host	may	also	solicit	an	advertisement	when	it	attaches	to	a	new	network.
The	advertisement	by	the	home	agent	enables	a	mobile	host	to	learn	the	address	of	its	home	agent	before	it	leaves	its
home	network.	When	the	mobile	host	attaches	to	a	foreign	network,	it	hears	an	advertisement	from	a	foreign	agent
and	registers	with	the	agent,	providing	the	address	of	its	home	agent.	The	foreign	agent	then	contacts	the	home
agent,	providing	a	care-of	address.	This	is	usually	the	IP	address	of	the	foreign	agent.

At	this	point,	we	can	see	that	any	host	that	tries	to	send	a	packet	to	the	mobile	host	will	send	it	with	a	destination
address	equal	to	the	home	address	of	that	node.	Normal	IP	forwarding	will	cause	that	packet	to	arrive	on	the	home
network	of	the	mobile	node	on	which	the	home	agent	is	sitting.	Thus,	we	can	divide	the	problem	of	delivering	the
packet	to	the	mobile	node	into	three	parts:

1.	 How	does	the	home	agent	intercept	a	packet	that	is	destined	for	the	mobile	node?

2.	 How	does	the	home	agent	then	deliver	the	packet	to	the	foreign	agent?

3.	 How	does	the	foreign	agent	deliver	the	packet	to	the	mobile	node?

The	first	problem	might	look	easy	if	you	just	look	at	Figure	2,	in	which	the	home	agent	is	clearly	the	only	path	between
the	sending	host	and	the	home	network	and	thus	must	receive	packets	that	are	destined	to	the	mobile	node.	But	what
if	the	sending	(correspondent)	node	were	on	network	18,	or	what	if	there	were	another	router	connected	to	network	18
that	tried	to	deliver	the	packet	without	its	passing	through	the	home	agent?	To	address	this	problem,	the	home	agent
actually	impersonates	the	mobile	node,	using	a	technique	called	proxy	ARP.	This	works	just	like	Address	Resolution
Protocol	(ARP),	except	that	the	home	agent	inserts	the	IP	address	of	the	mobile	node,	rather	than	its	own,	in	the	ARP
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messages.	It	uses	its	own	hardware	address,	so	that	all	the	nodes	on	the	same	network	learn	to	associate	the
hardware	address	of	the	home	agent	with	the	IP	address	of	the	mobile	node.	One	subtle	aspect	of	this	process	is	the
fact	that	ARP	information	may	be	cached	in	other	nodes	on	the	network.	To	make	sure	that	these	caches	are
invalidated	in	a	timely	way,	the	home	agent	issues	an	ARP	message	as	soon	as	the	mobile	node	registers	with	a
foreign	agent.	Because	the	ARP	message	is	not	a	response	to	a	normal	ARP	request,	it	is	termed	a	gratuitous	ARP.

The	second	problem	is	the	delivery	of	the	intercepted	packet	to	the	foreign	agent.	Here	we	use	the	tunneling
technique	described	elsewhere.	The	home	agent	simply	wraps	the	packet	inside	an	IP	header	that	is	destined	for	the
foreign	agent	and	transmits	it	into	the	internetwork.	All	the	intervening	routers	just	see	an	IP	packet	destined	for	the	IP
address	of	the	foreign	agent.	Another	way	of	looking	at	this	is	that	an	IP	tunnel	is	established	between	the	home	agent
and	the	foreign	agent,	and	the	home	agent	just	drops	packets	destined	for	the	mobile	node	into	that	tunnel.

When	a	packet	finally	arrives	at	the	foreign	agent,	it	strips	the	extra	IP	header	and	finds	inside	an	IP	packet	destined
for	the	home	address	of	the	mobile	node.	Clearly	the	foreign	agent	cannot	treat	this	like	any	old	IP	packet	because
this	would	cause	it	to	send	it	back	to	the	home	network.	Instead,	it	has	to	recognize	the	address	as	that	of	a	registered
mobile	node.	It	then	delivers	the	packet	to	the	hardware	address	of	the	mobile	node	(e.g.,	its	Ethernet	address),	which
was	learned	as	part	of	the	registration	process.

One	observation	that	can	be	made	about	these	procedures	is	that	it	is	possible	for	the	foreign	agent	and	the	mobile
node	to	be	in	the	same	box;	that	is,	a	mobile	node	can	perform	the	foreign	agent	function	itself.	To	make	this	work,
however,	the	mobile	node	must	be	able	to	dynamically	acquire	an	IP	address	that	is	located	in	the	address	space	of
the	foreign	network	(e.g.,	using	DHCP).	This	address	will	then	be	used	as	the	care-of	address.	In	our	example,	this
address	would	have	a	network	number	of	12.	This	approach	has	the	desirable	feature	of	allowing	mobile	nodes	to
attach	to	networks	that	don't	have	foreign	agents;	thus,	mobility	can	be	achieved	with	only	the	addition	of	a	home
agent	and	some	new	software	on	the	mobile	node	(assuming	DHCP	is	used	on	the	foreign	network).

What	about	traffic	in	the	other	direction	(i.e.,	from	mobile	node	to	fixed	node)?	This	turns	out	to	be	much	easier.	The
mobile	node	just	puts	the	IP	address	of	the	fixed	node	in	the	destination	field	of	its	IP	packets	while	putting	its
permanent	address	in	the	source	field,	and	the	packets	are	forwarded	to	the	fixed	node	using	normal	means.	Of
course,	if	both	nodes	in	a	conversation	are	mobile,	then	the	procedures	described	above	are	used	in	each	direction.

Route	Optimization	in	Mobile	IP

There	is	one	significant	drawback	to	the	above	approach:	The	route	from	the	correspondent	node	to	the	mobile	node
can	be	significantly	suboptimal.	One	of	the	most	extreme	examples	is	when	a	mobile	node	and	the	correspondent
node	are	on	the	same	network,	but	the	home	network	for	the	mobile	node	is	on	the	far	side	of	the	Internet.	The
sending	correspondent	node	addresses	all	packets	to	the	home	network;	they	traverse	the	Internet	to	reach	the	home
agent,	which	then	tunnels	them	back	across	the	Internet	to	reach	the	foreign	agent.	Clearly,	it	would	be	nice	if	the
correspondent	node	could	find	out	that	the	mobile	node	is	actually	on	the	same	network	and	deliver	the	packet
directly.	In	the	more	general	case,	the	goal	is	to	deliver	packets	as	directly	as	possible	from	correspondent	node	to
mobile	node	without	passing	through	a	home	agent.	This	is	sometimes	referred	to	as	the	triangle	routing	problem
since	the	path	from	correspondent	to	mobile	node	via	home	agent	takes	two	sides	of	a	triangle,	rather	than	the	third
side	that	is	the	direct	path.

The	basic	idea	behind	the	solution	to	triangle	routing	is	to	let	the	correspondent	node	know	the	care-of	address	of	the
mobile	node.	The	correspondent	node	can	then	create	its	own	tunnel	to	the	foreign	agent.	This	is	treated	as	an
optimization	of	the	process	just	described.	If	the	sender	has	been	equipped	with	the	necessary	software	to	learn	the
care-of	address	and	create	its	own	tunnel,	then	the	route	can	be	optimized;	if	not,	packets	just	follow	the	suboptimal
route.

When	a	home	agent	sees	a	packet	destined	for	one	of	the	mobile	nodes	that	it	supports,	it	can	deduce	that	the	sender
is	not	using	the	optimal	route.	Therefore,	it	sends	a	"binding	update"	message	back	to	the	source,	in	addition	to
forwarding	the	data	packet	to	the	foreign	agent.	The	source,	if	capable,	uses	this	binding	update	to	create	an	entry	in
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a	binding	cache,	which	consists	of	a	list	of	mappings	from	mobile	node	addresses	to	care-of	addresses.	The	next	time
this	source	has	a	data	packet	to	send	to	that	mobile	node,	it	will	find	the	binding	in	the	cache	and	can	tunnel	the
packet	directly	to	the	foreign	agent.

There	is	an	obvious	problem	with	this	scheme,	which	is	that	the	binding	cache	may	become	out-of-date	if	the	mobile
host	moves	to	a	new	network.	If	an	out-of-date	cache	entry	is	used,	the	foreign	agent	will	receive	tunneled	packets	for
a	mobile	node	that	is	no	longer	registered	on	its	network.	In	this	case,	it	sends	a	binding	warning	message	back	to	the
sender	to	tell	it	to	stop	using	this	cache	entry.	This	scheme	works	only	in	the	case	where	the	foreign	agent	is	not	the
mobile	node	itself,	however.	For	this	reason,	cache	entries	need	to	be	deleted	after	some	period	of	time;	the	exact
amount	is	specified	in	the	binding	update	message.

As	noted	above,	mobile	routing	provides	some	interesting	security	challenges,	which	are	clearer	now	that	we	have
seen	how	Mobile	IP	works.	For	example,	an	attacker	wishing	to	intercept	the	packets	destined	to	some	other	node	in
an	internetwork	could	contact	the	home	agent	for	that	node	and	announce	itself	as	the	new	foreign	agent	for	the	node.
Thus,	it	is	clear	that	some	authentication	mechanisms	are	required.

Mobility	in	IPv6

There	are	a	handful	of	significant	differences	between	mobility	support	in	IPv4	and	IPv6.	Most	importantly,	it	was
possible	to	build	mobility	support	into	the	standards	for	IPv6	pretty	much	from	the	beginning,	thus	alleviating	a	number
of	incremental	deployment	problems.	(It	may	be	more	correct	to	say	that	IPv6	is	one	big	incremental	deployment
problem,	which,	once	solved,	will	deliver	mobility	support	as	part	of	the	package.)

Since	all	IPv6-capable	hosts	can	acquire	an	address	whenever	they	are	attached	to	a	foreign	network	(using	several
mechanisms	defined	as	part	of	the	core	v6	specifications),	Mobile	IPv6	does	away	with	the	foreign	agent	and	includes
the	necessary	capabilities	to	act	as	a	foreign	agent	in	every	host.

One	other	interesting	aspect	of	IPv6	that	comes	into	play	with	Mobile	IP	is	its	inclusion	of	a	flexible	set	of	extension
headers,	as	described	elsewhere	in	this	chapter.	This	is	used	in	the	optimized	routing	scenario	described	above.
Rather	than	tunneling	a	packet	to	the	mobile	node	at	its	care-of	address,	an	IPv6	node	can	send	an	IP	packet	to	the
care-of	address	with	the	home	address	contained	in	a	routing	header.	This	header	is	ignored	by	all	the	intermediate
nodes,	but	it	enables	the	mobile	node	to	treat	the	packet	as	if	it	were	sent	to	the	home	address,	thus	enabling	it	to
continue	presenting	higher	layer	protocols	with	the	illusion	that	its	IP	address	is	fixed.	Using	an	extension	header
rather	than	a	tunnel	is	more	efficient	from	the	perspective	of	both	bandwidth	consumption	and	processing.

Finally,	we	note	that	many	open	issues	remain	in	mobile	networking.	Managing	the	power	consumption	of	mobile
devices	is	increasingly	important,	so	that	smaller	devices	with	limited	battery	power	can	be	built.	There	is	also	the
problem	of	ad	hoc	mobile	networks—enabling	a	group	of	mobile	nodes	to	form	a	network	in	the	absence	of	any	fixed
nodes—which	has	some	special	challenges.	A	particularly	challenging	class	of	mobile	networks	is	sensor	networks.
Sensors	typically	are	small,	inexpensive,	and	often	battery	powered,	meaning	that	issues	of	very	low	power
consumption	and	limited	processing	capability	must	also	be	considered.	Furthermore,	since	wireless	communications
and	mobility	typically	go	hand	in	hand,	the	continual	advances	in	wireless	technologies	keep	on	producing	new
challenges	and	opportunities	for	mobile	networking.
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4.5	Broader	Perspective

The	Cloud	is	Eating	the	Internet

The	Cloud	and	the	Internet	are	symbiotic	systems.	They	were	historically	distinct,	but	today	the	line	between	them	is
increasingly	fuzzy.	If	you	start	with	the	textbook	definition,	the	Internet	provides	end-to-end	connectivity	between	any
two	hosts	(e.g.,	a	client	laptop	and	a	remote	server	machine),	and	the	cloud	supports	several	warehouse-sized
datacenters,	each	of	which	provides	a	cost-effective	way	to	power,	cool,	and	operate	a	large	number	of	server
machines.	End-users	connect	to	the	nearest	datacenter	over	the	Internet	in	exactly	the	same	way	they	connect	to	a
server	in	a	remote	machine	room.

That’s	an	accurate	description	of	the	relationship	between	the	Internet	and	the	Cloud	in	the	early	days	of	commercial
cloud	providers	like	Amazon,	Microsoft,	and	Google.	For	example,	Amazon’s	cloud	circa	2009	had	two	datacenters,
one	on	the	east	coast	of	the	US	and	one	on	the	west	coast.	Today,	however,	each	of	the	major	cloud	providers
operates	several	dozen	datacenters	spread	across	the	globe,	and	it	should	be	no	surprise	that	they	are	strategically
located	in	close	proximity	to	Internet	Exchange	Points	(IXP),	each	of	which	provides	rich	connectivity	to	the	rest	of	the
Internet.	There	are	over	150	IXPs	worldwide,	and	while	not	every	cloud	provider	replicates	a	full	datacenter	near	each
one	(many	of	these	sites	are	co-location	facilities),	it	is	fair	to	say	the	cloud’s	most	frequently	accessed	content	(e.g.,
the	most	popular	Netflix	movies,	YouTube	videos,	and	Facebook	photos)	is	potentially	distributed	to	that	many
locations.

There	are	two	consequences	to	this	wide	dispersion	of	the	cloud.	One	is	that	the	end-to-end	path	from	client	to	server
doesn’t	necessarily	traverse	the	entire	Internet.	A	user	is	likely	to	find	the	content	he	or	she	wants	to	access	has	been
replicated	at	a	nearby	IXP—which	is	usually	just	one	AS	hop	away—as	opposed	to	being	on	the	far	side	of	the	globe.
The	second	consequence	is	that	the	major	cloud	providers	do	not	use	the	public	Internet	to	interconnect	their
distributed	datacenters.	It	is	common	for	cloud	providers	to	keep	their	content	synchronized	across	distributed
datacenters,	but	they	typically	do	this	over	a	private	backbone.	This	allows	them	to	take	advantage	of	whatever
optimizations	they	want	without	needing	to	fully	inter-operate	with	anyone	else.

In	other	words,	while	Figure	4	in	Section	4.1	fairly	represents	the	Internet’s	overall	shape,	and	BGP	makes	it	possible
to	connect	any	pair	of	hosts,	in	practice	most	users	interact	with	applications	running	in	the	Cloud,	which	looks	more
like	Figure	1.	(One	important	detail	that	the	figure	does	not	convey	is	that	Cloud	providers	do	not	typically	build	a	WAN
by	laying	their	own	fiber,	but	they	instead	lease	fiber	from	servicer	providers,	meaning	that	the	private	cloud	backbone
and	the	service	provider	backbones	often	share	the	same	physical	infrastructure.)

Figure	1.	Cloud	is	widely	distributed	throughout	the	Internet	with	private
backbones.
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Note	that	while	it	is	possible	to	replicate	content	across	the	cloud’s	many	locations,	we	do	not	yet	have	the	technology
to	replicate	people.	This	means	that	when	widely	dispersed	users	want	to	talk	with	each	other—for	example,	as	part	of
a	video	conference	call—it’s	the	multicast	tree	that	gets	distributed	across	the	cloud.	In	other	words,	multicast	isn’t
typically	running	in	the	routers	of	the	service	provider	backbones	(as	Section	4.2	suggests),	but	it	is	instead	running	in
server	processes	distributed	across	some	subset	of	the	150+	locations	that	serve	as	the	Internet’s	major
interconnection	points.	A	multicast	tree	constructed	in	this	way	is	called	an	overlay,	which	is	a	topic	that	we	return	to	in
Section	9.4.

Broader	Perspective

To	continue	reading	about	the	cloudification	of	the	Internet,	see	HTTP	is	the	New	Narrow	Waist.

To	learn	more	about	the	Cloud's	distributed	footprint,	we	recommend:

How	the	Internet	Travels	Across	the	Ocean,	New	York	Times,	March	2019.
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Chapter	5:	End-to-End	Protocols

Victory	is	the	beautiful,	bright	coloured	flower.	Transport	is	the	stem	without	which	it	could	never	have
blossomed.	—Winston	Churchill

Problem:	Getting	Processes	to	Communicate

Many	technologies	that	can	be	used	to	connect	together	a	collection	of	computers,	ranging	from	simple	Ethernets	and
wireless	networks	to	global-scale	internetworks.	Once	interconnect,	the	next	problem	is	to	turn	this	host-to-host	packet
delivery	service	into	a	process-to-process	communication	channel.	This	is	the	role	played	by	the	transport	level	of	the
network	architecture,	which,	because	it	supports	communication	between	application	programs	running	in	end	nodes,
is	sometimes	called	the	end-to-end	protocol.

Two	forces	shape	the	end-to-end	protocol.	From	above,	the	application-level	processes	that	use	its	services	have
certain	requirements.	The	following	list	itemizes	some	of	the	common	properties	that	a	transport	protocol	can	be
expected	to	provide:

Guarantees	message	delivery

Delivers	messages	in	the	same	order	they	are	sent

Delivers	at	most	one	copy	of	each	message

Supports	arbitrarily	large	messages

Supports	synchronization	between	the	sender	and	the	receiver

Allows	the	receiver	to	apply	flow	control	to	the	sender

Supports	multiple	application	processes	on	each	host

Note	that	this	list	does	not	include	all	the	functionality	that	application	processes	might	want	from	the	network.	For
example,	it	does	not	include	security	features	like	authentication	or	encryption,	which	are	typically	provided	by
protocols	that	sit	above	the	transport	level.

From	below,	the	underlying	network	upon	which	the	transport	protocol	operates	has	certain	limitations	in	the	level	of
service	it	can	provide.	Some	of	the	more	typical	limitations	of	the	network	are	that	it	may

Drop	messages

Reorder	messages

Deliver	duplicate	copies	of	a	given	message

Limit	messages	to	some	finite	size

Deliver	messages	after	an	arbitrarily	long	delay

Such	a	network	is	said	to	provide	a	best-effort	level	of	service,	as	exemplified	by	the	Internet.

The	challenge,	therefore,	is	to	develop	algorithms	that	turn	the	less-than-perfect	properties	of	the	underlying	network
into	the	high	level	of	service	required	by	application	programs.	Different	transport	protocols	employ	different
combinations	of	these	algorithms.	This	chapter	looks	at	these	algorithms	in	the	context	of	four	representative	services
—a	simple	asynchronous	demultiplexing	service,	a	reliable	byte-stream	service,	a	request/reply	service,	and	a	service
for	real-time	applications.
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In	the	case	of	the	demultiplexing	and	byte-stream	services,	we	use	the	Internet's	User	Datagram	Protocol	(UDP)	and
Transmission	Control	Protocol	(TCP),	respectively,	to	illustrate	how	these	services	are	provided	in	practice.	In	the
case	of	a	request/reply	service,	we	discuss	the	role	it	plays	in	a	Remote	Procedure	Call	(RPC)	service	and	what
features	that	entails.	The	Internet	does	not	have	a	single	RPC	protocol,	so	we	cap	this	discussion	off	with	a
description	of	three	widely	used	RPC	protocols:	SunRPC,	DCE-RPC,	and	gRPC.

Finally,	real-time	applications	make	particular	demands	on	the	transport	protocol,	such	as	the	need	to	carry	timing
information	that	allows	audio	or	video	samples	to	be	played	back	at	the	appropriate	point	in	time.	We	look	at	the
requirements	placed	by	applications	on	such	a	protocol	and	the	most	widely	used	example,	the	Real-Time	Transport
Protocol	(RTP).
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5.1	Simple	Demultiplexor	(UDP)

The	simplest	possible	transport	protocol	is	one	that	extends	the	host-to-host	delivery	service	of	the	underlying	network
into	a	process-to-process	communication	service.	There	are	likely	to	be	many	processes	running	on	any	given	host,
so	the	protocol	needs	to	add	a	level	of	demultiplexing,	thereby	allowing	multiple	application	processes	on	each	host	to
share	the	network.	Aside	from	this	requirement,	the	transport	protocol	adds	no	other	functionality	to	the	best-effort
service	provided	by	the	underlying	network.	The	Internet's	User	Datagram	Protocol	is	an	example	of	such	a	transport
protocol.

The	only	interesting	issue	in	such	a	protocol	is	the	form	of	the	address	used	to	identify	the	target	process.	Although	it
is	possible	for	processes	to	directly	identify	each	other	with	an	OS-assigned	process	id	(pid),	such	an	approach	is	only
practical	in	a	closed	distributed	system	in	which	a	single	OS	runs	on	all	hosts	and	assigns	each	process	a	unique	id.	A
more	common	approach,	and	the	one	used	by	UDP,	is	for	processes	to	indirectly	identify	each	other	using	an	abstract
locater,	usually	called	a	port.	The	basic	idea	is	for	a	source	process	to	send	a	message	to	a	port	and	for	the
destination	process	to	receive	the	message	from	a	port.

The	header	for	an	end-to-end	protocol	that	implements	this	demultiplexing	function	typically	contains	an	identifier
(port)	for	both	the	sender	(source)	and	the	receiver	(destination)	of	the	message.	For	example,	the	UDP	header	is
given	in	Figure	1.	Notice	that	the	UDP	port	field	is	only	16	bits	long.	This	means	that	there	are	up	to	64K	possible
ports,	clearly	not	enough	to	identify	all	the	processes	on	all	the	hosts	in	the	Internet.	Fortunately,	ports	are	not
interpreted	across	the	entire	Internet,	but	only	on	a	single	host.	That	is,	a	process	is	really	identified	by	a	port	on	some
particular	host:	a	(port,	host)	pair.	This	pair	constitutes	the	demultiplexing	key	for	the	UDP	protocol.

The	next	issue	is	how	a	process	learns	the	port	for	the	process	to	which	it	wants	to	send	a	message.	Typically,	a
client	process	initiates	a	message	exchange	with	a	server	process.	Once	a	client	has	contacted	a	server,	the	server
knows	the	client's	port	(from	the		SrcPrt		field	contained	in	the	message	header)	and	can	reply	to	it.	The	real	problem,
therefore,	is	how	the	client	learns	the	server's	port	in	the	first	place.	A	common	approach	is	for	the	server	to	accept
messages	at	a	well-known	port.	That	is,	each	server	receives	its	messages	at	some	fixed	port	that	is	widely	published,
much	like	the	emergency	telephone	service	available	in	the	United	States	at	the	well-known	phone	number	911.	In	the
Internet,	for	example,	the	Domain	Name	Server	(DNS)	receives	messages	at	well-known	port	53	on	each	host,	the
mail	service	listens	for	messages	at	port	25,	and	the	Unix		talk		program	accepts	messages	at	well-known	port	517,
and	so	on.	This	mapping	is	published	periodically	in	an	RFC	and	is	available	on	most	Unix	systems	in	file
	/etc/services	.	Sometimes	a	well-known	port	is	just	the	starting	point	for	communication:	The	client	and	server	use	the
well-known	port	to	agree	on	some	other	port	that	they	will	use	for	subsequent	communication,	leaving	the	well-known
port	free	for	other	clients.

Figure	1.	Format	for	UDP	header.
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An	alternative	strategy	is	to	generalize	this	idea,	so	that	there	is	only	a	single	well-known	port—the	one	at	which	the
port	mapper	service	accepts	messages.	A	client	would	send	a	message	to	the	port	mapper's	well-known	port	asking
for	the	port	it	should	use	to	talk	to	the	"whatever"	service,	and	the	port	mapper	returns	the	appropriate	port.	This
strategy	makes	it	easy	to	change	the	port	associated	with	different	services	over	time	and	for	each	host	to	use	a
different	port	for	the	same	service.

As	just	mentioned,	a	port	is	purely	an	abstraction.	Exactly	how	it	is	implemented	differs	from	system	to	system,	or
more	precisely,	from	OS	to	OS.	For	example,	the	socket	API	described	in	Chapter	1	is	an	example	implementation	of
ports.	Typically,	a	port	is	implemented	by	a	message	queue,	as	illustrated	in	Figure	2.	When	a	message	arrives,	the
protocol	(e.g.,	UDP)	appends	the	message	to	the	end	of	the	queue.	Should	the	queue	be	full,	the	message	is
discarded.	There	is	no	flow-control	mechanism	in	UDP	to	tell	the	sender	to	slow	down.	When	an	application	process
wants	to	receive	a	message,	one	is	removed	from	the	front	of	the	queue.	If	the	queue	is	empty,	the	process	blocks
until	a	message	becomes	available.

Figure	2.	UDP	message	queue.

Finally,	although	UDP	does	not	implement	flow	control	or	reliable/ordered	delivery,	it	does	provide	one	more	function
aside	from	demultiplexing	messages	to	some	application	process—it	also	ensures	the	correctness	of	the	message	by
the	use	of	a	checksum.	(The	UDP	checksum	is	optional	in	IPv4	but	is	mandatory	in	IPv6.)	The	basic	UDP	checksum
algorithm	is	the	same	one	used	for	IP—that	is,	it	adds	up	a	set	of	16-bit	words	using	ones'	complement	arithmetic	and
takes	the	ones'	complement	of	the	result.	But	the	input	data	that	is	used	for	the	checksum	is	a	little	counterintuitive.

The	UDP	checksum	takes	as	input	the	UDP	header,	the	contents	of	the	message	body,	and	something	called	the
pseudoheader.	The	pseudoheader	consists	of	three	fields	from	the	IP	header—protocol	number,	source	IP	address,
and	destination	IP	address—plus	the	UDP	length	field.	(Yes,	the	UDP	length	field	is	included	twice	in	the	checksum
calculation.)	The	motivation	behind	having	the	pseudoheader	is	to	verify	that	this	message	has	been	delivered
between	the	correct	two	endpoints.	For	example,	if	the	destination	IP	address	was	modified	while	the	packet	was	in
transit,	causing	the	packet	to	be	misdelivered,	this	fact	would	be	detected	by	the	UDP	checksum.
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5.2	Reliable	Byte	Stream	(TCP)

In	contrast	to	a	simple	demultiplexing	protocol	like	UDP,	a	more	sophisticated	transport	protocol	is	one	that	offers	a
reliable,	connection-oriented,	byte-stream	service.	Such	a	service	has	proven	useful	to	a	wide	assortment	of
applications	because	it	frees	the	application	from	having	to	worry	about	missing	or	reordered	data.	The	Internet's
Transmission	Control	Protocol	is	probably	the	most	widely	used	protocol	of	this	type;	it	is	also	the	most	carefully
tuned.	It	is	for	these	two	reasons	that	this	section	studies	TCP	in	detail,	although	we	identify	and	discuss	alternative
design	choices	at	the	end	of	the	section.

In	terms	of	the	properties	of	transport	protocols	given	in	the	problem	statement	at	the	start	of	this	chapter,	TCP
guarantees	the	reliable,	in-order	delivery	of	a	stream	of	bytes.	It	is	a	full-duplex	protocol,	meaning	that	each	TCP
connection	supports	a	pair	of	byte	streams,	one	flowing	in	each	direction.	It	also	includes	a	flow-control	mechanism	for
each	of	these	byte	streams	that	allows	the	receiver	to	limit	how	much	data	the	sender	can	transmit	at	a	given	time.
Finally,	like	UDP,	TCP	supports	a	demultiplexing	mechanism	that	allows	multiple	application	programs	on	any	given
host	to	simultaneously	carry	on	a	conversation	with	their	peers.

In	addition	to	the	above	features,	TCP	also	implements	a	highly	tuned	congestion-control	mechanism.	The	idea	of	this
mechanism	is	to	throttle	how	fast	TCP	sends	data,	not	for	the	sake	of	keeping	the	sender	from	over-running	the
receiver,	but	so	as	to	keep	the	sender	from	overloading	the	network.	A	description	of	TCP's	congestion-control
mechanism	is	postponed	until	the	next	chapter,	where	we	discuss	it	in	the	larger	context	of	how	network	resources
are	fairly	allocated.

Since	many	people	confuse	congestion	control	and	flow	control,	we	restate	the	difference.	Flow	control	involves
preventing	senders	from	over-running	the	capacity	of	receivers.	Congestion	control	involves	preventing	too	much	data
from	being	injected	into	the	network,	thereby	causing	switches	or	links	to	become	overloaded.	Thus,	flow	control	is	an
end-to-end	issue,	while	congestion	control	is	concerned	with	how	hosts	and	networks	interact.

End-to-End	Issues

At	the	heart	of	TCP	is	the	sliding	window	algorithm.	Even	though	this	is	the	same	basic	algorithm	as	is	often	used	at
the	link	level,	because	TCP	runs	over	the	Internet	rather	than	a	physical	point-to-point	link,	there	are	many	important
differences.	This	subsection	identifies	these	differences	and	explains	how	they	complicate	TCP.	The	following
subsections	then	describe	how	TCP	addresses	these	and	other	complications.

First,	whereas	the	link-level	sliding	window	algorithm	presented	runs	over	a	single	physical	link	that	always	connects
the	same	two	computers,	TCP	supports	logical	connections	between	processes	that	are	running	on	any	two
computers	in	the	Internet.	This	means	that	TCP	needs	an	explicit	connection	establishment	phase	during	which	the
two	sides	of	the	connection	agree	to	exchange	data	with	each	other.	This	difference	is	analogous	to	having	to	dial	up
the	other	party,	rather	than	having	a	dedicated	phone	line.	TCP	also	has	an	explicit	connection	teardown	phase.	One
of	the	things	that	happens	during	connection	establishment	is	that	the	two	parties	establish	some	shared	state	to
enable	the	sliding	window	algorithm	to	begin.	Connection	teardown	is	needed	so	each	host	knows	it	is	OK	to	free	this
state.

Second,	whereas	a	single	physical	link	that	always	connects	the	same	two	computers	has	a	fixed	round-trip	time
(RTT),	TCP	connections	are	likely	to	have	widely	different	round-trip	times.	For	example,	a	TCP	connection	between	a
host	in	San	Francisco	and	a	host	in	Boston,	which	are	separated	by	several	thousand	kilometers,	might	have	an	RTT
of	100	ms,	while	a	TCP	connection	between	two	hosts	in	the	same	room,	only	a	few	meters	apart,	might	have	an	RTT
of	only	1	ms.	The	same	TCP	protocol	must	be	able	to	support	both	of	these	connections.	To	make	matters	worse,	the
TCP	connection	between	hosts	in	San	Francisco	and	Boston	might	have	an	RTT	of	100	ms	at	3	a.m.,	but	an	RTT	of
500	ms	at	3	p.m.	Variations	in	the	RTT	are	even	possible	during	a	single	TCP	connection	that	lasts	only	a	few
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minutes.	What	this	means	to	the	sliding	window	algorithm	is	that	the	timeout	mechanism	that	triggers	retransmissions
must	be	adaptive.	(Certainly,	the	timeout	for	a	point-to-point	link	must	be	a	settable	parameter,	but	it	is	not	necessary
to	adapt	this	timer	for	a	particular	pair	of	nodes.)

A	third	difference	is	that	packets	may	be	reordered	as	they	cross	the	Internet,	but	this	is	not	possible	on	a	point-to-
point	link	where	the	first	packet	put	into	one	end	of	the	link	must	be	the	first	to	appear	at	the	other	end.	Packets	that
are	slightly	out	of	order	do	not	cause	a	problem	since	the	sliding	window	algorithm	can	reorder	packets	correctly	using
the	sequence	number.	The	real	issue	is	how	far	out	of	order	packets	can	get	or,	said	another	way,	how	late	a	packet
can	arrive	at	the	destination.	In	the	worst	case,	a	packet	can	be	delayed	in	the	Internet	until	the	IP	time	to	live	(	TTL	)
field	expires,	at	which	time	the	packet	is	discarded	(and	hence	there	is	no	danger	of	it	arriving	late).	Knowing	that	IP
throws	packets	away	after	their		TTL		expires,	TCP	assumes	that	each	packet	has	a	maximum	lifetime.	The	exact
lifetime,	known	as	the	maximum	segment	lifetime	(MSL),	is	an	engineering	choice.	The	current	recommended	setting
is	120	seconds.	Keep	in	mind	that	IP	does	not	directly	enforce	this	120-second	value;	it	is	simply	a	conservative
estimate	that	TCP	makes	of	how	long	a	packet	might	live	in	the	Internet.	The	implication	is	significant—TCP	has	to	be
prepared	for	very	old	packets	to	suddenly	show	up	at	the	receiver,	potentially	confusing	the	sliding	window	algorithm.

Fourth,	the	computers	connected	to	a	point-to-point	link	are	generally	engineered	to	support	the	link.	For	example,	if	a
link's	delay	×	bandwidth	product	is	computed	to	be	8	KB—meaning	that	a	window	size	is	selected	to	allow	up	to	8	KB
of	data	to	be	unacknowledged	at	a	given	time—then	it	is	likely	that	the	computers	at	either	end	of	the	link	have	the
ability	to	buffer	up	to	8	KB	of	data.	Designing	the	system	otherwise	would	be	silly.	On	the	other	hand,	almost	any	kind
of	computer	can	be	connected	to	the	Internet,	making	the	amount	of	resources	dedicated	to	any	one	TCP	connection
highly	variable,	especially	considering	that	any	one	host	can	potentially	support	hundreds	of	TCP	connections	at	the
same	time.	This	means	that	TCP	must	include	a	mechanism	that	each	side	uses	to	"learn"	what	resources	(e.g.,	how
much	buffer	space)	the	other	side	is	able	to	apply	to	the	connection.	This	is	the	flow	control	issue.

Fifth,	because	the	transmitting	side	of	a	directly	connected	link	cannot	send	any	faster	than	the	bandwidth	of	the	link
allows,	and	only	one	host	is	pumping	data	into	the	link,	it	is	not	possible	to	unknowingly	congest	the	link.	Said	another
way,	the	load	on	the	link	is	visible	in	the	form	of	a	queue	of	packets	at	the	sender.	In	contrast,	the	sending	side	of	a
TCP	connection	has	no	idea	what	links	will	be	traversed	to	reach	the	destination.	For	example,	the	sending	machine
might	be	directly	connected	to	a	relatively	fast	Ethernet—and	capable	of	sending	data	at	a	rate	of	10	Gbps—but
somewhere	out	in	the	middle	of	the	network,	a	1.5-Mbps	link	must	be	traversed.	And,	to	make	matters	worse,	data
being	generated	by	many	different	sources	might	be	trying	to	traverse	this	same	slow	link.	This	leads	to	the	problem
of	network	congestion.	Discussion	of	this	topic	is	delayed	until	the	next	chapter.

We	conclude	this	discussion	of	end-to-end	issues	by	comparing	TCP's	approach	to	providing	a	reliable/ordered
delivery	service	with	the	approach	used	by	virtual-circut-based	networks	like	the	historically	important	X.25	network.	In
TCP,	the	underlying	IP	network	is	assumed	to	be	unreliable	and	to	deliver	messages	out	of	order;	TCP	uses	the
sliding	window	algorithm	on	an	end-to-end	basis	to	provide	reliable/ordered	delivery.	In	contrast,	X.25	networks	use
the	sliding	window	protocol	within	the	network,	on	a	hop-by-hop	basis.	The	assumption	behind	this	approach	is	that	if
messages	are	delivered	reliably	and	in	order	between	each	pair	of	nodes	along	the	path	between	the	source	host	and
the	destination	host,	then	the	end-to-end	service	also	guarantees	reliable/ordered	delivery.

The	problem	with	this	latter	approach	is	that	a	sequence	of	hop-by-hop	guarantees	does	not	necessarily	add	up	to	an
end-to-end	guarantee.	First,	if	a	heterogeneous	link	(say,	an	Ethernet)	is	added	to	one	end	of	the	path,	then	there	is
no	guarantee	that	this	hop	will	preserve	the	same	service	as	the	other	hops.	Second,	just	because	the	sliding	window
protocol	guarantees	that	messages	are	delivered	correctly	from	node	A	to	node	B,	and	then	from	node	B	to	node	C,	it
does	not	guarantee	that	node	B	behaves	perfectly.	For	example,	network	nodes	have	been	known	to	introduce	errors
into	messages	while	transferring	them	from	an	input	buffer	to	an	output	buffer.	They	have	also	been	known	to
accidentally	reorder	messages.	As	a	consequence	of	these	small	windows	of	vulnerability,	it	is	still	necessary	to
provide	true	end-to-end	checks	to	guarantee	reliable/ordered	service,	even	though	the	lower	levels	of	the	system	also
implement	that	functionality.

Key	Takeaway
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This	discussion	serves	to	illustrate	one	of	the	most	important	principles	in	system	design—the	end-to-end
argument.	In	a	nutshell,	the	end-to-end	argument	says	that	a	function	(in	our	example,	providing
reliable/ordered	delivery)	should	not	be	provided	in	the	lower	levels	of	the	system	unless	it	can	be	completely
and	correctly	implemented	at	that	level.	Therefore,	this	rule	argues	in	favor	of	the	TCP/IP	approach.	This	rule	is
not	absolute,	however.	It	does	allow	for	functions	to	be	incompletely	provided	at	a	low	level	as	a	performance
optimization.	This	is	why	it	is	perfectly	consistent	with	the	end-to-end	argument	to	perform	error	detection	(e.g.,
CRC)	on	a	hop-by-hop	basis;	detecting	and	retransmitting	a	single	corrupt	packet	across	one	hop	is	preferable
to	having	to	retransmit	an	entire	file	end-to-end.

Segment	Format

TCP	is	a	byte-oriented	protocol,	which	means	that	the	sender	writes	bytes	into	a	TCP	connection	and	the	receiver
reads	bytes	out	of	the	TCP	connection.	Although	"byte	stream"	describes	the	service	TCP	offers	to	application
processes,	TCP	does	not,	itself,	transmit	individual	bytes	over	the	Internet.	Instead,	TCP	on	the	source	host	buffers
enough	bytes	from	the	sending	process	to	fill	a	reasonably	sized	packet	and	then	sends	this	packet	to	its	peer	on	the
destination	host.	TCP	on	the	destination	host	then	empties	the	contents	of	the	packet	into	a	receive	buffer,	and	the
receiving	process	reads	from	this	buffer	at	its	leisure.	This	situation	is	illustrated	in	Figure	1,	which,	for	simplicity,
shows	data	flowing	in	only	one	direction.	Remember	that,	in	general,	a	single	TCP	connection	supports	byte	streams
flowing	in	both	directions.

Figure	1.	How	TCP	manages	a	byte	stream.

The	packets	exchanged	between	TCP	peers	in	Figure	1	are	called	segments,	since	each	one	carries	a	segment	of	the
byte	stream.	Each	TCP	segment	contains	the	header	schematically	depicted	in	Figure	2.	The	relevance	of	most	of
these	fields	will	become	apparent	throughout	this	section.	For	now,	we	simply	introduce	them.
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Figure	2.	TCP	header	format.

The		SrcPort		and		DstPort		fields	identify	the	source	and	destination	ports,	respectively,	just	as	in	UDP.	These	two
fields,	plus	the	source	and	destination	IP	addresses,	combine	to	uniquely	identify	each	TCP	connection.	That	is,
TCP's	demux	key	is	given	by	the	4-tuple

(SrcPort,	SrcIPAddr,	DstPort,	DstIPAddr)

Note	that	because	TCP	connections	come	and	go,	it	is	possible	for	a	connection	between	a	particular	pair	of	ports	to
be	established,	used	to	send	and	receive	data,	and	closed,	and	then	at	a	later	time	for	the	same	pair	of	ports	to	be
involved	in	a	second	connection.	We	sometimes	refer	to	this	situation	as	two	different	incarnations	of	the	same
connection.

The		Acknowledgement	,		SequenceNum	,	and		AdvertisedWindow		fields	are	all	involved	in	TCP's	sliding	window	algorithm.
Because	TCP	is	a	byte-oriented	protocol,	each	byte	of	data	has	a	sequence	number.	The		SequenceNum		field	contains
the	sequence	number	for	the	first	byte	of	data	carried	in	that	segment,	and	the		Acknowledgement		and		AdvertisedWindow	
fields	carry	information	about	the	flow	of	data	going	in	the	other	direction.	To	simplify	our	discussion,	we	ignore	the
fact	that	data	can	flow	in	both	directions,	and	we	concentrate	on	data	that	has	a	particular		SequenceNum		flowing	in	one
direction	and		Acknowledgement		and		AdvertisedWindow		values	flowing	in	the	opposite	direction,	as	illustrated	in	Figure	3.
The	use	of	these	three	fields	is	described	more	fully	later	in	this	chapter.

Figure	3.	Simplified	illustration	(showing	only	one	direction)	of	the	TCP
process,	with	data	flow	in	one	direction	and	ACKs	in	the	other.

The	6-bit		Flags		field	is	used	to	relay	control	information	between	TCP	peers.	The	possible	flags	include		SYN	,		FIN	,
	RESET	,		PUSH	,		URG	,	and		ACK	.	The		SYN		and		FIN		flags	are	used	when	establishing	and	terminating	a	TCP
connection,	respectively.	Their	use	is	described	in	a	later	section.	The		ACK		flag	is	set	any	time	the		Acknowledgement	
field	is	valid,	implying	that	the	receiver	should	pay	attention	to	it.	The		URG		flag	signifies	that	this	segment	contains
urgent	data.	When	this	flag	is	set,	the		UrgPtr		field	indicates	where	the	nonurgent	data	contained	in	this	segment
begins.	The	urgent	data	is	contained	at	the	front	of	the	segment	body,	up	to	and	including	a	value	of		UrgPtr		bytes	into
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the	segment.	The		PUSH		flag	signifies	that	the	sender	invoked	the	push	operation,	which	indicates	to	the	receiving	side
of	TCP	that	it	should	notify	the	receiving	process	of	this	fact.	We	discuss	these	last	two	features	more	in	a	later
section.	Finally,	the		RESET		flag	signifies	that	the	receiver	has	become	confused—for	example,	because	it	received	a
segment	it	did	not	expect	to	receive—and	so	wants	to	abort	the	connection.

Finally,	the		Checksum		field	is	used	in	exactly	the	same	way	as	for	UDP—it	is	computed	over	the	TCP	header,	the	TCP
data,	and	the	pseudoheader,	which	is	made	up	of	the	source	address,	destination	address,	and	length	fields	from	the
IP	header.	The	checksum	is	required	for	TCP	in	both	IPv4	and	IPv6.	Also,	since	the	TCP	header	is	of	variable	length
(options	can	be	attached	after	the	mandatory	fields),	a		HdrLen		field	is	included	that	gives	the	length	of	the	header	in
32-bit	words.	This	field	is	also	known	as	the		Offset		field,	since	it	measures	the	offset	from	the	start	of	the	packet	to
the	start	of	the	data.

Connection	Establishment	and	Termination

A	TCP	connection	begins	with	a	client	(caller)	doing	an	active	open	to	a	server	(callee).	Assuming	that	the	server	had
earlier	done	a	passive	open,	the	two	sides	engage	in	an	exchange	of	messages	to	establish	the	connection.	(Recall
from	Chapter	1	that	a	party	wanting	to	initiate	a	connection	performs	an	active	open,	while	a	party	willing	to	accept	a
connection	does	a	passive	open.)	Only	after	this	connection	establishment	phase	is	over	do	the	two	sides	begin
sending	data.	Likewise,	as	soon	as	a	participant	is	done	sending	data,	it	closes	one	direction	of	the	connection,	which
causes	TCP	to	initiate	a	round	of	connection	termination	messages.	Notice	that,	while	connection	setup	is	an
asymmetric	activity	(one	side	does	a	passive	open	and	the	other	side	does	an	active	open),	connection	teardown	is
symmetric	(each	side	has	to	close	the	connection	independently).	Therefore,	it	is	possible	for	one	side	to	have	done	a
close,	meaning	that	it	can	no	longer	send	data,	but	for	the	other	side	to	keep	the	other	half	of	the	bidirectional
connection	open	and	to	continue	sending	data.

To	be	more	precise,	connection	setup	can	be	symmetric,	with	both	sides	trying	to	open	the	connection	at	the
same	time,	but	the	common	case	is	for	one	side	to	do	an	active	open	and	the	other	side	to	do	a	passive	open.

Three-Way	Handshake

The	algorithm	used	by	TCP	to	establish	and	terminate	a	connection	is	called	a	three-way	handshake.	We	first
describe	the	basic	algorithm	and	then	show	how	it	is	used	by	TCP.	The	three-way	handshake	involves	the	exchange
of	three	messages	between	the	client	and	the	server,	as	illustrated	by	the	timeline	given	in	Figure	4.

Figure	4.	Timeline	for	three-way	handshake	algorithm.
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The	idea	is	that	two	parties	want	to	agree	on	a	set	of	parameters,	which,	in	the	case	of	opening	a	TCP	connection,	are
the	starting	sequence	numbers	the	two	sides	plan	to	use	for	their	respective	byte	streams.	In	general,	the	parameters
might	be	any	facts	that	each	side	wants	the	other	to	know	about.	First,	the	client	(the	active	participant)	sends	a
segment	to	the	server	(the	passive	participant)	stating	the	initial	sequence	number	it	plans	to	use	(	Flags		=		SYN	,
	SequenceNum		=	x).	The	server	then	responds	with	a	single	segment	that	both	acknowledges	the	client's	sequence
number	(	Flags	=	ACK,	Ack	=	x	+	1	)	and	states	its	own	beginning	sequence	number	(	Flags	=	SYN,	SequenceNum	=	y	).	That
is,	both	the		SYN		and		ACK		bits	are	set	in	the		Flags		field	of	this	second	message.	Finally,	the	client	responds	with	a
third	segment	that	acknowledges	the	server's	sequence	number	(	Flags	=	ACK,	Ack	=	y	+	1	).	The	reason	why	each	side
acknowledges	a	sequence	number	that	is	one	larger	than	the	one	sent	is	that	the		Acknowledgement		field	actually
identifies	the	"next	sequence	number	expected,"	thereby	implicitly	acknowledging	all	earlier	sequence	numbers.
Although	not	shown	in	this	timeline,	a	timer	is	scheduled	for	each	of	the	first	two	segments,	and	if	the	expected
response	is	not	received	the	segment	is	retransmitted.

You	may	be	asking	yourself	why	the	client	and	server	have	to	exchange	starting	sequence	numbers	with	each	other
at	connection	setup	time.	It	would	be	simpler	if	each	side	simply	started	at	some	"well-known"	sequence	number,	such
as	0.	In	fact,	the	TCP	specification	requires	that	each	side	of	a	connection	select	an	initial	starting	sequence	number
at	random.	The	reason	for	this	is	to	protect	against	two	incarnations	of	the	same	connection	reusing	the	same
sequence	numbers	too	soon—that	is,	while	there	is	still	a	chance	that	a	segment	from	an	earlier	incarnation	of	a
connection	might	interfere	with	a	later	incarnation	of	the	connection.

State-Transition	Diagram

TCP	is	complex	enough	that	its	specification	includes	a	state-transition	diagram.	A	copy	of	this	diagram	is	given	in
Figure	5.	This	diagram	shows	only	the	states	involved	in	opening	a	connection	(everything	above	ESTABLISHED)
and	in	closing	a	connection	(everything	below	ESTABLISHED).	Everything	that	goes	on	while	a	connection	is	open—
that	is,	the	operation	of	the	sliding	window	algorithm—is	hidden	in	the	ESTABLISHED	state.

Figure	5.	TCP	state-transition	diagram.

TCP's	state-transition	diagram	is	fairly	easy	to	understand.	Each	box	denotes	a	state	that	one	end	of	a	TCP
connection	can	find	itself	in.	All	connections	start	in	the	CLOSED	state.	As	the	connection	progresses,	the	connection
moves	from	state	to	state	according	to	the	arcs.	Each	arc	is	labeled	with	a	tag	of	the	form	event/action.	Thus,	if	a
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connection	is	in	the	LISTEN	state	and	a	SYN	segment	arrives	(i.e.,	a	segment	with	the		SYN		flag	set),	the	connection
makes	a	transition	to	the	SYN_RCVD	state	and	takes	the	action	of	replying	with	an		ACK+SYN		segment.

Notice	that	two	kinds	of	events	trigger	a	state	transition:	(1)	a	segment	arrives	from	the	peer	(e.g.,	the	event	on	the	arc
from	LISTEN	to	SYN_RCVD),	or	(2)	the	local	application	process	invokes	an	operation	on	TCP	(e.g.,	the	active	open
event	on	the	arc	from	CLOSED	to	SYN_SENT).	In	other	words,	TCP's	state-transition	diagram	effectively	defines	the
semantics	of	both	its	peer-to-peer	interface	and	its	service	interface.	The	syntax	of	these	two	interfaces	is	given	by	the
segment	format	(as	illustrated	in	Figure	2)	and	by	some	application	programming	interface,	such	as	the	socket	API,
respectively.

Now	let's	trace	the	typical	transitions	taken	through	the	diagram	in	Figure	5.	Keep	in	mind	that	at	each	end	of	the
connection,	TCP	makes	different	transitions	from	state	to	state.	When	opening	a	connection,	the	server	first	invokes	a
passive	open	operation	on	TCP,	which	causes	TCP	to	move	to	the	LISTEN	state.	At	some	later	time,	the	client	does
an	active	open,	which	causes	its	end	of	the	connection	to	send	a	SYN	segment	to	the	server	and	to	move	to	the
SYN_SENT	state.	When	the	SYN	segment	arrives	at	the	server,	it	moves	to	the	SYN_RCVD	state	and	responds	with
a	SYN+ACK	segment.	The	arrival	of	this	segment	causes	the	client	to	move	to	the	ESTABLISHED	state	and	to	send
an	ACK	back	to	the	server.	When	this	ACK	arrives,	the	server	finally	moves	to	the	ESTABLISHED	state.	In	other
words,	we	have	just	traced	the	three-way	handshake.

There	are	three	things	to	notice	about	the	connection	establishment	half	of	the	state-transition	diagram.	First,	if	the
client's	ACK	to	the	server	is	lost,	corresponding	to	the	third	leg	of	the	three-way	handshake,	then	the	connection	still
functions	correctly.	This	is	because	the	client	side	is	already	in	the	ESTABLISHED	state,	so	the	local	application
process	can	start	sending	data	to	the	other	end.	Each	of	these	data	segments	will	have	the		ACK		flag	set,	and	the
correct	value	in	the		Acknowledgement		field,	so	the	server	will	move	to	the	ESTABLISHED	state	when	the	first	data
segment	arrives.	This	is	actually	an	important	point	about	TCP—every	segment	reports	what	sequence	number	the
sender	is	expecting	to	see	next,	even	if	this	repeats	the	same	sequence	number	contained	in	one	or	more	previous
segments.

The	second	thing	to	notice	about	the	state-transition	diagram	is	that	there	is	a	funny	transition	out	of	the	LISTEN	state
whenever	the	local	process	invokes	a	send	operation	on	TCP.	That	is,	it	is	possible	for	a	passive	participant	to	identify
both	ends	of	the	connection	(i.e.,	itself	and	the	remote	participant	that	it	is	willing	to	have	connect	to	it),	and	then	for	it
to	change	its	mind	about	waiting	for	the	other	side	and	instead	actively	establish	the	connection.	To	the	best	of	our
knowledge,	this	is	a	feature	of	TCP	that	no	application	process	actually	takes	advantage	of.

The	final	thing	to	notice	about	the	diagram	is	the	arcs	that	are	not	shown.	Specifically,	most	of	the	states	that	involve
sending	a	segment	to	the	other	side	also	schedule	a	timeout	that	eventually	causes	the	segment	to	be	present	if	the
expected	response	does	not	happen.	These	retransmissions	are	not	depicted	in	the	state-transition	diagram.	If	after
several	tries	the	expected	response	does	not	arrive,	TCP	gives	up	and	returns	to	the	CLOSED	state.

Turning	our	attention	now	to	the	process	of	terminating	a	connection,	the	important	thing	to	keep	in	mind	is	that	the
application	process	on	both	sides	of	the	connection	must	independently	close	its	half	of	the	connection.	If	only	one
side	closes	the	connection,	then	this	means	it	has	no	more	data	to	send,	but	it	is	still	available	to	receive	data	from	the
other	side.	This	complicates	the	state-transition	diagram	because	it	must	account	for	the	possibility	that	the	two	sides
invoke	the	close	operator	at	the	same	time,	as	well	as	the	possibility	that	first	one	side	invokes	close	and	then,	at
some	later	time,	the	other	side	invokes	close.	Thus,	on	any	one	side	there	are	three	combinations	of	transitions	that
get	a	connection	from	the	ESTABLISHED	state	to	the	CLOSED	state:

This	side	closes	first:	ESTABLISHED	→	FIN_WAIT_1	→	FIN_WAIT_2	→	TIME_WAIT	→	CLOSED.

The	other	side	closes	first:	ESTABLISHED	→	CLOSE_WAIT	→	LAST_ACK	→	CLOSED.

Both	sides	close	at	the	same	time:	ESTABLISHED	→	FIN_WAIT_1	→	CLOSING	→	TIME_WAIT	→	CLOSED.

There	is	actually	a	fourth,	although	rare,	sequence	of	transitions	that	leads	to	the	CLOSED	state;	it	follows	the	arc
from	FIN_WAIT_1	to	TIME_WAIT.	We	leave	it	as	an	exercise	for	you	to	figure	out	what	combination	of	circumstances
leads	to	this	fourth	possibility.
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The	main	thing	to	recognize	about	connection	teardown	is	that	a	connection	in	the	TIME_WAIT	state	cannot	move	to
the	CLOSED	state	until	it	has	waited	for	two	times	the	maximum	amount	of	time	an	IP	datagram	might	live	in	the
Internet	(i.e.,	120	seconds).	The	reason	for	this	is	that,	while	the	local	side	of	the	connection	has	sent	an	ACK	in
response	to	the	other	side's	FIN	segment,	it	does	not	know	that	the	ACK	was	successfully	delivered.	As	a
consequence,	the	other	side	might	retransmit	its	FIN	segment,	and	this	second	FIN	segment	might	be	delayed	in	the
network.	If	the	connection	were	allowed	to	move	directly	to	the	CLOSED	state,	then	another	pair	of	application
processes	might	come	along	and	open	the	same	connection	(i.e.,	use	the	same	pair	of	port	numbers),	and	the
delayed	FIN	segment	from	the	earlier	incarnation	of	the	connection	would	immediately	initiate	the	termination	of	the
later	incarnation	of	that	connection.

Sliding	Window	Revisited

We	are	now	ready	to	discuss	TCP's	variant	of	the	sliding	window	algorithm,	which	serves	several	purposes:	(1)	it
guarantees	the	reliable	delivery	of	data,	(2)	it	ensures	that	data	is	delivered	in	order,	and	(3)	it	enforces	flow	control
between	the	sender	and	the	receiver.	TCP's	use	of	the	sliding	window	algorithm	is	the	same	as	at	the	link	level	in	the
case	of	the	first	two	of	these	three	functions.	Where	TCP	differs	from	the	link-level	algorithm	is	that	it	folds	the	flow-
control	function	in	as	well.	In	particular,	rather	than	having	a	fixed-size	sliding	window,	the	receiver	advertises	a
window	size	to	the	sender.	This	is	done	using	the		AdvertisedWindow		field	in	the	TCP	header.	The	sender	is	then	limited
to	having	no	more	than	a	value	of		AdvertisedWindow		bytes	of	unacknowledged	data	at	any	given	time.	The	receiver
selects	a	suitable	value	for		AdvertisedWindow		based	on	the	amount	of	memory	allocated	to	the	connection	for	the
purpose	of	buffering	data.	The	idea	is	to	keep	the	sender	from	over-running	the	receiver's	buffer.	We	discuss	this	at
greater	length	below.

Reliable	and	Ordered	Delivery

To	see	how	the	sending	and	receiving	sides	of	TCP	interact	with	each	other	to	implement	reliable	and	ordered
delivery,	consider	the	situation	illustrated	in	Figure	6.	TCP	on	the	sending	side	maintains	a	send	buffer.	This	buffer	is
used	to	store	data	that	has	been	sent	but	not	yet	acknowledged,	as	well	as	data	that	has	been	written	by	the	sending
application	but	not	transmitted.	On	the	receiving	side,	TCP	maintains	a	receive	buffer.	This	buffer	holds	data	that
arrives	out	of	order,	as	well	as	data	that	is	in	the	correct	order	(i.e.,	there	are	no	missing	bytes	earlier	in	the	stream)
but	that	the	application	process	has	not	yet	had	the	chance	to	read.

Figure	6.	Relationship	between	TCP	send	buffer	(a)	and	receive	buffer	(b).

To	make	the	following	discussion	simpler	to	follow,	we	initially	ignore	the	fact	that	both	the	buffers	and	the	sequence
numbers	are	of	some	finite	size	and	hence	will	eventually	wrap	around.	Also,	we	do	not	distinguish	between	a	pointer
into	a	buffer	where	a	particular	byte	of	data	is	stored	and	the	sequence	number	for	that	byte.

Looking	first	at	the	sending	side,	three	pointers	are	maintained	into	the	send	buffer,	each	with	an	obvious	meaning:
	LastByteAcked	,		LastByteSent	,	and		LastByteWritten	.	Clearly,

LastByteAcked	<=	LastByteSent
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since	the	receiver	cannot	have	acknowledged	a	byte	that	has	not	yet	been	sent,	and

LastByteSent	<=	LastByteWritten

since	TCP	cannot	send	a	byte	that	the	application	process	has	not	yet	written.	Also	note	that	none	of	the	bytes	to	the
left	of		LastByteAcked		need	to	be	saved	in	the	buffer	because	they	have	already	been	acknowledged,	and	none	of	the
bytes	to	the	right	of		LastByteWritten		need	to	be	buffered	because	they	have	not	yet	been	generated.

A	similar	set	of	pointers	(sequence	numbers)	are	maintained	on	the	receiving	side:		LastByteRead	,		NextByteExpected	,
and		LastByteRcvd	.	The	inequalities	are	a	little	less	intuitive,	however,	because	of	the	problem	of	out-of-order	delivery.
The	first	relationship

LastByteRead	<	NextByteExpected

is	true	because	a	byte	cannot	be	read	by	the	application	until	it	is	received	and	all	preceding	bytes	have	also	been
received.		NextByteExpected		points	to	the	byte	immediately	after	the	latest	byte	to	meet	this	criterion.	Second,

NextByteExpected	<=	LastByteRcvd	+	1

since,	if	data	has	arrived	in	order,		NextByteExpected		points	to	the	byte	after		LastByteRcvd	,	whereas	if	data	has	arrived
out	of	order,	then		NextByteExpected		points	to	the	start	of	the	first	gap	in	the	data,	as	in	Figure	6.	Note	that	bytes	to	the
left	of		LastByteRead		need	not	be	buffered	because	they	have	already	been	read	by	the	local	application	process,	and
bytes	to	the	right	of		LastByteRcvd		need	not	be	buffered	because	they	have	not	yet	arrived.

Flow	Control

Most	of	the	above	discussion	is	similar	to	that	found	in	the	standard	sliding	window	algorithm;	the	only	real	difference
is	that	this	time	we	elaborated	on	the	fact	that	the	sending	and	receiving	application	processes	are	filling	and	emptying
their	local	buffer,	respectively.	(The	earlier	discussion	glossed	over	the	fact	that	data	arriving	from	an	upstream	node
was	filling	the	send	buffer	and	data	being	transmitted	to	a	downstream	node	was	emptying	the	receive	buffer.)

You	should	make	sure	you	understand	this	much	before	proceeding	because	now	comes	the	point	where	the	two
algorithms	differ	more	significantly.	In	what	follows,	we	reintroduce	the	fact	that	both	buffers	are	of	some	finite	size,
denoted		MaxSendBuffer		and		MaxRcvBuffer	,	although	we	don't	worry	about	the	details	of	how	they	are	implemented.	In
other	words,	we	are	only	interested	in	the	number	of	bytes	being	buffered,	not	in	where	those	bytes	are	actually
stored.

Recall	that	in	a	sliding	window	protocol,	the	size	of	the	window	sets	the	amount	of	data	that	can	be	sent	without
waiting	for	acknowledgment	from	the	receiver.	Thus,	the	receiver	throttles	the	sender	by	advertising	a	window	that	is
no	larger	than	the	amount	of	data	that	it	can	buffer.	Observe	that	TCP	on	the	receive	side	must	keep

LastByteRcvd	-	LastByteRead	<=	MaxRcvBuffer

to	avoid	overflowing	its	buffer.	It	therefore	advertises	a	window	size	of

AdvertisedWindow	=	MaxRcvBuffer	-	((NextByteExpected	-	1)	-	LastByteRead)

which	represents	the	amount	of	free	space	remaining	in	its	buffer.	As	data	arrives,	the	receiver	acknowledges	it	as
long	as	all	the	preceding	bytes	have	also	arrived.	In	addition,		LastByteRcvd		moves	to	the	right	(is	incremented),
meaning	that	the	advertised	window	potentially	shrinks.	Whether	or	not	it	shrinks	depends	on	how	fast	the	local
application	process	is	consuming	data.	If	the	local	process	is	reading	data	just	as	fast	as	it	arrives	(causing
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	LastByteRead		to	be	incremented	at	the	same	rate	as		LastByteRcvd	),	then	the	advertised	window	stays	open	(i.e.,
	AdvertisedWindow	=	MaxRcvBuffer	).	If,	however,	the	receiving	process	falls	behind,	perhaps	because	it	performs	a	very
expensive	operation	on	each	byte	of	data	that	it	reads,	then	the	advertised	window	grows	smaller	with	every	segment
that	arrives,	until	it	eventually	goes	to	0.

TCP	on	the	send	side	must	then	adhere	to	the	advertised	window	it	gets	from	the	receiver.	This	means	that	at	any
given	time,	it	must	ensure	that

LastByteSent	-	LastByteAcked	<=	AdvertisedWindow

Said	another	way,	the	sender	computes	an	effective	window	that	limits	how	much	data	it	can	send:

EffectiveWindow	=	AdvertisedWindow	-	(LastByteSent	-	LastByteAcked)

Clearly,		EffectiveWindow		must	be	greater	than	0	before	the	source	can	send	more	data.	It	is	possible,	therefore,	that	a
segment	arrives	acknowledging	x	bytes,	thereby	allowing	the	sender	to	increment		LastByteAcked		by	x,	but	because	the
receiving	process	was	not	reading	any	data,	the	advertised	window	is	now	x	bytes	smaller	than	the	time	before.	In
such	a	situation,	the	sender	would	be	able	to	free	buffer	space,	but	not	to	send	any	more	data.

All	the	while	this	is	going	on,	the	send	side	must	also	make	sure	that	the	local	application	process	does	not	overflow
the	send	buffer—that	is,

LastByteWritten	-	LastByteAcked	<=	MaxSendBuffer

If	the	sending	process	tries	to	write	y	bytes	to	TCP,	but

(LastByteWritten	-	LastByteAcked)	+	y	>	MaxSendBuffer

then	TCP	blocks	the	sending	process	and	does	not	allow	it	to	generate	more	data.

It	is	now	possible	to	understand	how	a	slow	receiving	process	ultimately	stops	a	fast	sending	process.	First,	the
receive	buffer	fills	up,	which	means	the	advertised	window	shrinks	to	0.	An	advertised	window	of	0	means	that	the
sending	side	cannot	transmit	any	data,	even	though	data	it	has	previously	sent	has	been	successfully	acknowledged.
Finally,	not	being	able	to	transmit	any	data	means	that	the	send	buffer	fills	up,	which	ultimately	causes	TCP	to	block
the	sending	process.	As	soon	as	the	receiving	process	starts	to	read	data	again,	the	receive-side	TCP	is	able	to	open
its	window	back	up,	which	allows	the	send-side	TCP	to	transmit	data	out	of	its	buffer.	When	this	data	is	eventually
acknowledged,		LastByteAcked		is	incremented,	the	buffer	space	holding	this	acknowledged	data	becomes	free,	and	the
sending	process	is	unblocked	and	allowed	to	proceed.

There	is	only	one	remaining	detail	that	must	be	resolved—how	does	the	sending	side	know	that	the	advertised
window	is	no	longer	0?	As	mentioned	above,	TCP	always	sends	a	segment	in	response	to	a	received	data	segment,
and	this	response	contains	the	latest	values	for	the		Acknowledge		and		AdvertisedWindow		fields,	even	if	these	values	have
not	changed	since	the	last	time	they	were	sent.	The	problem	is	this.	Once	the	receive	side	has	advertised	a	window
size	of	0,	the	sender	is	not	permitted	to	send	any	more	data,	which	means	it	has	no	way	to	discover	that	the
advertised	window	is	no	longer	0	at	some	time	in	the	future.	TCP	on	the	receive	side	does	not	spontaneously	send
nondata	segments;	it	only	sends	them	in	response	to	an	arriving	data	segment.

TCP	deals	with	this	situation	as	follows.	Whenever	the	other	side	advertises	a	window	size	of	0,	the	sending	side
persists	in	sending	a	segment	with	1	byte	of	data	every	so	often.	It	knows	that	this	data	will	probably	not	be	accepted,
but	it	tries	anyway,	because	each	of	these	1-byte	segments	triggers	a	response	that	contains	the	current	advertised
window.	Eventually,	one	of	these	1-byte	probes	triggers	a	response	that	reports	a	nonzero	advertised	window.

Key	Takeaway
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Note	that	the	reason	the	sending	side	periodically	sends	this	probe	segment	is	that	TCP	is	designed	to	make
the	receive	side	as	simple	as	possible—it	simply	responds	to	segments	from	the	sender,	and	it	never	initiates
any	activity	on	its	own.	This	is	an	example	of	a	well-recognized	(although	not	universally	applied)	protocol
design	rule,	which,	for	lack	of	a	better	name,	we	call	the	smart	sender/	dumb	receiver	rule.	Recall	that	we	saw
another	example	of	this	rule	when	we	discussed	the	use	of	NAKs	in	sliding	window	algorithm.

Protecting	against	Wraparound

This	subsection	and	the	next	consider	the	size	of	the		SequenceNum		and		AdvertisedWindow		fields	and	the	implications	of
their	sizes	on	TCP's	correctness	and	performance.	TCP's		SequenceNum		field	is	32	bits	long,	and	its		AdvertisedWindow	
field	is	16	bits	long,	meaning	that	TCP	has	easily	satisfied	the	requirement	of	the	sliding	window	algorithm	that	the

sequence	number	space	be	twice	as	big	as	the	window	size:	2 	>>	2	×	2 .	However,	this	requirement	is	not	the

interesting	thing	about	these	two	fields.	Consider	each	field	in	turn.

The	relevance	of	the	32-bit	sequence	number	space	is	that	the	sequence	number	used	on	a	given	connection	might
wrap	around—a	byte	with	sequence	number	S	could	be	sent	at	one	time,	and	then	at	a	later	time	a	second	byte	with
the	same	sequence	number	S	might	be	sent.	Once	again,	we	assume	that	packets	cannot	survive	in	the	Internet	for
longer	than	the	recommended	MSL.	Thus,	we	currently	need	to	make	sure	that	the	sequence	number	does	not	wrap
around	within	a	120-second	period	of	time.	Whether	or	not	this	happens	depends	on	how	fast	data	can	be	transmitted
over	the	Internet—that	is,	how	fast	the	32-bit	sequence	number	space	can	be	consumed.	(This	discussion	assumes
that	we	are	trying	to	consume	the	sequence	number	space	as	fast	as	possible,	but	of	course	we	will	be	if	we	are	doing
our	job	of	keeping	the	pipe	full.)	Table	1	shows	how	long	it	takes	for	the	sequence	number	to	wrap	around	on
networks	with	various	bandwidths.

Table	1.	Time	Until	32-Bit	Sequence	Number	Space	Wraps	Around.

Bandwidth Time	until	Wraparound

T1	(1.5	Mbps) 6.4	hours

Ethernet	(10	Mbps) 57	minutes

T3	(45	Mbps) 13	minutes

Fast	Ethernet	(100	Mbps) 6	minutes

OC-3	(155	Mbps) 4	minutes

OC-48	(2.5	Gbps) 14	seconds

OC-192	(10	Gbps) 3	seconds

10GigE	(10	Gbps) 3	seconds

As	you	can	see,	the	32-bit	sequence	number	space	is	adequate	at	modest	bandwidths,	but	given	that	OC-192	links
are	now	common	in	the	Internet	backbone,	and	that	most	servers	now	come	with	10Gig	Ethernet	(or	10	Gbps)
interfaces,	we're	now	well-past	the	point	where	32	bits	is	too	small.	Fortunately,	the	IETF	has	worked	out	an	extension
to	TCP	that	effectively	extends	the	sequence	number	space	to	protect	against	the	sequence	number	wrapping
around.	This	and	related	extensions	are	described	in	a	later	section.

Keeping	the	Pipe	Full

The	relevance	of	the	16-bit		AdvertisedWindow		field	is	that	it	must	be	big	enough	to	allow	the	sender	to	keep	the	pipe
full.	Clearly,	the	receiver	is	free	to	not	open	the	window	as	large	as	the		AdvertisedWindow		field	allows;	we	are	interested
in	the	situation	in	which	the	receiver	has	enough	buffer	space	to	handle	as	much	data	as	the	largest	possible
	AdvertisedWindow		allows.

32 16
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In	this	case,	it	is	not	just	the	network	bandwidth	but	the	delay	×	bandwidth	product	that	dictates	how	big	the
	AdvertisedWindow		field	needs	to	be—the	window	needs	to	be	opened	far	enough	to	allow	a	full	delay	×	bandwidth
product's	worth	of	data	to	be	transmitted.	Assuming	an	RTT	of	100	ms	(a	typical	number	for	a	cross-country
connection	in	the	United	States),	Table	2	gives	the	delay	×	bandwidth	product	for	several	network	technologies.

Table	2.	Required	Window	Size	for	100-ms	RTT.

Bandwidth Delay	×	Bandwidth	Product

T1	(1.5	Mbps) 18	KB

Ethernet	(10	Mbps) 122	KB

T3	(45	Mbps) 549	KB

Fast	Ethernet	(100	Mbps) 1.2	MB

OC-3	(155	Mbps) 1.8	MB

OC-48	(2.5	Gbps) 29.6	MB

OC-192	(10	Gbps) 118.4	MB

10GigE	(10	Gbps) 118.4	MB

As	you	can	see,	TCP's		AdvertisedWindow		field	is	in	even	worse	shape	than	its		SequenceNum		field—it	is	not	big	enough	to
handle	even	a	T3	connection	across	the	continental	United	States,	since	a	16-bit	field	allows	us	to	advertise	a	window
of	only	64	KB.	The	very	same	TCP	extension	mentioned	above	provides	a	mechanism	for	effectively	increasing	the
size	of	the	advertised	window.

Triggering	Transmission

We	next	consider	a	surprisingly	subtle	issue:	how	TCP	decides	to	transmit	a	segment.	As	described	earlier,	TCP
supports	a	byte-stream	abstraction;	that	is,	application	programs	write	bytes	into	the	stream,	and	it	is	up	to	TCP	to
decide	that	it	has	enough	bytes	to	send	a	segment.	What	factors	govern	this	decision?

If	we	ignore	the	possibility	of	flow	control—that	is,	we	assume	the	window	is	wide	open,	as	would	be	the	case	when	a
connection	first	starts—then	TCP	has	three	mechanisms	to	trigger	the	transmission	of	a	segment.	First,	TCP
maintains	a	variable,	typically	called	the	maximum	segment	size	(	MSS	),	and	it	sends	a	segment	as	soon	as	it	has
collected		MSS		bytes	from	the	sending	process.		MSS		is	usually	set	to	the	size	of	the	largest	segment	TCP	can	send
without	causing	the	local	IP	to	fragment.	That	is,		MSS		is	set	to	the	maximum	transmission	unit	(MTU)	of	the	directly
connected	network,	minus	the	size	of	the	TCP	and	IP	headers.	The	second	thing	that	triggers	TCP	to	transmit	a
segment	is	that	the	sending	process	has	explicitly	asked	it	to	do	so.	Specifically,	TCP	supports	a	push	operation,	and
the	sending	process	invokes	this	operation	to	effectively	flush	the	buffer	of	unsent	bytes.	The	final	trigger	for
transmitting	a	segment	is	that	a	timer	fires;	the	resulting	segment	contains	as	many	bytes	as	are	currently	buffered	for
transmission.	However,	as	we	will	soon	see,	this	"timer"	isn't	exactly	what	you	expect.

Silly	Window	Syndrome

Of	course,	we	can't	just	ignore	flow	control,	which	plays	an	obvious	role	in	throttling	the	sender.	If	the	sender	has		MSS	
bytes	of	data	to	send	and	the	window	is	open	at	least	that	much,	then	the	sender	transmits	a	full	segment.	Suppose,
however,	that	the	sender	is	accumulating	bytes	to	send,	but	the	window	is	currently	closed.	Now	suppose	an	ACK
arrives	that	effectively	opens	the	window	enough	for	the	sender	to	transmit,	say,		MSS/2		bytes.	Should	the	sender
transmit	a	half-full	segment	or	wait	for	the	window	to	open	to	a	full		MSS	?	The	original	specification	was	silent	on	this
point,	and	early	implementations	of	TCP	decided	to	go	ahead	and	transmit	a	half-full	segment.	After	all,	there	is	no
telling	how	long	it	will	be	before	the	window	opens	further.
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It	turns	out	that	the	strategy	of	aggressively	taking	advantage	of	any	available	window	leads	to	a	situation	now	known
as	the	silly	window	syndrome.	Figure	7	helps	visualize	what	happens.	If	you	think	of	a	TCP	stream	as	a	conveyor	belt
with	"full"	containers	(data	segments)	going	in	one	direction	and	empty	containers	(ACKs)	going	in	the	reverse
direction,	then		MSS	-sized	segments	correspond	to	large	containers	and	1-byte	segments	correspond	to	very	small
containers.	As	long	as	the	sender	is	sending		MSS	-sized	segments	and	the	receiver	ACKs	at	least	one		MSS		of	data	at
a	time,	everything	is	good	(Figure	7(a)).	But,	what	if	the	receiver	has	to	reduce	the	window,	so	that	at	some	time	the
sender	can't	send	a	full		MSS		of	data?	If	the	sender	aggressively	fills	a	smaller-than-	MSS		empty	container	as	soon	as	it
arrives,	then	the	receiver	will	ACK	that	smaller	number	of	bytes,	and	hence	the	small	container	introduced	into	the
system	remains	in	the	system	indefinitely.	That	is,	it	is	immediately	filled	and	emptied	at	each	end	and	is	never
coalesced	with	adjacent	containers	to	create	larger	containers,	as	in	Figure	7(b).	This	scenario	was	discovered	when
early	implementations	of	TCP	regularly	found	themselves	filling	the	network	with	tiny	segments.

Figure	7.	Silly	window	syndrome.	(a)	As	long	as	the	sender	sends	MSS-
sized	segments	and	the	receiver	ACKs	one	MSS	at	a	time,	the	system
works	smoothly.	(b)	As	soon	as	the	sender	sends	less	than	one	MSS,	or
the	receiver	ACKs	less	than	one	MSS,	a	small	"container"	enters	the

system	and	continues	to	circulate.

Note	that	the	silly	window	syndrome	is	only	a	problem	when	either	the	sender	transmits	a	small	segment	or	the
receiver	opens	the	window	a	small	amount.	If	neither	of	these	happens,	then	the	small	container	is	never	introduced
into	the	stream.	It's	not	possible	to	outlaw	sending	small	segments;	for	example,	the	application	might	do	a	push	after
sending	a	single	byte.	It	is	possible,	however,	to	keep	the	receiver	from	introducing	a	small	container	(i.e.,	a	small
open	window).	The	rule	is	that	after	advertising	a	zero	window	the	receiver	must	wait	for	space	equal	to	an		MSS	
before	it	advertises	an	open	window.

Since	we	can't	eliminate	the	possibility	of	a	small	container	being	introduced	into	the	stream,	we	also	need
mechanisms	to	coalesce	them.	The	receiver	can	do	this	by	delaying	ACKs—sending	one	combined	ACK	rather	than
multiple	smaller	ones—but	this	is	only	a	partial	solution	because	the	receiver	has	no	way	of	knowing	how	long	it	is
safe	to	delay	waiting	either	for	another	segment	to	arrive	or	for	the	application	to	read	more	data	(thus	opening	the
window).	The	ultimate	solution	falls	to	the	sender,	which	brings	us	back	to	our	original	issue:	When	does	the	TCP
sender	decide	to	transmit	a	segment?

Nagle's	Algorithm

Returning	to	the	TCP	sender,	if	there	is	data	to	send	but	the	window	is	open	less	than		MSS	,	then	we	may	want	to	wait
some	amount	of	time	before	sending	the	available	data,	but	the	question	is	how	long?	If	we	wait	too	long,	then	we	hurt
interactive	applications	like	Telnet.	If	we	don't	wait	long	enough,	then	we	risk	sending	a	bunch	of	tiny	packets	and
falling	into	the	silly	window	syndrome.	The	answer	is	to	introduce	a	timer	and	to	transmit	when	the	timer	expires.
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While	we	could	use	a	clock-based	timer—for	example,	one	that	fires	every	100	ms—Nagle	introduced	an	elegant	self-
clocking	solution.	The	idea	is	that	as	long	as	TCP	has	any	data	in	flight,	the	sender	will	eventually	receive	an	ACK.
This	ACK	can	be	treated	like	a	timer	firing,	triggering	the	transmission	of	more	data.	Nagle's	algorithm	provides	a
simple,	unified	rule	for	deciding	when	to	transmit:

When	the	application	produces	data	to	send
				if	both	the	available	data	and	the	window	>=	MSS
								send	a	full	segment
				else
								if	there	is	unACKed	data	in	flight
												buffer	the	new	data	until	an	ACK	arrives
								else
												send	all	the	new	data	now

In	other	words,	it's	always	OK	to	send	a	full	segment	if	the	window	allows.	It's	also	all	right	to	immediately	send	a
small	amount	of	data	if	there	are	currently	no	segments	in	transit,	but	if	there	is	anything	in	flight	the	sender	must	wait
for	an	ACK	before	transmitting	the	next	segment.	Thus,	an	interactive	application	like	Telnet	that	continually	writes
one	byte	at	a	time	will	send	data	at	a	rate	of	one	segment	per	RTT.	Some	segments	will	contain	a	single	byte,	while
others	will	contain	as	many	bytes	as	the	user	was	able	to	type	in	one	round-trip	time.	Because	some	applications
cannot	afford	such	a	delay	for	each	write	it	does	to	a	TCP	connection,	the	socket	interface	allows	the	application	to
turn	off	Nagel's	algorithm	by	setting	the		TCP_NODELAY		option.	Setting	this	option	means	that	data	is	transmitted	as	soon
as	possible.

Adaptive	Retransmission
Because	TCP	guarantees	the	reliable	delivery	of	data,	it	retransmits	each	segment	if	an	ACK	is	not	received	in	a
certain	period	of	time.	TCP	sets	this	timeout	as	a	function	of	the	RTT	it	expects	between	the	two	ends	of	the
connection.	Unfortunately,	given	the	range	of	possible	RTTs	between	any	pair	of	hosts	in	the	Internet,	as	well	as	the
variation	in	RTT	between	the	same	two	hosts	over	time,	choosing	an	appropriate	timeout	value	is	not	that	easy.	To
address	this	problem,	TCP	uses	an	adaptive	retransmission	mechanism.	We	now	describe	this	mechanism	and	how	it
has	evolved	over	time	as	the	Internet	community	has	gained	more	experience	using	TCP.

Original	Algorithm

We	begin	with	a	simple	algorithm	for	computing	a	timeout	value	between	a	pair	of	hosts.	This	is	the	algorithm	that	was
originally	described	in	the	TCP	specification—and	the	following	description	presents	it	in	those	terms—but	it	could	be
used	by	any	end-to-end	protocol.

The	idea	is	to	keep	a	running	average	of	the	RTT	and	then	to	compute	the	timeout	as	a	function	of	this	RTT.
Specifically,	every	time	TCP	sends	a	data	segment,	it	records	the	time.	When	an	ACK	for	that	segment	arrives,	TCP
reads	the	time	again,	and	then	takes	the	difference	between	these	two	times	as	a		SampleRTT	.	TCP	then	computes	an
	EstimatedRTT		as	a	weighted	average	between	the	previous	estimate	and	this	new	sample.	That	is,

EstimatedRTT	=	alpha	x	EstimatedRTT	+	(1	-	alpha)	x	SampleRTT

The	parameter		alpha		is	selected	to	smooth	the		EstimatedRTT	.	A	small		alpha		tracks	changes	in	the	RTT	but	is
perhaps	too	heavily	influenced	by	temporary	fluctuations.	On	the	other	hand,	a	large		alpha		is	more	stable	but
perhaps	not	quick	enough	to	adapt	to	real	changes.	The	original	TCP	specification	recommended	a	setting	of		alpha	
between	0.8	and	0.9.	TCP	then	uses		EstimatedRTT		to	compute	the	timeout	in	a	rather	conservative	way:

TimeOut	=	2	x	EstimatedRTT
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Karn/Partridge	Algorithm

After	several	years	of	use	on	the	Internet,	a	rather	obvious	flaw	was	discovered	in	this	simple	algorithm.	The	problem
was	that	an	ACK	does	not	really	acknowledge	a	transmission;	it	actually	acknowledges	the	receipt	of	data.	In	other
words,	whenever	a	segment	is	retransmitted	and	then	an	ACK	arrives	at	the	sender,	it	is	impossible	to	determine	if
this	ACK	should	be	associated	with	the	first	or	the	second	transmission	of	the	segment	for	the	purpose	of	measuring
the	sample	RTT.	It	is	necessary	to	know	which	transmission	to	associate	it	with	so	as	to	compute	an	accurate
	SampleRTT	.	As	illustrated	in	Figure	8,	if	you	assume	that	the	ACK	is	for	the	original	transmission	but	it	was	really	for	the
second,	then	the		SampleRTT		is	too	large	(a);	if	you	assume	that	the	ACK	is	for	the	second	transmission	but	it	was
actually	for	the	first,	then	the		SampleRTT		is	too	small	(b).

Figure	8.	Associating	the	ACK	with	(a)	original	transmission	versus	(b)
retransmission.

The	solution,	which	was	proposed	in	1987,	is	surprisingly	simple.	Whenever	TCP	retransmits	a	segment,	it	stops
taking	samples	of	the	RTT;	it	only	measures		SampleRTT		for	segments	that	have	been	sent	only	once.	This	solution	is
known	as	the	Karn/Partridge	algorithm,	after	its	inventors.	Their	proposed	fix	also	includes	a	second	small	change	to
TCP's	timeout	mechanism.	Each	time	TCP	retransmits,	it	sets	the	next	timeout	to	be	twice	the	last	timeout,	rather	than
basing	it	on	the	last		EstimatedRTT	.	That	is,	Karn	and	Partridge	proposed	that	TCP	use	exponential	backoff,	similar	to
what	the	Ethernet	does.	The	motivation	for	using	exponential	backoff	is	simple:	Congestion	is	the	most	likely	cause	of
lost	segments,	meaning	that	the	TCP	source	should	not	react	too	aggressively	to	a	timeout.	In	fact,	the	more	times	the
connection	times	out,	the	more	cautious	the	source	should	become.	We	will	see	this	idea	again,	embodied	in	a	much
more	sophisticated	mechanism,	in	the	next	chapter.

Jacobson/Karels	Algorithm

The	Karn/Partridge	algorithm	was	introduced	at	a	time	when	the	Internet	was	suffering	from	high	levels	of	network
congestion.	Their	approach	was	designed	to	fix	some	of	the	causes	of	that	congestion,	but,	although	it	was	an
improvement,	the	congestion	was	not	eliminated.	The	following	year	(1988),	two	other	researchers—Jacobson	and
Karels—proposed	a	more	drastic	change	to	TCP	to	battle	congestion.	The	bulk	of	that	proposed	change	is	described
in	the	next	chapter.	Here,	we	focus	on	the	aspect	of	that	proposal	that	is	related	to	deciding	when	to	time	out	and
retransmit	a	segment.

As	an	aside,	it	should	be	clear	how	the	timeout	mechanism	is	related	to	congestion—if	you	time	out	too	soon,	you
may	unnecessarily	retransmit	a	segment,	which	only	adds	to	the	load	on	the	network.	The	other	reason	for	needing	an
accurate	timeout	value	is	that	a	timeout	is	taken	to	imply	congestion,	which	triggers	a	congestion-control	mechanism.
Finally,	note	that	there	is	nothing	about	the	Jacobson/Karels	timeout	computation	that	is	specific	to	TCP.	It	could	be
used	by	any	end-to-end	protocol.

The	main	problem	with	the	original	computation	is	that	it	does	not	take	the	variance	of	the	sample	RTTs	into	account.
Intuitively,	if	the	variation	among	samples	is	small,	then	the		EstimatedRTT		can	be	better	trusted	and	there	is	no	reason
for	multiplying	this	estimate	by	2	to	compute	the	timeout.	On	the	other	hand,	a	large	variance	in	the	samples	suggests
that	the	timeout	value	should	not	be	too	tightly	coupled	to	the		EstimatedRTT	.
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In	the	new	approach,	the	sender	measures	a	new		SampleRTT		as	before.	It	then	folds	this	new	sample	into	the	timeout
calculation	as	follows:

Difference	=	SampleRTT	-	EstimatedRTT
EstimatedRTT	=	EstimatedRTT	+	(delta	x	Difference)
Deviation	=	Deviation	+	delta	(|Difference|	-	Deviation)

where		delta		is	a	fraction	between	0	and	1.	That	is,	we	calculate	both	the	mean	RTT	and	the	variation	in	that	mean.

TCP	then	computes	the	timeout	value	as	a	function	of	both		EstimatedRTT		and		Deviation		as	follows:

TimeOut	=	mu	x	EstimatedRTT	+	phi	x	Deviation

where	based	on	experience,		mu		is	typically	set	to	1	and		phi		is	set	to	4.	Thus,	when	the	variance	is	small,		TimeOut		is
close	to		EstimatedRTT	;	a	large	variance	causes	the		Deviation		term	to	dominate	the	calculation.

Implementation

There	are	two	items	of	note	regarding	the	implementation	of	timeouts	in	TCP.	The	first	is	that	it	is	possible	to
implement	the	calculation	for		EstimatedRTT		and		Deviation		without	using	floating-point	arithmetic.	Instead,	the	whole

calculation	is	scaled	by	2 ,	with		delta		selected	to	be	1/2 .	This	allows	us	to	do	integer	arithmetic,	implementing

multiplication	and	division	using	shifts,	thereby	achieving	higher	performance.	The	resulting	calculation	is	given	by	the
following	code	fragment,	where	n=3	(i.e.,		delta	=	1/8	).	Note	that		EstimatedRTT		and		Deviation		are	stored	in	their
scaled-up	forms,	while	the	value	of		SampleRTT		at	the	start	of	the	code	and	of		TimeOut		at	the	end	are	real,	unscaled
values.	If	you	find	the	code	hard	to	follow,	you	might	want	to	try	plugging	some	real	numbers	into	it	and	verifying	that	it
gives	the	same	results	as	the	equations	above.

{
				SampleRTT	-=	(EstimatedRTT	>>	3);
				EstimatedRTT	+=	SampleRTT;
				if	(SampleRTT	<	0)
								SampleRTT	=	-SampleRTT;
				SampleRTT	-=	(Deviation	>>	3);
				Deviation	+=	SampleRTT;
				TimeOut	=	(EstimatedRTT	>>	3)	+	(Deviation	>>	1);
}

The	second	point	of	note	is	that	the	Jacobson/Karels	algorithm	is	only	as	good	as	the	clock	used	to	read	the	current
time.	On	typical	Unix	implementations	at	the	time,	the	clock	granularity	was	as	large	as	500	ms,	which	is	significantly
larger	than	the	average	cross-country	RTT	of	somewhere	between	100	and	200	ms.	To	make	matters	worse,	the	Unix
implementation	of	TCP	only	checked	to	see	if	a	timeout	should	happen	every	time	this	500-ms	clock	ticked	and	would
only	take	a	sample	of	the	round-trip	time	once	per	RTT.	The	combination	of	these	two	factors	could	mean	that	a
timeout	would	happen	1	second	after	the	segment	was	transmitted.	Once	again,	the	extensions	to	TCP	include	a
mechanism	that	makes	this	RTT	calculation	a	bit	more	precise.

All	of	the	retransmission	algorithms	we	have	discussed	are	based	on	acknowledgment	timeouts,	which	indicate	that	a
segment	has	probably	been	lost.	Note	that	a	timeout	does	not,	however,	tell	the	sender	whether	any	segments	it	sent
after	the	lost	segment	were	successfully	received.	This	is	because	TCP	acknowledgments	are	cumulative;	they
identify	only	the	last	segment	that	was	received	without	any	preceding	gaps.	The	reception	of	segments	that	occur
after	a	gap	grows	more	frequent	as	faster	networks	lead	to	larger	windows.	If	ACKs	also	told	the	sender	which
subsequent	segments,	if	any,	had	been	received,	then	the	sender	could	be	more	intelligent	about	which	segments	it
retransmits,	draw	better	conclusions	about	the	state	of	congestion,	and	make	better	RTT	estimates.	A	TCP	extension
supporting	this	is	described	in	a	later	section.
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5.2	Reliable	Byte	Stream	(TCP)

225



Record	Boundaries

Since	TCP	is	a	byte-stream	protocol,	the	number	of	bytes	written	by	the	sender	are	not	necessarily	the	same	as	the
number	of	bytes	read	by	the	receiver.	For	example,	the	application	might	write	8	bytes,	then	2	bytes,	then	20	bytes	to
a	TCP	connection,	while	on	the	receiving	side	the	application	reads	5	bytes	at	a	time	inside	a	loop	that	iterates	6
times.	TCP	does	not	interject	record	boundaries	between	the	8th	and	9th	bytes,	nor	between	the	10th	and	11th	bytes.
This	is	in	contrast	to	a	message-oriented	protocol,	such	as	UDP,	in	which	the	message	that	is	sent	is	exactly	the
same	length	as	the	message	that	is	received.

Even	though	TCP	is	a	byte-stream	protocol,	it	has	two	different	features	that	can	be	used	by	the	sender	to	insert
record	boundaries	into	this	byte	stream,	thereby	informing	the	receiver	how	to	break	the	stream	of	bytes	into	records.
(Being	able	to	mark	record	boundaries	is	useful,	for	example,	in	many	database	applications.)	Both	of	these	features
were	originally	included	in	TCP	for	completely	different	reasons;	they	have	only	come	to	be	used	for	this	purpose	over
time.

The	first	mechanism	is	the	urgent	data	feature,	as	implemented	by	the		URG		flag	and	the		UrgPtr		field	in	the	TCP
header.	Originally,	the	urgent	data	mechanism	was	designed	to	allow	the	sending	application	to	send	out-of-band	data
to	its	peer.	By	"out	of	band"	we	mean	data	that	is	separate	from	the	normal	flow	of	data	(e.g.,	a	command	to	interrupt
an	operation	already	under	way).	This	out-of-band	data	was	identified	in	the	segment	using	the		UrgPtr		field	and	was
to	be	delivered	to	the	receiving	process	as	soon	as	it	arrived,	even	if	that	meant	delivering	it	before	data	with	an
earlier	sequence	number.	Over	time,	however,	this	feature	has	not	been	used,	so	instead	of	signifying	"urgent"	data,	it
has	come	to	be	used	to	signify	"special"	data,	such	as	a	record	marker.	This	use	has	developed	because,	as	with	the
push	operation,	TCP	on	the	receiving	side	must	inform	the	application	that	urgent	data	has	arrived.	That	is,	the	urgent
data	in	itself	is	not	important.	It	is	the	fact	that	the	sending	process	can	effectively	send	a	signal	to	the	receiver	that	is
important.

The	second	mechanism	for	inserting	end-of-record	markers	into	a	byte	is	the	push	operation.	Originally,	this
mechanism	was	designed	to	allow	the	sending	process	to	tell	TCP	that	it	should	send	(flush)	whatever	bytes	it	had
collected	to	its	peer.	The	push	operation	can	be	used	to	implement	record	boundaries	because	the	specification	says
that	TCP	must	send	whatever	data	it	has	buffered	at	the	source	when	the	application	says	push,	and,	optionally,	TCP
at	the	destination	notifies	the	application	whenever	an	incoming	segment	has	the	PUSH	flag	set.	If	the	receiving	side
supports	this	option	(the	socket	interface	does	not),	then	the	push	operation	can	be	used	to	break	the	TCP	stream	into
records.

Of	course,	the	application	program	is	always	free	to	insert	record	boundaries	without	any	assistance	from	TCP.	For
example,	it	can	send	a	field	that	indicates	the	length	of	a	record	that	is	to	follow,	or	it	can	insert	its	own	record
boundary	markers	into	the	data	stream.

TCP	Extensions

We	have	mentioned	at	four	different	points	in	this	section	that	there	are	now	extensions	to	TCP	that	help	to	mitigate
some	problem	that	TCP	faced	as	the	underlying	network	got	faster.	These	extensions	are	designed	to	have	as	small
an	impact	on	TCP	as	possible.	In	particular,	they	are	realized	as	options	that	can	be	added	to	the	TCP	header.	(We
glossed	over	this	point	earlier,	but	the	reason	why	the	TCP	header	has	a		HdrLen		field	is	that	the	header	can	be	of
variable	length;	the	variable	part	of	the	TCP	header	contains	the	options	that	have	been	added.)	The	significance	of
adding	these	extensions	as	options	rather	than	changing	the	core	of	the	TCP	header	is	that	hosts	can	still
communicate	using	TCP	even	if	they	do	not	implement	the	options.	Hosts	that	do	implement	the	optional	extensions,
however,	can	take	advantage	of	them.	The	two	sides	agree	that	they	will	use	the	options	during	TCP's	connection
establishment	phase.
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The	first	extension	helps	to	improve	TCP's	timeout	mechanism.	Instead	of	measuring	the	RTT	using	a	coarse-grained
event,	TCP	can	read	the	actual	system	clock	when	it	is	about	to	send	a	segment,	and	put	this	time—think	of	it	as	a
32-bit	timestamp—in	the	segment's	header.	The	receiver	then	echoes	this	timestamp	back	to	the	sender	in	its
acknowledgment,	and	the	sender	subtracts	this	timestamp	from	the	current	time	to	measure	the	RTT.	In	essence,	the
timestamp	option	provides	a	convenient	place	for	TCP	to	store	the	record	of	when	a	segment	was	transmitted;	it
stores	the	time	in	the	segment	itself.	Note	that	the	endpoints	in	the	connection	do	not	need	synchronized	clocks,	since
the	timestamp	is	written	and	read	at	the	same	end	of	the	connection.

The	second	extension	addresses	the	problem	of	TCP's	32-bit		SequenceNum		field	wrapping	around	too	soon	on	a	high-
speed	network.	Rather	than	define	a	new	64-bit	sequence	number	field,	TCP	uses	the	32-bit	timestamp	just	described
to	effectively	extend	the	sequence	number	space.	In	other	words,	TCP	decides	whether	to	accept	or	reject	a	segment
based	on	a	64-bit	identifier	that	has	the		SequenceNum		field	in	the	low-order	32	bits	and	the	timestamp	in	the	high-order
32	bits.	Since	the	timestamp	is	always	increasing,	it	serves	to	distinguish	between	two	different	incarnations	of	the
same	sequence	number.	Note	that	the	timestamp	is	being	used	in	this	setting	only	to	protect	against	wraparound;	it	is
not	treated	as	part	of	the	sequence	number	for	the	purpose	of	ordering	or	acknowledging	data.

The	third	extension	allows	TCP	to	advertise	a	larger	window,	thereby	allowing	it	to	fill	larger	delay	×	bandwidth	pipes
that	are	made	possible	by	high-speed	networks.	This	extension	involves	an	option	that	defines	a	scaling	factor	for	the
advertised	window.	That	is,	rather	than	interpreting	the	number	that	appears	in	the		AdvertisedWindow		field	as	indicating
how	many	bytes	the	sender	is	allowed	to	have	unacknowledged,	this	option	allows	the	two	sides	of	TCP	to	agree	that
the		AdvertisedWindow		field	counts	larger	chunks	(e.g.,	how	many	16-byte	units	of	data	the	sender	can	have
unacknowledged).	In	other	words,	the	window	scaling	option	specifies	how	many	bits	each	side	should	left-shift	the
	AdvertisedWindow		field	before	using	its	contents	to	compute	an	effective	window.

The	fourth	extension	allows	TCP	to	augment	its	cumulative	acknowledgment	with	selective	acknowledgments	of	any
additional	segments	that	have	been	received	but	aren't	contiguous	with	all	previously	received	segments.	This	is	the
selective	acknowledgment,	or	SACK,	option.	When	the	SACK	option	is	used,	the	receiver	continues	to	acknowledge
segments	normally—the	meaning	of	the		Acknowledge		field	does	not	change—but	it	also	uses	optional	fields	in	the
header	to	acknowledge	any	additional	blocks	of	received	data.	This	allows	the	sender	to	retransmit	just	the	segments
that	are	missing	according	to	the	selective	acknowledgment.

Without	SACK,	there	are	only	two	reasonable	strategies	for	a	sender.	The	pessimistic	strategy	responds	to	a	timeout
by	retransmitting	not	just	the	segment	that	timed	out,	but	any	segments	transmitted	subsequently.	In	effect,	the
pessimistic	strategy	assumes	the	worst:	that	all	those	segments	were	lost.	The	disadvantage	of	the	pessimistic
strategy	is	that	it	may	unnecessarily	retransmit	segments	that	were	successfully	received	the	first	time.	The	other
strategy	is	the	optimistic	strategy,	which	responds	to	a	timeout	by	retransmitting	only	the	segment	that	timed	out.	In
effect,	the	optimistic	approach	assumes	the	rosiest	scenario:	that	only	the	one	segment	has	been	lost.	The
disadvantage	of	the	optimistic	strategy	is	that	it	is	very	slow,	unnecessarily,	when	a	series	of	consecutive	segments
has	been	lost,	as	might	happen	when	there	is	congestion.	It	is	slow	because	each	segment's	loss	is	not	discovered
until	the	sender	receives	an	ACK	for	its	retransmission	of	the	previous	segment.	So	it	consumes	one	RTT	per
segment	until	it	has	retransmitted	all	the	segments	in	the	lost	series.	With	the	SACK	option,	a	better	strategy	is
available	to	the	sender:	retransmit	just	the	segments	that	fill	the	gaps	between	the	segments	that	have	been
selectively	acknowledged.

These	extensions,	by	the	way,	are	not	the	full	story.	We'll	see	some	more	extensions	in	the	next	chapter	when	we	look
at	how	TCP	handles	congestion.	The	Internet	Assigned	Numbers	Authority	(IANA)	keeps	track	of	all	the	options	that
are	defined	for	TCP	(and	for	many	other	Internet	protocols).	See	the	references	at	the	end	of	the	chapter	for	a	link	to
IANA's	protocol	number	registry.

Performance

5.2	Reliable	Byte	Stream	(TCP)

227



Recall	that	Chapter	1	introduced	the	two	quantitative	metrics	by	which	network	performance	is	evaluated:	latency	and
throughput.	As	mentioned	in	that	discussion,	these	metrics	are	influenced	not	only	by	the	underlying	hardware	(e.g.,
propagation	delay	and	link	bandwidth)	but	also	by	software	overheads.	Now	that	we	have	a	complete	software-based
protocol	graph	available	to	us	that	includes	alternative	transport	protocols,	we	can	discuss	how	to	meaningfully
measure	its	performance.	The	importance	of	such	measurements	is	that	they	represent	the	performance	seen	by
application	programs.

Figure	9.	Measured	system:	Two	Linux	workstations	and	a	pair	of	Gbps
Ethernet	links.

We	begin,	as	any	report	of	experimental	results	should,	by	describing	our	experimental	method.	This	includes	the
apparatus	used	in	the	experiments;	in	this	case,	each	workstation	has	a	pair	of	dual	CPU	2.4-GHz	Xeon	processors
running	Linux.	In	order	to	enable	speeds	above	1	Gbps,	a	pair	of	Ethernet	adaptors	(labeled	NIC,	for	network	interface
card)	are	used	on	each	machine.	The	Ethernet	spans	a	single	machine	room	so	propagation	is	not	an	issue,	making
this	a	measure	of	processor/software	overheads.	A	test	program	running	on	top	of	the	socket	interface	simply	tries	to
transfer	data	as	quickly	as	possible	from	one	machine	to	the	other.	Figure	9	illustrates	the	setup.

You	may	notice	that	this	experimental	setup	is	not	especially	bleeding	edge	in	terms	of	the	hardware	or	link	speed.
The	point	of	this	section	is	not	to	show	how	fast	a	particular	protocol	can	run,	but	to	illustrate	the	general	methodology
for	measuring	and	reporting	protocol	performance.

The	throughput	test	is	performed	for	a	variety	of	message	sizes	using	a	standard	benchmarking	tool	called	TTCP.	The
results	of	the	throughput	test	are	given	in	Figure	10.	The	key	thing	to	notice	in	this	graph	is	that	throughput	improves
as	the	messages	get	larger.	This	makes	sense—each	message	involves	a	certain	amount	of	overhead,	so	a	larger
message	means	that	this	overhead	is	amortized	over	more	bytes.	The	throughput	curve	flattens	off	above	1	KB,	at
which	point	the	per-message	overhead	becomes	insignificant	when	compared	to	the	large	number	of	bytes	that	the
protocol	stack	has	to	process.
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Figure	10.	Measured	throughput	using	TCP,	for	various	message	sizes.

It's	worth	noting	that	the	maximum	throughput	is	less	than	2	Gbps,	the	available	link	speed	in	this	setup.	Further
testing	and	analysis	of	results	would	be	needed	to	figure	out	where	the	bottleneck	is	(or	if	there	is	more	than	one).	For
example,	looking	at	CPU	load	might	give	an	indication	of	whether	the	CPU	is	the	bottleneck	or	whether	memory
bandwidth,	adaptor	performance,	or	some	other	issue	is	to	blame.

We	also	note	that	the	network	in	this	test	is	basically	"perfect."	It	has	almost	no	delay	or	loss,	so	the	only	factors
affecting	performance	are	the	TCP	implementation	and	the	workstation	hardware	and	software.	By	contrast,	most	of
the	time	we	deal	with	networks	that	are	far	from	perfect,	notably	our	bandwidth-constrained,	last-mile	links	and	loss-
prone	wireless	links.	Before	we	can	fully	appreciate	how	these	links	affect	TCP	performance,	we	need	to	understand
how	TCP	deals	with	congestion,	which	is	the	topic	of	the	next	chapter.

At	various	times	in	the	history	of	networking,	the	steadily	increasing	speed	of	network	links	has	threatened	to	run
ahead	of	what	could	be	delivered	to	applications.	For	example,	a	large	research	effort	was	begun	in	the	United	States
in	1989	to	build	"gigabit	networks,"	where	the	goal	was	not	only	to	build	links	and	switches	that	could	run	at	1Gbps	or
higher	but	also	to	deliver	that	throughput	all	the	way	to	a	single	application	process.	There	were	some	real	problems
(e.g.,	network	adaptors,	workstation	architectures,	and	operating	systems	all	had	to	be	designed	with	network-to-
application	throughput	in	mind)	and	also	some	perceived	problems	that	turned	out	to	be	not	so	serious.	High	on	the
list	of	such	problems	was	the	concern	that	existing	transport	protocols,	TCP	in	particular,	might	not	be	up	to	the
challenge	of	gigabit	operation.

As	it	turns	out,	TCP	has	done	well	keeping	up	with	the	increasing	demands	of	high-speed	networks	and	applications.
One	of	the	most	important	factors	was	the	introduction	of	window	scaling	to	deal	with	larger	bandwidth-delay	products.
However,	there	is	often	a	big	difference	between	the	theoretical	performance	of	TCP	and	what	is	achieved	in	practice.
Relatively	simple	problems	like	copying	the	data	more	times	than	necessary	as	it	passes	from	network	adaptor	to
application	can	drive	down	performance,	as	can	insufficient	buffer	memory	when	the	bandwidth-delay	product	is	large.
And	the	dynamics	of	TCP	are	complex	enough	(as	will	become	even	more	apparent	in	the	next	chapter)	that	subtle
interactions	among	network	behavior,	application	behavior,	and	the	TCP	protocol	itself	can	dramatically	alter
performance.

For	our	purposes,	it's	worth	noting	that	TCP	continues	to	perform	very	well	as	network	speeds	increase,	and	when	it
runs	up	against	some	limit	(normally	related	to	congestion,	increasing	bandwidth-delay	products,	or	both),	researchers
rush	in	to	find	solutions.	We've	seen	some	of	those	in	this	chapter,	and	we'll	see	some	more	in	the	next.
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Alternative	Design	Choices

Although	TCP	has	proven	to	be	a	robust	protocol	that	satisfies	the	needs	of	a	wide	range	of	applications,	the	design
space	for	transport	protocols	is	quite	large.	TCP	is	by	no	means	the	only	valid	point	in	that	design	space.	We	conclude
our	discussion	of	TCP	by	considering	alternative	design	choices.	While	we	offer	an	explanation	for	why	TCP's
designers	made	the	choices	they	did,	we	observe	that	other	protocols	exist	that	have	made	other	choices,	and	more
such	protocols	may	appear	in	the	future.

First,	we	have	suggested	from	the	very	first	chapter	of	this	book	that	there	are	at	least	two	interesting	classes	of
transport	protocols:	stream-oriented	protocols	like	TCP	and	request/reply	protocols	like	RPC.	In	other	words,	we	have
implicitly	divided	the	design	space	in	half	and	placed	TCP	squarely	in	the	stream-oriented	half	of	the	world.	We	could
further	divide	the	stream-oriented	protocols	into	two	groups—reliable	and	unreliable—with	the	former	containing	TCP
and	the	latter	being	more	suitable	for	interactive	video	applications	that	would	rather	drop	a	frame	than	incur	the	delay
associated	with	a	retransmission.

This	exercise	in	building	a	transport	protocol	taxonomy	is	interesting	and	could	be	continued	in	greater	and	greater
detail,	but	the	world	isn't	as	black	and	white	as	we	might	like.	Consider	the	suitability	of	TCP	as	a	transport	protocol	for
request/reply	applications,	for	example.	TCP	is	a	full-duplex	protocol,	so	it	would	be	easy	to	open	a	TCP	connection
between	the	client	and	server,	send	the	request	message	in	one	direction,	and	send	the	reply	message	in	the	other
direction.	There	are	two	complications,	however.	The	first	is	that	TCP	is	a	byte-oriented	protocol	rather	than	a
message-oriented	protocol,	and	request/reply	applications	always	deal	with	messages.	(We	explore	the	issue	of	bytes
versus	messages	in	greater	detail	in	a	moment.)	The	second	complication	is	that	in	those	situations	where	both	the
request	message	and	the	reply	message	fit	in	a	single	network	packet,	a	well-designed	request/reply	protocol	needs
only	two	packets	to	implement	the	exchange,	whereas	TCP	would	need	at	least	nine:	three	to	establish	the
connection,	two	for	the	message	exchange,	and	four	to	tear	down	the	connection.	Of	course,	if	the	request	or	reply
messages	are	large	enough	to	require	multiple	network	packets	(e.g.,	it	might	take	100	packets	to	send	a	100,000-
byte	reply	message),	then	the	overhead	of	setting	up	and	tearing	down	the	connection	is	inconsequential.	In	other
words,	it	isn't	always	the	case	that	a	particular	protocol	cannot	support	a	certain	functionality;	it's	sometimes	the	case
that	one	design	is	more	efficient	than	another	under	particular	circumstances.

Second,	as	just	suggested,	you	might	question	why	TCP	chose	to	provide	a	reliable	byte-stream	service	rather	than	a
reliable	message-stream	service;	messages	would	be	the	natural	choice	for	a	database	application	that	wants	to
exchange	records.	There	are	two	answers	to	this	question.	The	first	is	that	a	message-oriented	protocol	must,	by
definition,	establish	an	upper	bound	on	message	sizes.	After	all,	an	infinitely	long	message	is	a	byte	stream.	For	any
message	size	that	a	protocol	selects,	there	will	be	applications	that	want	to	send	larger	messages,	rendering	the
transport	protocol	useless	and	forcing	the	application	to	implement	its	own	transport-like	services.	The	second	reason
is	that,	while	message-oriented	protocols	are	definitely	more	appropriate	for	applications	that	want	to	send	records	to
each	other,	you	can	easily	insert	record	boundaries	into	a	byte	stream	to	implement	this	functionality.

A	third	decision	made	in	the	design	of	TCP	is	that	it	delivers	bytes	in	order	to	the	application.	This	means	that	it	may
hold	onto	bytes	that	were	received	out	of	order	from	the	network,	awaiting	some	missing	bytes	to	fill	a	hole.	This	is
enormously	helpful	for	many	applications	but	turns	out	to	be	quite	unhelpful	if	the	application	is	capable	of	processing
data	out	of	order.	As	a	simple	example,	a	Web	page	containing	multiple	embedded	images	doesn't	need	all	the
images	to	be	delivered	in	order	before	starting	to	display	the	page.	In	fact,	there	is	a	class	of	applications	that	would
prefer	to	handle	out-of-order	data	at	the	application	layer,	in	return	for	getting	data	sooner	when	packets	are	dropped
or	misordered	within	the	network.	The	desire	to	support	such	applications	led	to	the	creation	of	another	IETF	standard
transport	protocol	known	as	the	Stream	Control	Transmission	Protocol	(SCTP).	SCTP	provides	a	partially	ordered
delivery	service,	rather	than	the	strictly	ordered	service	of	TCP.	(SCTP	also	makes	some	other	design	decisions	that
differ	from	TCP,	including	message	orientation	and	support	of	multiple	IP	addresses	for	a	single	session.	See	the
Further	Reading	section	for	more	details.)
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Fourth,	TCP	chose	to	implement	explicit	setup/teardown	phases,	but	this	is	not	required.	In	the	case	of	connection
setup,	it	would	certainly	be	possible	to	send	all	necessary	connection	parameters	along	with	the	first	data	message.
TCP	elected	to	take	a	more	conservative	approach	that	gives	the	receiver	the	opportunity	to	reject	the	connection
before	any	data	arrives.	In	the	case	of	teardown,	we	could	quietly	close	a	connection	that	has	been	inactive	for	a	long
period	of	time,	but	this	would	complicate	applications	like	Telnet	that	want	to	keep	a	connection	alive	for	weeks	at	a
time;	such	applications	would	be	forced	to	send	out-of-band	"keep	alive"	messages	to	keep	the	connection	state	at
the	other	end	from	disappearing.

Finally,	TCP	is	a	window-based	protocol,	but	this	is	not	the	only	possibility.	The	alternative	is	a	rate-based	design,	in
which	the	receiver	tells	the	sender	the	rate—expressed	in	either	bytes	or	packets	per	second—at	which	it	is	willing	to
accept	incoming	data.	For	example,	the	receiver	might	inform	the	sender	that	it	can	accommodate	100	packets	a
second.	There	is	an	interesting	duality	between	windows	and	rate,	since	the	number	of	packets	(bytes)	in	the	window,
divided	by	the	RTT,	is	exactly	the	rate.	For	example,	a	window	size	of	10	packets	and	a	100-ms	RTT	implies	that	the
sender	is	allowed	to	transmit	at	a	rate	of	100	packets	a	second.	It	is	by	increasing	or	decreasing	the	advertised
window	size	that	the	receiver	is	effectively	raising	or	lowering	the	rate	at	which	the	sender	can	transmit.	In	TCP,	this
information	is	fed	back	to	the	sender	in	the		AdvertisedWindow		field	of	the	ACK	for	every	segment.	One	of	the	key	issues
in	a	rate-based	protocol	is	how	often	the	desired	rate—which	may	change	over	time—is	relayed	back	to	the	source:	Is
it	for	every	packet,	once	per	RTT,	or	only	when	the	rate	changes?	While	we	have	just	now	considered	window	versus
rate	in	the	context	of	flow	control,	it	is	an	even	more	hotly	contested	issue	in	the	context	of	congestion	control,	which
we	will	discuss	in	the	next	chapter.

5.2	Reliable	Byte	Stream	(TCP)

231



5.3	Remote	Procedure	Call

A	common	pattern	of	communication	used	by	application	programs	structured	as	a	client/server	pair	is	the
request/reply	message	transaction:	A	client	sends	a	request	message	to	a	server,	and	the	server	responds	with	a
reply	message,	with	the	client	blocking	(suspending	execution)	to	wait	for	the	reply.	Figure	1	illustrates	the	basic
interaction	between	the	client	and	server	in	such	an	exchange.

Figure	1.	Timeline	for	RPC.

A	transport	protocol	that	supports	the	request/reply	paradigm	is	much	more	than	a	UDP	message	going	in	one
direction	followed	by	a	UDP	message	going	in	the	other	direction.	It	needs	to	deal	with	correctly	identifying	processes
on	remote	hosts	and	correlating	requests	with	responses.	It	may	also	need	to	overcome	some	or	all	of	the	limitations
of	the	underlying	network	outlined	in	the	problem	statement	at	the	beginning	of	this	chapter.	While	TCP	overcomes
these	limitations	by	providing	a	reliable	byte-stream	service,	it	doesn't	perfectly	match	the	request/reply	paradigm
either.	This	section	describes	a	third	category	of	transport	protocol,	called	Remote	Procedure	Call	(RPC),	that	more
closely	matches	the	needs	of	an	application	involved	in	a	request/reply	message	exchange.

RPC	Fundamentals
RPC	is	not	technically	a	protocol—it	is	better	thought	of	as	a	general	mechanism	for	structuring	distributed	systems.
RPC	is	popular	because	it	is	based	on	the	semantics	of	a	local	procedure	call—the	application	program	makes	a	call
into	a	procedure	without	regard	for	whether	it	is	local	or	remote	and	blocks	until	the	call	returns.	An	application
developer	can	be	largely	unaware	of	whether	the	procedure	is	local	or	remote,	simplifying	his	task	considerably.	When
the	procedures	being	called	are	actually	methods	of	remote	objects	in	an	object-oriented	language,	RPC	is	known	as
remote	method	invocation	(RMI).	While	the	RPC	concept	is	simple,	there	are	two	main	problems	that	make	it	more
complicated	than	local	procedure	calls:

The	network	between	the	calling	process	and	the	called	process	has	much	more	complex	properties	than	the
backplane	of	a	computer.	For	example,	it	is	likely	to	limit	message	sizes	and	has	a	tendency	to	lose	and	reorder
messages.

The	computers	on	which	the	calling	and	called	processes	run	may	have	significantly	different	architectures	and
data	representation	formats.

Thus,	a	complete	RPC	mechanism	actually	involves	two	major	components:

1.	 A	protocol	that	manages	the	messages	sent	between	the	client	and	the	server	processes	and	that	deals	with	the
potentially	undesirable	properties	of	the	underlying	network.
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2.	 Programming	language	and	compiler	support	to	package	the	arguments	into	a	request	message	on	the	client
machine	and	then	to	translate	this	message	back	into	the	arguments	on	the	server	machine,	and	likewise	with	the
return	value	(this	piece	of	the	RPC	mechanism	is	usually	called	a	stub	compiler).

Figure	2	schematically	depicts	what	happens	when	a	client	invokes	a	remote	procedure.	First,	the	client	calls	a	local
stub	for	the	procedure,	passing	it	the	arguments	required	by	the	procedure.	This	stub	hides	the	fact	that	the	procedure
is	remote	by	translating	the	arguments	into	a	request	message	and	then	invoking	an	RPC	protocol	to	send	the	request
message	to	the	server	machine.	At	the	server,	the	RPC	protocol	delivers	the	request	message	to	the	server	stub,
which	translates	it	into	the	arguments	to	the	procedure	and	then	calls	the	local	procedure.	After	the	server	procedure
completes,	it	returns	in	a	reply	message	that	it	hands	off	to	the	RPC	protocol	for	transmission	back	to	the	client.	The
RPC	protocol	on	the	client	passes	this	message	up	to	the	client	stub,	which	translates	it	into	a	return	value	that	it
returns	to	the	client	program.

Figure	2.	Complete	RPC	mechanism.

This	section	considers	just	the	protocol-related	aspects	of	an	RPC	mechanism.	That	is,	it	ignores	the	stubs	and
focuses	instead	on	the	RPC	protocol,	sometimes	referred	to	as	a	request/reply	protocol,	that	transmits	messages
between	client	and	server.	The	transformation	of	arguments	into	messages	and	vice	versa	is	covered	elsewhere.	It	is
also	important	to	keep	in	mind	that	the	client	and	server	programs	are	written	in	some	programming	language,
meaning	that	a	given	RPC	mechanism	might	support	Python	stubs,	Java	stubs,	GoLang	stubs,	and	so	on,	each	of
which	includes	language-specific	idioms	for	how	procedures	are	invoked.

The	term	RPC	refers	to	a	type	of	protocol	rather	than	a	specific	standard	like	TCP,	so	specific	RPC	protocols	vary	in
the	functions	they	perform.	And,	unlike	TCP,	which	is	the	dominant	reliable	byte-stream	protocol,	there	is	no	one
dominant	RPC	protocol.	Thus,	in	this	section	we	will	talk	more	about	alternative	design	choices	than	previously.

Identifiers	in	RPC

Two	functions	that	must	be	performed	by	any	RPC	protocol	are:

Provide	a	name	space	for	uniquely	identifying	the	procedure	to	be	called.

Match	each	reply	message	to	the	corresponding	request	message.

The	first	problem	has	some	similarities	to	the	problem	of	identifying	nodes	in	a	network,	something	IP	addresses	do,
for	example).	One	of	the	design	choices	when	identifying	things	is	whether	to	make	this	name	space	flat	or
hierarchical.	A	flat	name	space	would	simply	assign	a	unique,	unstructured	identifier	(e.g.,	an	integer)	to	each
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procedure,	and	this	number	would	be	carried	in	a	single	field	in	an	RPC	request	message.	This	would	require	some
kind	of	central	coordination	to	avoid	assigning	the	same	procedure	number	to	two	different	procedures.	Alternatively,
the	protocol	could	implement	a	hierarchical	name	space,	analogous	to	that	used	for	file	pathnames,	which	requires
only	that	a	file's	"basename"	be	unique	within	its	directory.	This	approach	potentially	simplifies	the	job	of	ensuring
uniqueness	of	procedure	names.	A	hierarchical	name	space	for	RPC	could	be	implemented	by	defining	a	set	of	fields
in	the	request	message	format,	one	for	each	level	of	naming	in,	say,	a	two-	or	three-level	hierarchical	name	space.

The	key	to	matching	a	reply	message	to	the	corresponding	request	is	to	uniquely	identify	request-replies	pairs	using	a
message	ID	field.	A	reply	message	had	its	message	ID	field	set	to	the	same	value	as	the	request	message.	When	the
client	RPC	module	receives	the	reply,	it	uses	the	message	ID	to	search	for	the	corresponding	outstanding	request.	To
make	the	RPC	transaction	appear	like	a	local	procedure	call	to	the	caller,	the	caller	is	blocked	until	the	reply	message
is	received.	When	the	reply	is	received,	the	blocked	caller	is	identified	based	on	the	request	number	in	the	reply,	the
remote	procedure's	return	value	is	obtained	from	the	reply,	and	the	caller	is	unblocked	so	that	it	can	return	with	that
return	value.

One	of	the	recurrent	challenges	in	RPC	is	dealing	with	unexpected	responses,	and	we	see	this	with	message	IDs.	For
example,	consider	the	following	pathological	(but	realistic)	situation.	A	client	machine	sends	a	request	message	with	a
message	ID	of	0,	then	crashes	and	reboots,	and	then	sends	an	unrelated	request	message,	also	with	a	message	ID
of	0.	The	server	may	not	have	been	aware	that	the	client	crashed	and	rebooted	and,	upon	seeing	a	request	message
with	a	message	ID	of	0,	acknowledges	it	and	discards	it	as	a	duplicate.	The	client	never	gets	a	response	to	the
request.

One	way	to	eliminate	this	problem	is	to	use	a	boot	ID.	A	machine's	boot	ID	is	a	number	that	is	incremented	each	time
the	machine	reboots;	this	number	is	read	from	nonvolatile	storage	(e.g.,	a	disk	or	flash	drive),	incremented,	and
written	back	to	the	storage	device	during	the	machine's	start-up	procedure.	This	number	is	then	put	in	every	message
sent	by	that	host.	If	a	message	is	received	with	an	old	message	ID	but	a	new	boot	ID,	it	is	recognized	as	a	new
message.	In	effect,	the	message	ID	and	boot	ID	combine	to	form	a	unique	ID	for	each	transaction.

Overcoming	Network	Limitations

RPC	protocols	often	perform	additional	functions	to	deal	with	the	fact	that	networks	are	not	perfect	channels.	Two
such	functions	are:

Provide	reliable	message	delivery

Support	large	message	sizes	through	fragmentation	and	reassembly

An	RPC	protocol	might	"define	this	problem	away"	by	choosing	to	run	on	top	of	a	reliable	protocol	like	TCP,	but	in
many	cases,	the	RCP	protocol	implements	its	own	reliable	message	delivery	layer	on	top	of	an	unreliable	substrate
(e.g.,	UDP/IP).	Such	an	RPC	protocol	would	likely	implement	reliability	using	acknowledgments	and	timeouts,	similarly
to	TCP.

The	basic	algorithm	is	straightforward,	as	illustrated	by	the	timeline	given	in	Figure	3.	The	client	sends	a	request
message	and	the	server	acknowledges	it.	Then,	after	executing	the	procedure,	the	server	sends	a	reply	message	and
the	client	acknowledges	the	reply.
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Figure	3.	Simple	timeline	for	a	reliable	RPC	protocol.

Either	a	message	carrying	data	(a	request	message	or	a	reply	message)	or	the	ACK	sent	to	acknowledge	that
message	may	be	lost	in	the	network.	To	account	for	this	possibility,	both	client	and	server	save	a	copy	of	each
message	they	send	until	an	ACK	for	it	has	arrived.	Each	side	also	sets	a	RETRANSMIT	timer	and	resends	the
message	should	this	timer	expire.	Both	sides	reset	this	timer	and	try	again	some	agreed-upon	number	of	times	before
giving	up	and	freeing	the	message.

If	an	RPC	client	receives	a	reply	message,	clearly	the	corresponding	request	message	must	have	been	received	by
the	server.	Hence,	the	reply	message	itself	is	an	implicit	acknowledgment,	and	any	additional	acknowledgment	from
the	server	is	not	logically	necessary.	Similarly,	a	request	message	could	implicitly	acknowledge	the	preceding	reply
message—assuming	the	protocol	makes	request-reply	transactions	sequential,	so	that	one	transaction	must	complete
before	the	next	begins.	Unfortunately,	this	sequentiality	would	severely	limit	RPC	performance.

A	way	out	of	this	predicament	is	for	the	RPC	protocol	to	implement	a	channel	abstraction.	Within	a	given	channel,
request/reply	transactions	are	sequential—there	can	be	only	one	transaction	active	on	a	given	channel	at	any	given
time—but	there	can	be	multiple	channels.	Or	said	another	way,	the	channel	abstraction	makes	it	possible	to	multiplex
multiple	RPC	request/reply	transactions	between	a	client/server	pair.

Each	message	includes	a	channel	ID	field	to	indicate	which	channel	the	message	belongs	to.	A	request	message	in	a
given	channel	would	implicitly	acknowledge	the	previous	reply	in	that	channel,	if	it	hadn't	already	been	acknowledged.
An	application	program	can	open	multiple	channels	to	a	server	if	it	wants	to	have	more	than	one	request/reply
transaction	between	them	at	the	same	time	(the	application	would	need	multiple	threads).	As	illustrated	in	Figure	4,
the	reply	message	serves	to	acknowledge	the	request	message,	and	a	subsequent	request	acknowledges	the
preceding	reply.	Note	that	we	saw	a	very	similar	approach—called	concurrent	logical	channels—in	an	earlier	section
as	a	way	to	improve	on	the	performance	of	a	stop-and-wait	reliability	mechanism.

5.3	Remote	Procedure	Call

235



Figure	4.	Timeline	for	a	reliable	RPC	protocol	using	implicit
acknowledgment.

Another	complication	that	RPC	must	address	is	that	the	server	may	take	an	arbitrarily	long	time	to	produce	the	result,
and,	worse	yet,	it	may	crash	before	generating	the	reply.	Keep	in	mind	that	we	are	talking	about	the	period	of	time
after	the	server	has	acknowledged	the	request	but	before	it	has	sent	the	reply.	To	help	the	client	distinguish	between
a	slow	server	and	a	dead	server,	the	RPC's	client	side	can	periodically	send	an	"Are	you	alive?"	message	to	the
server,	and	the	server	side	responds	with	an	ACK.	Alternatively,	the	server	could	send	"I	am	still	alive"	messages	to
the	client	without	the	client	having	first	solicited	them.	The	approach	is	more	scalable	because	it	puts	more	of	the	per-
client	burden	(managing	the	timeout	timer)	on	the	clients.

RPC	reliability	may	include	the	property	known	as	at-most-once	semantics.	This	means	that	for	every	request
message	that	the	client	sends,	at	most	one	copy	of	that	message	is	delivered	to	the	server.	Each	time	the	client	calls
a	remote	procedure,	that	procedure	is	invoked	at	most	one	time	on	the	server	machine.	We	say	"at	most	once"	rather
than	"exactly	once"	because	it	is	always	possible	that	either	the	network	or	the	server	machine	has	failed,	making	it
impossible	to	deliver	even	one	copy	of	the	request	message.

To	implement	at-most-once	semantics,	RPC	on	the	server	side	must	recognize	duplicate	requests	(and	ignore	them),
even	if	it	has	already	successfully	replied	to	the	original	request.	Hence,	it	must	maintain	some	state	information	that
identifies	past	requests.	One	approach	is	to	identify	requests	using	sequence	numbers,	so	a	server	need	only
remember	the	most	recent	sequence	number.	Unfortunately,	this	would	limit	an	RPC	to	one	outstanding	request	(to	a
given	server)	at	a	time,	since	one	request	must	be	completed	before	the	request	with	the	next	sequence	number	can
be	transmitted.	Once	again,	channels	provide	a	solution.	The	server	could	recognize	duplicate	requests	by
remembering	the	current	sequence	number	for	each	channel,	without	limiting	the	client	to	one	request	at	a	time.

As	obvious	as	at-most-once	sounds,	not	all	RPC	protocols	support	this	behavior.	Some	support	a	semantics	that	is
facetiously	called	zero-or-more	semantics;	that	is,	each	invocation	on	a	client	results	in	the	remote	procedure	being
invoked	zero	or	more	times.	It	is	not	difficult	to	understand	how	this	would	cause	problems	for	a	remote	procedure	that
changed	some	local	state	variable	(e.g.,	incremented	a	counter)	or	that	had	some	externally	visible	side	effect	(e.g.,
launched	a	missile)	each	time	it	was	invoked.	On	the	other	hand,	if	the	remote	procedure	being	invoked	is	idempotent
—multiple	invocations	have	the	same	effect	as	just	one—then	the	RPC	mechanism	need	not	support	at-most-once
semantics;	a	simpler	(possibly	faster)	implementation	will	suffice.

As	was	the	case	with	reliability,	the	two	reasons	why	an	RPC	protocol	might	implement	message	fragmentation	and
reassembly	are	that	it	is	not	provided	by	the	underlying	protocol	stack	or	that	it	can	be	implemented	more	efficiently	by
the	RPC	protocol.	Consider	the	case	where	RPC	is	implemented	on	top	of	UDP/IP	and	relies	on	IP	for	fragmentation
and	reassembly.	If	even	one	fragment	of	a	message	fails	to	arrive	within	a	certain	amount	of	time,	IP	discards	the
fragments	that	did	arrive	and	the	message	is	effectively	lost.	Eventually,	the	RPC	protocol	(assuming	it	implements
reliability)	would	time	out	and	retransmit	the	message.	In	contrast,	consider	an	RPC	protocol	that	implements	its	own
fragmentation	and	reassembly	and	aggressively	ACKs	or	NACKs	(negatively	acknowledges)	individual	fragments.
Lost	fragments	would	be	more	quickly	detected	and	retransmitted,	and	only	the	lost	fragments	would	be	retransmitted,
not	the	whole	message.

Synchronous	versus	Asynchronous	Protocols

One	way	to	characterize	a	protocol	is	by	whether	it	is	synchronous	or	asynchronous.	The	precise	meaning	of	these
terms	depends	on	where	in	the	protocol	hierarchy	you	use	them.	At	the	transport	layer,	it	is	most	accurate	to	think	of
them	as	defining	the	extremes	of	a	spectrum	rather	than	as	two	mutually	exclusive	alternatives.	The	key	attribute	of
any	point	along	the	spectrum	is	how	much	the	sending	process	knows	after	the	operation	to	send	a	message	returns.
In	other	words,	if	we	assume	that	an	application	program	invokes	a		send		operation	on	a	transport	protocol,	then
exactly	what	does	the	application	know	about	the	success	of	the	operation	when	the		send		operation	returns?
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At	the	asynchronous	end	of	the	spectrum,	the	application	knows	absolutely	nothing	when		send		returns.	Not	only	does
it	not	know	if	the	message	was	received	by	its	peer,	but	it	doesn't	even	know	for	sure	that	the	message	has
successfully	left	the	local	machine.	At	the	synchronous	end	of	the	spectrum,	the		send		operation	typically	returns	a
reply	message.	That	is,	the	application	not	only	knows	that	the	message	it	sent	was	received	by	its	peer,	but	it	also
knows	that	the	peer	has	returned	an	answer.	Thus,	synchronous	protocols	implement	the	request/reply	abstraction,
while	asynchronous	protocols	are	used	if	the	sender	wants	to	be	able	to	transmit	many	messages	without	having	to
wait	for	a	response.	Using	this	definition,	RPC	protocols	are	usually	synchronous	protocols.

Although	we	have	not	discussed	them	in	this	chapter,	there	are	interesting	points	between	these	two	extremes.	For
example,	the	transport	protocol	might	implement		send		so	that	it	blocks	(does	not	return)	until	the	message	has	been
successfully	received	at	the	remote	machine,	but	returns	before	the	sender's	peer	on	that	machine	has	actually
processed	and	responded	to	it.	This	is	sometimes	called	a	reliable	datagram	protocol.

RPC	Implementations	(SunRPC,	DCE,	gRPC)

We	now	turn	our	discussion	to	some	example	implementations	of	RPC	protocols.	These	will	serve	to	highlight	some	of
the	different	design	decisions	that	protocol	designers	have	made.	Our	first	example	is	SunRPC,	a	widely	used	RPC
protocol	also	known	as	Open	Network	Computing	RPC	(ONC	RPC).	Our	second	example,	which	we	will	refer	to	as
DCE-RPC,	is	part	of	the	Distributed	Computing	Environment	(DCE).	DCE	is	a	set	of	standards	and	software	for
building	distributed	systems	that	was	defined	by	the	Open	Software	Foundation	(OSF),	a	consortium	of	computer
companies	that	originally	included	IBM,	Digital	Equipment	Corporation,	and	Hewlett-Packard;	today,	OSF	goes	by	the
name	The	Open	Group.	Our	third	example	is	gRPC,	a	popular	RPC	mechanism	that	Google	has	open	sourced,	based
on	an	RPC	mechanism	that	they	have	been	using	internally	to	implement	cloud	services	in	their	datacenters.

These	three	examples	represent	interesting	alternative	design	choices	in	the	RPC	solution	space,	but	least	you	think
they	are	the	only	options,	we	describe	three	other	RPC-like	mechanisms	(WSDL,	SOAP,	and	REST)	in	the	context	of
web	services	in	Chapter	9.

SunRPC

SunRPC	became	a	de	facto	standard	thanks	to	its	wide	distribution	with	Sun	workstations	and	the	central	role	it	plays
in	Sun's	popular	Network	File	System	(NFS).	The	IETF	subsequently	adopted	it	as	a	standard	Internet	protocol	under
the	name	ONC	RPC.

SunRPC	can	be	implemented	over	several	different	transport	protocols.	Figure	5	illustrates	the	protocol	graph	when
SunRPC	is	implemented	on	UDP.	As	we	noted	earlier	in	this	section,	a	strict	layerist	might	frown	on	the	idea	of
running	a	transport	protocol	over	a	transport	protocol,	or	argue	that	RPC	must	be	something	other	than	a	transport
protocol	since	it	appears	"above"	the	transport	layer.	Pragmatically,	the	design	decision	to	run	RPC	over	an	existing
transport	layer	makes	quite	a	lot	of	sense,	as	will	be	apparent	in	the	following	discussion.
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Figure	5.	Protocol	graph	for	SunRPC	on	top	of	UDP.

SunRPC	uses	two-tier	identifiers	to	identify	remote	procedures:	a	32-bit	program	number	and	a	32-bit	procedure
number.	(There	is	also	a	32-bit	version	number,	but	we	ignore	that	in	the	following	discussion.)	For	example,	the	NFS
server	has	been	assigned	program	number		x00100003	,	and	within	this	program		getattr		is	procedure		1	,		setattr		is
procedure		2	,		read		is	procedure		6	,		write		is	procedure		8	,	and	so	on.	The	program	number	and	procedure
number	are	transmitted	in	the	SunRPC	request	message's	header,	whose	fields	are	shown	in	Figure	6.	The	server—
which	may	support	several	program	numbers—is	responsible	for	calling	the	specified	procedure	of	the	specified
program.	A	SunRPC	request	really	represents	a	request	to	call	the	specified	program	and	procedure	on	the	particular
machine	to	which	the	request	was	sent,	even	though	the	same	program	number	may	be	implemented	on	other
machines	in	the	same	network.	Thus,	the	address	of	the	server's	machine	(e.g.,	an	IP	address)	is	an	implicit	third	tier
of	the	RPC	address.

Figure	6.	SunRPC	header	formats:	(a)	request;	(b)	reply.
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Different	program	numbers	may	belong	to	different	servers	on	the	same	machine.	These	different	servers	have
different	transport	layer	demux	keys	(e.g.,	UDP	ports),	most	of	which	are	not	well-known	numbers	but	instead	are
assigned	dynamically.	These	demux	keys	are	called	transport	selectors.	How	can	a	SunRPC	client	that	wants	to	talk
to	a	particular	program	determine	which	transport	selector	to	use	to	reach	the	corresponding	server?	The	solution	is	to
assign	a	well-known	address	to	just	one	program	on	the	remote	machine	and	let	that	program	handle	the	task	of
telling	clients	which	transport	selector	to	use	to	reach	any	other	program	on	the	machine.	The	original	version	of	this
SunRPC	program	is	called	the	Port	Mapper,	and	it	supports	only	UDP	and	TCP	as	underlying	protocols.	Its	program
number	is		x00100000	,	and	its	well-known	port	is		111	.	RPCBIND,	which	evolved	from	the	Port	Mapper,	supports
arbitrary	underlying	transport	protocols.	As	each	SunRPC	server	starts,	it	calls	an	RPCBIND	registration	procedure,
on	the	server's	own	home	machine,	to	register	its	transport	selector	and	the	program	numbers	that	it	supports.	A
remote	client	can	then	call	an	RPCBIND	lookup	procedure	to	look	up	the	transport	selector	for	a	particular	program
number.

To	make	this	more	concrete,	consider	an	example	using	the	Port	Mapper	with	UDP.	To	send	a	request	message	to
NFS's		read		procedure,	a	client	first	sends	a	request	message	to	the	Port	Mapper	at	well-known	UDP	port		111	,
asking	that	procedure		3		be	invoked	to	map	program	number		x00100003		to	the	UDP	port	where	the	NFS	program
currently	resides.	The	client	then	sends	a	SunRPC	request	message	with	program	number		x00100003		and	procedure
number		6		to	this	UDP	port,	and	the	SunRPC	module	listening	at	that	port	calls	the	NFS		read		procedure.	The	client
also	caches	the	program-to-port	number	mapping	so	that	it	need	not	go	back	to	the	Port	Mapper	each	time	it	wants	to
talk	to	the	NFS	program.

In	practice,	NFS	is	such	an	important	program	that	it	has	been	given	its	own	well-known	UDP	port,	but	for	the
purposes	of	illustration	we're	pretending	that's	not	the	case.

To	match	up	a	reply	message	with	the	corresponding	request,	so	that	the	result	of	the	RPC	can	be	returned	to	the
correct	caller,	both	request	and	reply	message	headers	include	a		XID		(transaction	ID)	field,	as	in	Figure	6.	A		XID		is
a	unique	transaction	ID	used	only	by	one	request	and	the	corresponding	reply.	After	the	server	has	successfully
replied	to	a	given	request,	it	does	not	remember	the		XID	.	Because	of	this,	SunRPC	cannot	guarantee	at-most-once
semantics.

The	details	of	SunRPC's	semantics	depend	on	the	underlying	transport	protocol.	It	does	not	implement	its	own
reliability,	so	it	is	only	reliable	if	the	underlying	transport	is	reliable.	(Of	course,	any	application	that	runs	over	SunRPC
may	also	choose	to	implement	its	own	reliability	mechanisms	above	the	level	of	SunRPC.)	The	ability	to	send	request
and	reply	messages	that	are	larger	than	the	network	MTU	is	also	dependent	on	the	underlying	transport.	In	other
words,	SunRPC	does	not	make	any	attempt	to	improve	on	the	underlying	transport	when	it	comes	to	reliability	and
message	size.	Since	SunRPC	can	run	over	many	different	transport	protocols,	this	gives	it	considerable	flexibility
without	complicating	the	design	of	the	RPC	protocol	itself.

Returning	to	the	SunRPC	header	format	of	Figure	6,	the	request	message	contains	variable-length		Credentials		and
	Verifier		fields,	both	of	which	are	used	by	the	client	to	authenticate	itself	to	the	server—that	is,	to	give	evidence	that
the	client	has	the	right	to	invoke	the	server.	How	a	client	authenticates	itself	to	a	server	is	a	general	issue	that	must	be
addressed	by	any	protocol	that	wants	to	provide	a	reasonable	level	of	security.	This	topic	is	discussed	in	more	detail
in	another	chapter.

DCE-RPC

DCE-RPC	is	the	RPC	protocol	at	the	core	of	the	DCE	system	and	was	the	basis	of	the	RPC	mechanism	underlying
Microsoft's	DCOM	and	ActiveX.	It	can	be	used	with	the	Network	Data	Representation	(NDR)	stub	compiler	described
in	another	chapter,	but	it	also	serves	as	the	underlying	RPC	protocol	for	the	Common	Object	Request	Broker
Architecture	(CORBA),	which	is	an	industry-wide	standard	for	building	distributed,	object-oriented	systems.

DCE-RPC,	like	SunRPC,	can	be	implemented	on	top	of	several	transport	protocols	including	UDP	and	TCP.	It	is	also
similar	to	SunRPC	in	that	it	defines	a	two-level	addressing	scheme:	the	transport	protocol	demultiplexes	to	the	correct
server,	DCE-RPC	dispatches	to	a	particular	procedure	exported	by	that	server,	and	clients	consult	an	"endpoint
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mapping	service"	(similar	to	SunRPC's	Port	Mapper)	to	learn	how	to	reach	a	particular	server.	Unlike	SunRPC,
however,	DCE-RPC	implements	at-most-once	call	semantics.	(In	truth,	DCE-RPC	supports	multiple	call	semantics,
including	an	idempotent	semantics	similar	to	SunRPC's,	but	at-most-once	is	the	default	behavior.)	There	are	some
other	differences	between	the	two	approaches,	which	we	will	highlight	in	the	following	paragraphs.

Figure	7.	Typical	DCE-RPC	message	exchange.

Figure	7	gives	a	timeline	for	the	typical	exchange	of	messages,	where	each	message	is	labeled	by	its	DCE-RPC	type.
The	client	sends	a		Request		message,	the	server	eventually	replies	with	a		Response		message,	and	the	client
acknowledges	(	Ack	)	the	response.	Instead	of	the	server	acknowledging	the	request	messages,	however,	the	client
periodically	sends	a		Ping		message	to	the	server,	which	responds	with	a		Working		message	to	indicate	that	the	remote
procedure	is	still	in	progress.	If	the	server's	reply	is	received	reasonably	quickly,	no		Ping	s	are	sent.	Although	not
shown	in	the	figure,	other	message	types	are	also	supported.	For	example,	the	client	can	send	a		Quit		message	to
the	server,	asking	it	to	abort	an	earlier	call	that	is	still	in	progress;	the	server	responds	with	a		Quack		(quit
acknowledgment)	message.	Also,	the	server	can	respond	to	a		Request		message	with	a		Reject		message	(indicating
that	a	call	has	been	rejected),	and	it	can	respond	to	a		Ping		message	with	a		Nocall		message	(indicating	that	the
server	has	never	heard	of	the	caller).

Each	request/reply	transaction	in	DCE-RPC	takes	place	in	the	context	of	an	activity.	An	activity	is	a	logical
request/reply	channel	between	a	pair	of	participants.	At	any	given	time,	there	can	be	only	one	message	transaction
active	on	a	given	channel.	Like	the	concurrent	logical	channel	approach	described	above,	the	application	programs
have	to	open	multiple	channels	if	they	want	to	have	more	than	one	request/reply	transaction	between	them	at	the
same	time.	The	activity	to	which	a	message	belongs	is	identified	by	the	message's		ActivityId		field.	A		SequenceNum	
field	then	distinguishes	between	calls	made	as	part	of	the	same	activity;	it	serves	the	same	purpose	as	SunRPC's
	XID		(transaction	id)	field.	Unlike	SunRPC,	DCE-RPC	keeps	track	of	the	last	sequence	number	used	as	part	of	a
particular	activity,	so	as	to	ensure	at-most-once	semantics.	To	distinguish	between	replies	sent	before	and	after	a
server	machine	reboots,	DCE-RPC	uses	a		ServerBoot		field	to	hold	the	machine's	boot	ID.
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Another	design	choice	made	in	DCE-RPC	that	differs	from	SunRPC	is	the	support	of	fragmentation	and	reassembly	in
the	RPC	protocol.	As	noted	above,	even	if	an	underlying	protocol	such	as	IP	provides	fragmentation/reassembly,	a
more	sophisticated	algorithm	implemented	as	part	of	RPC	can	result	in	quicker	recovery	and	reduced	bandwidth
consumption	when	fragments	are	lost.	The		FragmentNum		field	uniquely	identifies	each	fragment	that	makes	up	a	given
request	or	reply	message.	Each	DCE-RPC	fragment	is	assigned	a	unique	fragment	number	(0,	1,	2,	3,	and	so	on).
Both	the	client	and	server	implement	a	selective	acknowledgment	mechanism,	which	works	as	follows.	(We	describe
the	mechanism	in	terms	of	a	client	sending	a	fragmented	request	message	to	the	server;	the	same	mechanism
applies	when	a	server	sends	a	fragment	response	to	the	client.)

First,	each	fragment	that	makes	up	the	request	message	contains	both	a	unique		FragmentNum		and	a	flag	indicating
whether	this	packet	is	a	fragment	of	a	call	(	frag	)	or	the	last	fragment	of	a	call	();	request	messages	that	fit	in	a	single
packet	carry	a	flag.	The	server	knows	it	has	received	the	complete	request	message	when	it	has	the	packet	and	there
are	no	gaps	in	the	fragment	numbers.	Second,	in	response	to	each	arriving	fragment,	the	server	sends	a		Fack	
(fragment	acknowledgment)	message	to	the	client.	This	acknowledgment	identifies	the	highest	fragment	number	that
the	server	has	successfully	received.	In	other	words,	the	acknowledgment	is	cumulative,	much	like	in	TCP.	In
addition,	however,	the	server	selectively	acknowledges	any	higher	fragment	numbers	it	has	received	out	of	order.	It
does	so	with	a	bit	vector	that	identifies	these	out-of-order	fragments	relative	to	the	highest	in-order	fragment	it	has
received.	Finally,	the	client	responds	by	retransmitting	the	missing	fragments.

Figure	8	illustrates	how	this	all	works.	Suppose	the	server	has	successfully	received	fragments	up	through	number	20,
plus	fragments	23,	25,	and	26.	The	server	responds	with	a		Fack		that	identifies	fragment	20	as	the	highest	in-order
fragment,	plus	a	bit-vector	(	SelAck	)	with	the	third	$(23=20+3)$,	fifth	$(25=20+5)$,	and	sixth	$(26=20+6)$	bits	turned
on.	So	as	to	support	an	(almost)	arbitrarily	long	bit	vector,	the	size	of	the	vector	(measured	in	32-bit	words)	is	given	in
the		SelAckLen		field.

Figure	8.	Fragmentation	with	selective	acknowledgments.

Given	DCE-RPC's	support	for	very	large	messages—the		FragmentNum		field	is	16	bits	long,	meaning	it	can	support	64K
fragments—it	is	not	appropriate	for	the	protocol	to	blast	all	the	fragments	that	make	up	a	message	as	fast	as	it	can
since	doing	so	might	overrun	the	receiver.	Instead,	DCE-RPC	implements	a	flow-control	algorithm	that	is	very	similar
to	TCP's.	Specifically,	each		Fack		message	not	only	acknowledges	received	fragments	but	also	informs	the	sender	of
how	many	fragments	it	may	now	send.	This	is	the	purpose	of	the		WindowSize		field	in	Figure	8,	which	serves	exactly
the	same	purpose	as	TCP's		AdvertisedWindow		field	except	it	counts	fragments	rather	than	bytes.	DCE-RPC	also
implements	a	congestion-control	mechanism	that	is	similar	to	TCP's.	Given	the	complexity	of	congestion	control,	it	is
perhaps	not	surprising	that	some	RPC	protocols	avoid	it	by	avoiding	fragmentation.
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In	summary,	designers	have	quite	a	range	of	options	open	to	them	when	designing	an	RPC	protocol.	SunRPC	takes
the	more	minimalist	approach	and	adds	relatively	little	to	the	underlying	transport	beyond	the	essentials	of	locating	the
right	procedure	and	identifying	messages.	DCE-RPC	adds	more	functionality,	with	the	possibility	of	improved
performance	in	some	environments	at	the	cost	of	greater	complexity.

gRPC

Despite	its	origins	in	Google,	gRPC	does	not	stand	for	Google	RPC.	The	"g"	stands	for	something	different	in	each
release.	For	version	1.10	it	stood	for	"glamorous"	and	for	1.18	it	stood	for	"goose".	Googlers	are	wild	and	crazy
people.	Nonetheless,	gRPC	is	popular	because	it	makes	available	to	everyone—as	open	source—a	decade's	worth	of
experience	within	Google	using	RPC	to	build	scalable	cloud	services.

Before	getting	into	the	details,	there	are	some	major	differences	between	gRPC	and	the	other	two	examples	we've
just	covered.	The	biggest	is	that	gRPC	is	designed	for	cloud	services	rather	than	the	simpler	client/server	paradigm
that	preceded	it.	The	difference	is	essentially	an	extra	level	of	indirection.	In	the	client/server	world,	the	client	invokes
a	method	on	a	specific	server	process	running	on	a	specific	server	machine.	One	server	process	is	presumed	to	be
enough	to	serve	calls	from	all	the	client	processes	that	might	call	it.

With	cloud	services,	the	client	invokes	a	method	on	a	service,	which	in	order	to	support	calls	from	arbitrarily	many
clients	at	the	same	time,	is	implemented	by	a	scalable	number	of	server	processes,	each	potentially	running	on	a
different	server	machine.	This	is	where	the	cloud	comes	into	play:	datacenters	make	a	seemingly	infinite	number	of
server	machines	available	to	scale	up	cloud	services.	When	we	use	the	term	"scalable"	we	mean	that	the	number	of
identical	server	processes	you	elect	to	create	depends	on	the	workload	(i.e.,	the	number	of	clients	that	want	service	at
any	given	time)	and	that	number	can	be	adjusted	dynamically	over	time.	One	other	detail	is	that	cloud	services	don't
typically	create	a	new	process,	per	se,	but	rather,	they	launch	a	new	container,	which	is	essentially	a	process
encapsulated	inside	an	isolated	environment	that	includes	all	the	software	packages	the	process	needs	to	run.	Docker
is	today's	canonical	example	of	a	container	platform.

Figure	9.	Using	RPC	to	invoke	a	scalable	cloud	service.

Back	to	the	claim	that	a	service	is	essentially	an	extra	level	of	indirection	layered	on	top	of	a	server,	all	this	means	is
that	the	caller	identifies	the	service	it	wants	to	invoke,	and	a	load	balancer	directs	that	invocation	to	one	of	the	many
available	server	processes	(containers)	that	implement	that	service,	as	shown	in	Figure	9.	The	load	balancer	can	be
implemented	in	different	ways,	including	a	hardware	device,	but	it	is	typically	implemented	by	a	proxy	process	that
runs	in	a	virtual	machine	(also	hosted	in	the	cloud)	rather	than	as	a	physical	appliance.
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There	is	a	set	of	best	practices	for	implementing	the	actual	server	code	that	eventually	responds	to	that	request,	and
some	additional	cloud	machinery	to	create/destroy	containers	and	load	balance	requests	across	those	containers.
Kubernetes	is	today's	canonical	example	of	such	a	container	management	system,	and	the	micro-services
architecture	is	what	we	call	the	best	practices	in	building	services	in	this	cloud	native	manner.	Both	are	interesting
topics,	but	beyond	the	scope	of	this	book.

What	we	are	interested	in	here	is	transport	protocol	at	the	core	of	gRPC.	Here	again,	there	is	a	major	departure	from
the	two	previous	example	protocols,	not	in	terms	of	fundamental	problems	that	need	to	be	addressed,	but	in	terms	of
gRPC's	approach	to	addressing	them.	In	short,	gRPC	"outsources"	many	of	the	problems	to	other	protocols,	leaving
gRPC	to	essentially	package	those	capabilities	in	an	easy-to-use	form.	Let's	look	at	the	details.

First,	gRPC	runs	on	top	of	TCP	instead	of	UDP,	which	means	it	outsources	the	problems	of	connection	management
and	reliably	transmitting	request	and	reply	messages	of	arbitrary	size.	Second,	gRPC	actually	runs	on	top	of	a
secured	version	of	TCP	called	Transport	Layer	Security	(TLS)—a	thin	layer	that	sits	above	TCP	in	the	protocol	stack
—which	means	it	outsources	responsibility	for	securing	the	communication	channel	so	adversaries	can't	eavesdrop	or
hijack	the	message	exchange.	Third,	gRPC	actually,	actually	runs	on	top	of	HTTP/2	(which	is	itself	layered	on	top	of
TCP	and	TLS),	meaning	gRPC	outsources	yet	two	other	problems:	(1)	efficiently	encoding/compressing	binary	data
into	a	message,	(2)	multiplexing	multiple	remote	procedure	calls	onto	a	single	TCP	connection.	In	other	words,	gRPC
encodes	the	identifier	for	the	remote	method	as	a	URI,	the	request	parameters	to	the	remote	method	as	content	in	the
HTTP	message,	and	the	return	value	from	the	remote	method	in	the	HTTP	response.	The	full	gRPC	stack	is	depicted
in	Figure	10,	which	also	includes	the	language-specific	elements.	(One	strength	of	gRPC	is	the	wide	set	of
programming	languages	it	supports,	with	only	a	small	subset	shown	in	Figure	10.)

Figure	10.	gRPC	core	stacked	on	top	of	HTTP,	TLS,	and	TCP	and
supporting	a	collection	of	languages.

We	discuss	TLS	in	Chapter	8	(in	the	context	of	a	broad	range	of	security	topics)	and	HTTP	in	Chapter	9	(in	the
context	of	what	are	traditionally	viewed	as	application	level	protocols).	But	we	find	ourselves	in	an	interesting
dependency	loop:	RPC	is	a	flavor	of	transport	protocol	used	to	implement	distributed	applications,	HTTP	is	an
example	of	an	application-level	protocol,	and	yet	gRPC	runs	on	top	of	HTTP	rather	than	the	other	way	around.

The	short	explanation	is	that	layering	provides	a	convenient	way	for	humans	to	wrap	their	heads	around	complex
systems,	but	what	we're	really	trying	to	do	is	solve	a	set	of	problem	(e.g.,	reliably	transfer	messages	of	arbitrary	size,
identify	senders	and	recipients,	match	requests	messages	with	reply	messages,	and	so	on)	and	the	way	these
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solutions	get	bundled	into	protocols,	and	those	protocols	then	layered	on	top	of	each	other,	is	the	consequence	of
incremental	changes	over	time.	You	could	argue	it's	an	historical	accident.	Had	the	Internet	started	with	an	RPC
mechanism	as	ubiquitous	as	TCP,	HTTP	might	have	been	implemented	on	top	of	it	(as	might	have	almost	all	of	the
other	application-level	protocols	described	in	Chapter	9)	and	Google	would	have	spent	their	time	improving	that
protocol	rather	than	inventing	one	of	their	own	(as	they	and	others	have	been	doing	with	TCP).	What	happened
instead	is	that	the	web	became	the	Internet's	killer	app,	which	meant	that	its	application	protocol	(HTTP)	became
universally	supported	by	the	rest	of	the	Internet's	infrastructure:	Firewalls,	Load	Balancers,	Encryption,	Authentication,
Compression,	and	so	on.	Because	all	of	these	network	elements	have	been	designed	to	work	well	with	HTTP,	HTTP
has	effectively	become	the	Internet's	universal	request/reply	transport	protocol.

Returning	to	the	unique	characteristics	of	gRPC,	the	biggest	value	it	brings	to	the	table	is	to	incorporate	streaming	into
the	RPC	mechanism,	which	is	to	say,	gRPC	supports	four	different	request/reply	patterns:

1.	 Simple	RPC:	The	client	sends	a	single	request	message	and	the	server	responds	with	a	single	reply	message.

2.	 Server	Streaming	RPC:	The	client	sends	a	single	request	message	and	the	server	responds	with	a	stream	of
reply	messages.	The	client	completes	once	it	has	all	the	server’s	responses.

3.	 Client	Streaming	RPC:	The	client	sends	a	stream	of	requests	to	the	server,	and	the	server	sends	back	a	single
response,	typically	(but	not	necessarily)	after	it	has	received	all	the	client’s	requests.

4.	 Bidirectional	Streaming	RPC:	The	call	is	initiated	by	the	client,	but	after	that,	the	client	and	server	can	read	and
write	requests	and	responses	in	any	order;	the	streams	are	completely	independent.

This	extra	freedom	in	how	the	client	and	server	interact	means	the	gRPC	transport	protocol	needs	to	send	additional
metadata	and	control	messages—in	addition	to	the	actual	request	and	reply	messages—between	the	two	peers.
Examples	include		Error		and		Status		codes	(to	indicate	success	or	why	something	failed),		Timeouts		(to	indicate	how
long	a	client	is	willing	to	wait	for	a	response),		PING		(a	keep-alive	notice	to	indicate	that	one	side	or	the	other	is	still
running),		EOS		(end-of-stream	notice	to	indicate	that	there	are	no	more	requests	or	responses),	and		GOAWAY		(a	notice
from	servers	to	clients	to	indicate	that	they	will	no	longer	accept	any	new	streams).	Unlike	many	other	protocols	in	this
book,	where	we	show	the	protocol's	header	format,	the	way	this	control	information	gets	passed	between	the	two
sides	is	largely	dictated	by	the	underlying	transport	protocol,	in	this	case	HTTP/2.	For	example,	as	we'll	see	in	Chapter
9,	HTTP	already	includes	a	set	of	header	fields	and	reply	codes	that	gRPC	takes	advantage	of.

You	may	want	to	peruse	the	HTTP	discussion	in	Chapter	9	before	continuing,	but	the	following	is	fairly
straightforward.	A	simple	RPC	request	(with	no	streaming)	might	include	the	following	HTTP	message	from	the	client
to	the	server:

HEADERS	(flags	=	END_HEADERS)
:method	=	POST
:scheme	=	http
:path	=	/google.pubsub.v2.PublisherService/CreateTopic
:authority	=	pubsub.googleapis.com
grpc-timeout	=	1S
content-type	=	application/grpc+proto
grpc-encoding	=	gzip
authorization	=	Bearer	y235.wef315yfh138vh31hv93hv8h3v
DATA	(flags	=	END_STREAM)
<Length-Prefixed	Message>

leading	to	the	following	response	message	from	the	server	back	to	the	client:

HEADERS	(flags	=	END_HEADERS)
:status	=	200
grpc-encoding	=	gzip
content-type	=	application/grpc+proto
DATA
<Length-Prefixed	Message>
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HEADERS	(flags	=	END_STREAM,	END_HEADERS)
grpc-status	=	0	#	OK
trace-proto-bin	=	jher831yy13JHy3hc

In	this	example,		HEADERS		and		DATA		are	two	standard	HTTP	control	messages,	which	effectively	delineate	between
"the	message's	header"	and	"the	message's	payload."	Specifically,	each	line	following		HEADERS		(but	before		DATA	)	is
an		attribute	=	value		pair	that	makes	up	the	header	(think	of	each	line	as	analogous	to	a	header	field);	those	pairs
that	start	with	colon	(e.g.,		:status	=	200	)	are	part	of	the	HTTP	standard	(e.g.,	status		200		indicates	success);	and
those	pairs	that	do	not	start	with	a	colon	are	gRPC-specific	customizations	(e.g.,		grpc-encoding	=	gzip		indicates	that
the	data	in	the	message	that	follows	has	been	compressed	using		gzip	,	and		grpc-timeout	=	1S		indicates	that	the	client
has	set	a	one	second	timeout).

There	is	one	final	piece	to	explain.	The	header	line

content-type	=	application/grpc+proto

indicates	that	the	message	body	(as	demarcated	by	the		DATA		line)	is	meaningful	only	to	the	application	program	(i.e.,
the	server	method)	that	this	client	is	requesting	service	from.	More	specifically,	the		+proto		string	specifies	that	the
recipient	will	be	able	to	interpret	the	bits	in	the	message	according	to	a	Protocol	Buffer	(abbreviated		proto	)	interface
specification.	Protocol	Buffers	are	gRPC's	way	of	specifying	how	the	parameters	being	passed	to	the	server	are
encoded	into	a	message,	which	is	in	turn	used	to	generate	the	stubs	that	sit	between	the	underlying	RPC	mechanism
and	the	actual	functions	being	called	(see	Figure	2).	This	is	a	topic	we'll	take	up	in	Chapter	7.

Key	Takeaway

The	bottom	line	is	that	complex	mechanisms	like	RPC,	once	packaged	as	a	monolithic	bundle	of	software	(as
with	SunRPC	and	DCE-RPC),	is	nowadays	built	by	assembling	an	assortment	of	smaller	pieces,	each	of	which
solves	a	narrow	problem.	gRPC	is	both	an	example	of	that	approach,	and	a	tool	that	enables	further	adoption	of
the	approach.	The	micro-services	architecture	mentioned	earlier	in	this	subsection	applies	the	"built	from	small
parts"	strategy	to	entire	cloud	applications	(e.g.,	Uber,	Lyft,	Netflix,	Yelp,	Spotify),	where	gRPC	is	often	the
communication	mechanism	used	by	those	small	pieces	to	exchange	messages	with	each	other.
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5.4	Transport	for	Real-Time	(RTP)

In	the	early	days	of	packet	switching,	most	applications	were	concerned	with	the	movement	of	data:	accessing	remote
computing	resources,	transferring	files,	sending	email,	etc.	However,	at	least	as	early	as	1981,	experiments	were
under	way	to	carry	real-time	traffic,	such	as	digitized	voice	samples,	over	packet	networks.	We	call	an	application
"real-time"	when	it	has	strong	requirements	for	the	timely	delivery	of	information.	Voice	over	IP	(VoIP)	is	a	classic
example	of	a	real-time	application	because	you	can't	easily	carry	on	a	conversation	with	someone	if	it	takes	more	than
a	fraction	of	a	second	to	get	a	response.	As	we	will	see	shortly,	real-time	applications	place	some	specific	demands
on	the	transport	protocol	that	are	not	well	met	by	the	protocols	discussed	so	far	in	this	chapter.

Figure	1.	User	interface	of	vat,	an	early	Internet	audioconferencing	tool.

Multimedia	applications—those	that	involve	video,	audio,	and	data—are	sometimes	divided	into	two	classes:
interactive	applications	and	streaming	applications.	An	early	and	at	one	time	popular	example	of	the	interactive	class
was		vat	,	a	multiparty	audioconferencing	tool	that	is	often	used	over	networks	supporting	IP	multicast.	The	control
panel	for	a	typical		vat		conference	is	shown	in	Figure	1.	VoIP	is	also	a	class	of	interactive	application	and	probably
the	most	widely	used	today.	Internet-based	multimedia	conferencing	applications,	like	the	commercial	products
WebEx	and	GoToMeeting	are	another	example.	These	are	the	sort	of	applications	with	the	most	stringent	real-time
requirements.

Even	though	it's	been	overtaken	by	a	plethora	of	commercial	products,	we	use		vat		as	a	running	example	in
this	section	because	it	was	the	application	that	introduced	interactive	real-time	functionality	into	the	Internet	in
the	first	place.

Streaming	applications	typically	deliver	audio	or	video	streams	from	a	server	to	a	client	and	are	typified	by	such
commercial	products	as	Spotify.	Streaming	video,	typified	by	YouTube	and	Netflix,	has	become	one	of	the	dominant
forms	of	traffic	on	the	Internet.	Because	streaming	applications	lack	human-to-human	interaction,	they	place
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somewhat	less	stringent	real-time	requirements	on	the	underlying	protocols.	Timeliness	is	still	important,	however—for
example,	you	want	a	video	to	start	playing	soon	after	pushing	"play,"	and	once	it	starts	to	play,	late	packets	will	either
cause	it	to	stall	or	create	some	sort	of	visual	degradation.	So,	while	streaming	applications	are	not	strictly	real	time,
they	still	have	enough	in	common	with	interactive	multimedia	applications	to	warrant	consideration	of	a	common
protocol	for	both	types	of	application.

It	should	by	now	be	apparent	that	designers	of	a	transport	protocol	for	real-time	and	multimedia	applications	face	a
real	challenge	in	defining	the	requirements	broadly	enough	to	meet	the	needs	of	very	different	applications.	They	must
also	pay	attention	to	the	interactions	among	different	applications,	such	as	the	synchronization	of	audio	and	video
streams.	We	will	see	below	how	these	concerns	affected	the	design	of	the	primary	real-time	transport	protocol	in	use
today,	RTP.

Much	of	RTP	actually	derives	from	protocol	functionality	that	was	originally	embedded	in	the	application	itself.	When
the		vat		application	was	first	developed,	it	ran	over	UDP,	and	the	designers	figured	out	which	features	were	needed
to	handle	the	real-time	nature	of	voice	communication.	Later,	they	realized	that	these	features	could	be	useful	to	many
other	applications	and	defined	a	protocol	with	those	features,	which	became	RTP.	RTP	can	run	over	many	lower-layer
protocols,	but	still	commonly	runs	over	UDP.	That	leads	to	the	protocol	stack	shown	in	Figure	2.	Note	that	we	are
therefore	running	a	transport	protocol	over	a	transport	protocol.	There	is	no	rule	against	that,	and	in	fact	it	makes	a	lot
of	sense,	since	UDP	provides	such	a	minimal	level	of	functionality,	and	the	basic	demultiplexing	based	on	port
numbers	happens	to	be	just	what	RTP	needs	as	a	starting	point.	So,	rather	than	recreate	port	numbers	in	RTP,	RTP
outsources	the	demultiplexing	function	to	UDP.

Figure	2.	Protocol	stack	for	multimedia	applications	using	RTP.

Requirements
The	most	basic	requirement	for	a	general-purpose	multimedia	protocol	is	that	it	allows	similar	applications	to
interoperate	with	each	other.	For	example,	it	should	be	possible	for	two	independently	implemented
audioconferencing	applications	to	talk	to	each	other.	This	immediately	suggests	that	the	applications	had	better	use
the	same	method	of	encoding	and	compressing	voice;	otherwise,	the	data	sent	by	one	party	will	be	incomprehensible
to	the	receiving	party.	Since	there	are	quite	a	few	different	coding	schemes	for	voice,	each	with	its	own	trade-offs
among	quality,	bandwidth	requirements,	and	computational	cost,	it	would	probably	be	a	bad	idea	to	decree	that	only
one	such	scheme	can	be	used.	Instead,	our	protocol	should	provide	a	way	that	a	sender	can	tell	a	receiver	which
coding	scheme	it	wants	to	use,	and	possibly	negotiate	until	a	scheme	that	is	available	to	both	parties	is	identified.

Just	as	with	audio,	there	are	many	different	video	coding	schemes.	Thus,	we	see	that	the	first	common	function	that
RTP	can	provide	is	the	ability	to	communicate	that	choice	of	coding	scheme.	Note	that	this	also	serves	to	identify	the
type	of	application	(e.g.,	audio	or	video);	once	we	know	what	coding	algorithm	is	being	used,	we	know	what	type	of
data	is	being	encoded	as	well.

Another	important	requirement	is	to	enable	the	recipient	of	a	data	stream	to	determine	the	timing	relationship	among
the	received	data.	Real-time	applications	need	to	place	received	data	into	a	playback	buffer	to	smooth	out	the	jitter
that	may	have	been	introduced	into	the	data	stream	during	transmission	across	the	network.	Thus,	some	sort	of

5.4	Transport	for	Real-Time	(RTP)

247



timestamping	of	the	data	will	be	necessary	to	enable	the	receiver	to	play	it	back	at	the	appropriate	time.

Related	to	the	timing	of	a	single	media	stream	is	the	issue	of	synchronization	of	multiple	media	in	a	conference.	The
obvious	example	of	this	would	be	to	synchronize	an	audio	and	video	stream	that	are	originating	from	the	same
sender.	As	we	will	see	below,	this	is	a	slightly	more	complex	problem	than	playback	time	determination	for	a	single
stream.

Another	important	function	to	be	provided	is	an	indication	of	packet	loss.	Note	that	an	application	with	tight	latency
bounds	generally	cannot	use	a	reliable	transport	like	TCP	because	retransmission	of	data	to	correct	for	loss	would
probably	cause	the	packet	to	arrive	too	late	to	be	useful.	Thus,	the	application	must	be	able	to	deal	with	missing
packets,	and	the	first	step	in	dealing	with	them	is	noticing	that	they	are	in	fact	missing.	As	an	example,	a	video
application	using	MPEG	encoding	may	take	different	actions	when	a	packet	is	lost,	depending	on	whether	the	packet
came	from	an	I	frame,	a	B	frame,	or	a	P	frame.

Packet	loss	is	also	a	potential	indicator	of	congestion.	Since	multimedia	applications	generally	do	not	run	over	TCP,
they	also	miss	out	on	the	congestion	avoidance	features	of	TCP.	Yet,	many	multimedia	applications	are	capable	of
responding	to	congestion—for	example,	by	changing	the	parameters	of	the	coding	algorithm	to	reduce	the	bandwidth
consumed.	Clearly,	to	make	this	work,	the	receiver	needs	to	notify	the	sender	that	losses	are	occurring	so	that	the
sender	can	adjust	its	coding	parameters.

Another	common	function	across	multimedia	applications	is	the	concept	of	frame	boundary	indication.	A	frame	in	this
context	is	application	specific.	For	example,	it	may	be	helpful	to	notify	a	video	application	that	a	certain	set	of	packets
correspond	to	a	single	frame.	In	an	audio	application	it	is	helpful	to	mark	the	beginning	of	a	"talkspurt,"	which	is	a
collection	of	sounds	or	words	followed	by	silence.	The	receiver	can	then	identify	the	silences	between	talkspurts	and
use	them	as	opportunities	to	move	the	playback	point.	This	follows	the	observation	that	slight	shortening	or
lengthening	of	the	spaces	between	words	are	not	perceptible	to	users,	whereas	shortening	or	lengthening	the	words
themselves	is	both	perceptible	and	annoying.

A	final	function	that	we	might	want	to	put	into	the	protocol	is	some	way	of	identifying	senders	that	is	more	user-friendly
than	an	IP	address.	As	illustrated	in	Figure	1,	audio	and	video	conferencing	applications	can	display	strings	such	as
on	their	control	panels,	and	thus	the	application	protocol	should	support	the	association	of	such	a	string	with	a	data
stream.

In	addition	to	the	functionality	that	is	required	from	our	protocol,	we	note	an	additional	requirement:	It	should	make
reasonably	efficient	use	of	bandwidth.	Put	another	way,	we	don't	want	to	introduce	a	lot	of	extra	bits	that	need	to	be
sent	with	every	packet	in	the	form	of	a	long	header.	The	reason	for	this	is	that	audio	packets,	which	are	one	of	the
most	common	types	of	multimedia	data,	tend	to	be	small,	so	as	to	reduce	the	time	it	takes	to	fill	them	with	samples.
Long	audio	packets	would	mean	high	latency	due	to	packetization,	which	has	a	negative	effect	on	the	perceived
quality	of	conversations.	(This	was	one	of	the	factors	in	choosing	the	length	of	ATM	cells.)	Since	the	data	packets
themselves	are	short,	a	large	header	would	mean	that	a	relatively	large	amount	of	link	bandwidth	would	be	used	by
headers,	thus	reducing	the	available	capacity	for	"useful"	data.	We	will	see	several	aspects	of	the	design	of	RTP	that
have	been	influenced	by	the	necessity	of	keeping	the	header	short.

You	could	argue	whether	every	single	feature	just	described	really	needs	to	be	in	a	real-time	transport	protocol,	and
you	could	probably	find	some	more	that	could	be	added.	The	key	idea	here	is	to	make	life	easier	for	application
developers	by	giving	them	a	useful	set	of	abstractions	and	building	blocks	for	their	applications.	For	example,	by
putting	a	timestamping	mechanism	into	RTP,	we	save	every	developer	of	a	real-time	application	from	inventing	his
own.	We	also	increase	the	chances	that	two	different	real-time	applications	might	interoperate.

RTP	Design
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Now	that	we	have	seen	the	rather	long	list	of	requirements	for	our	transport	protocol	for	multimedia,	we	turn	to	the
details	of	the	protocol	that	has	been	specified	to	meet	those	requirements.	This	protocol,	RTP,	was	developed	in	the
IETF	and	is	in	widespread	use.	The	RTP	standard	actually	defines	a	pair	of	protocols,	RTP	and	the	Real-time
Transport	Control	Protocol	(RTCP).	The	former	is	used	for	the	exchange	of	multimedia	data,	while	the	latter	is	used	to
periodically	send	control	information	associated	with	a	certain	data	flow.	When	running	over	UDP,	the	RTP	data
stream	and	the	associated	RTCP	control	stream	use	consecutive	transport-layer	ports.	The	RTP	data	uses	an	even
port	number	and	the	RTCP	control	information	uses	the	next	higher	(odd)	port	number.

Because	RTP	is	designed	to	support	a	wide	variety	of	applications,	it	provides	a	flexible	mechanism	by	which	new
applications	can	be	developed	without	repeatedly	revising	the	RTP	protocol	itself.	For	each	class	of	application	(e.g.,
audio),	RTP	defines	a	profile	and	one	or	more	formats.	The	profile	provides	a	range	of	information	that	ensures	a
common	understanding	of	the	fields	in	the	RTP	header	for	that	application	class,	as	will	be	apparent	when	we
examine	the	header	in	detail.	The	format	specification	explains	how	the	data	that	follows	the	RTP	header	is	to	be
interpreted.	For	example,	the	RTP	header	might	just	be	followed	by	a	sequence	of	bytes,	each	of	which	represents	a
single	audio	sample	taken	a	defined	interval	after	the	previous	one.	Alternatively,	the	format	of	the	data	might	be
much	more	complex;	an	MPEG-encoded	video	stream,	for	example,	would	need	to	have	a	good	deal	of	structure	to
represent	all	the	different	types	of	information.

Key	Takeaway

The	design	of	RTP	embodies	an	architectural	principle	known	as	Application	Level	Framing	(ALF).	This
principle	was	put	forward	by	Clark	and	Tennenhouse	in	1990	as	a	new	way	to	design	protocols	for	emerging
multimedia	applications.	They	recognized	that	these	new	applications	were	unlikely	to	be	well	served	by
existing	protocols	such	as	TCP,	and	that	furthermore	they	might	not	be	well	served	by	any	sort	of	"one-size-fits-
all"	protocol.	At	the	heart	of	this	principle	is	the	belief	that	an	application	understands	its	own	needs	best.	For
example,	an	MPEG	video	application	knows	how	best	to	recover	from	lost	frames	and	how	to	react	differently	if
an	I	frame	or	a	B	frame	is	lost.	The	same	application	also	understands	best	how	to	segment	the	data	for
transmission—for	example,	it's	better	to	send	the	data	from	different	frames	in	different	datagrams,	so	that	a
lost	packet	only	corrupts	a	single	frame,	not	two.	It	is	for	this	reason	that	RTP	leaves	so	many	of	the	protocol
details	to	the	profile	and	format	documents	that	are	specific	to	an	application.

Header	Format

Figure	3	shows	the	header	format	used	by	RTP.	The	first	12	bytes	are	always	present,	whereas	the	contributing
source	identifiers	are	only	used	in	certain	circumstances.	After	this	header	there	may	be	optional	header	extensions,
as	described	below.	Finally,	the	header	is	followed	by	the	RTP	payload,	the	format	of	which	is	determined	by	the
application.	The	intention	of	this	header	is	that	it	contain	only	the	fields	that	are	likely	to	be	used	by	many	different
applications,	since	anything	that	is	very	specific	to	a	single	application	would	be	more	efficiently	carried	in	the	RTP
payload	for	that	application	only.

Figure	3.	RTP	header	format.
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The	first	two	bits	are	a	version	identifier,	which	contains	the	value	2	in	the	RTP	version	deployed	at	the	time	of	writing.
You	might	think	that	the	designers	of	the	protocol	were	rather	bold	to	think	that	2	bits	would	be	enough	to	contain	all
future	versions	of	RTP,	but	recall	that	bits	are	at	a	premium	in	the	RTP	header.	Furthermore,	the	use	of	profiles	for
different	applications	makes	it	less	likely	that	many	revisions	to	the	base	RTP	protocol	would	be	needed.	In	any	case,
if	it	turns	out	that	another	version	of	RTP	is	needed	beyond	version	2,	it	would	be	possible	to	consider	a	change	to	the
header	format	so	that	more	than	one	future	version	would	be	possible.	For	example,	a	new	RTP	header	with	the	value
3	in	the	version	field	could	have	a	"subversion"	field	somewhere	else	in	the	header.

The	next	bit	is	the	padding	(	P	)	bit,	which	is	set	in	circumstances	in	which	the	RTP	payload	has	been	padded	for
some	reason.	RTP	data	might	be	padded	to	fill	up	a	block	of	a	certain	size	as	required	by	an	encryption	algorithm,	for
example.	In	such	a	case,	the	complete	length	of	the	RTP	header,	data,	and	padding	would	be	conveyed	by	the	lower-
layer	protocol	header	(e.g.,	the	UDP	header),	and	the	last	byte	of	the	padding	would	contain	a	count	of	how	many
bytes	should	be	ignored.	This	is	illustrated	in	Figure	4.	Note	that	this	approach	to	padding	removes	any	need	for	a
length	field	in	the	RTP	header	(thus	serving	the	goal	of	keeping	the	header	short);	in	the	common	case	of	no	padding,
the	length	is	deduced	from	the	lower-layer	protocol.

Figure	4.	Padding	of	an	RTP	packet.

The	extension	(	X	)	bit	is	used	to	indicate	the	presence	of	an	extension	header,	which	would	be	defined	for	a	specific
application	and	follow	the	main	header.	Such	headers	are	rarely	used,	since	it	is	generally	possible	to	define	a
payload-specific	header	as	part	of	the	payload	format	definition	for	a	particular	application.

The		X		bit	is	followed	by	a	4-bit	field	that	counts	the	number	of	contributing	sources,	if	any	are	included	in	the	header.
Contributing	sources	are	discussed	below.

We	noted	above	the	frequent	need	for	some	sort	of	frame	indication;	this	is	provided	by	the	marker	bit,	which	has	a
profile-specific	use.	For	a	voice	application,	it	could	be	set	at	the	beginning	of	a	talkspurt,	for	example.	The	7-bit
payload	type	field	follows;	it	indicates	what	type	of	multimedia	data	is	carried	in	this	packet.	One	possible	use	of	this
field	would	be	to	enable	an	application	to	switch	from	one	coding	scheme	to	another	based	on	information	about
resource	availability	in	the	network	or	feedback	on	application	quality.	The	exact	usage	of	the	payload	type	is	also
determined	by	the	application	profile.

Note	that	the	payload	type	is	generally	not	used	as	a	demultiplexing	key	to	direct	data	to	different	applications	(or	to
different	streams	within	a	single	application,	such	as	the	audio	and	video	stream	for	a	videoconference).	This	is
because	such	demultiplexing	is	typically	provided	at	a	lower	layer	(e.g.,	by	UDP,	as	described	in	a	previous	section).
Thus,	two	media	streams	using	RTP	would	typically	use	different	UDP	port	numbers.

The	sequence	number	is	used	to	enable	the	receiver	of	an	RTP	stream	to	detect	missing	and	misordered	packets.
The	sender	simply	increments	the	value	by	one	for	each	transmitted	packet.	Note	that	RTP	does	not	do	anything
when	it	detects	a	lost	packet,	in	contrast	to	TCP,	which	both	corrects	for	the	loss	(by	retransmission)	and	interprets
the	loss	as	a	congestion	indication	(which	may	cause	it	to	reduce	its	window	size).	Rather,	it	is	left	to	the	application	to
decide	what	to	do	when	a	packet	is	lost	because	this	decision	is	likely	to	be	highly	application	dependent.	For
example,	a	video	application	might	decide	that	the	best	thing	to	do	when	a	packet	is	lost	is	to	replay	the	last	frame	that
was	correctly	received.	Some	applications	might	also	decide	to	modify	their	coding	algorithms	to	reduce	bandwidth
needs	in	response	to	loss,	but	this	is	not	a	function	of	RTP.	It	would	not	be	sensible	for	RTP	to	decide	that	the	sending
rate	should	be	reduced,	as	this	might	make	the	application	useless.

The	function	of	the	timestamp	field	is	to	enable	the	receiver	to	play	back	samples	at	the	appropriate	intervals	and	to
enable	different	media	streams	to	be	synchronized.	Because	different	applications	may	require	different	granularities
of	timing,	RTP	itself	does	not	specify	the	units	in	which	time	is	measured.	Instead,	the	timestamp	is	just	a	counter	of 
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"ticks,"	where	the	time	between	ticks	is	dependent	on	the	encoding	in	use.	For	example,	an	audio	application	that
samples	data	once	every	125	μs	could	use	that	value	as	its	clock	resolution.	The	clock	granularity	is	one	of	the	details
that	is	specified	in	the	RTP	profile	or	payload	format	for	an	application.

The	timestamp	value	in	the	packet	is	a	number	representing	the	time	at	which	the	first	sample	in	the	packet	was
generated.	The	timestamp	is	not	a	reflection	of	the	time	of	day;	only	the	differences	between	timestamps	are	relevant.
For	example,	if	the	sampling	interval	is	125	μs	and	the	first	sample	in	packet	n+1	was	generated	10	ms	after	the	first
sample	in	packet	n,	then	the	number	of	sampling	instants	between	these	two	samples	is

TimeBetweenPackets	/	TimePerSample

= (10 × 10 )/(125 × 10 ) = 80

Assuming	the	clock	granularity	is	the	same	as	the	sampling	interval,	then	the	timestamp	in	packet	n+1	would	be
greater	than	that	in	packet	n	by	80.	Note	that	fewer	than	80	samples	might	have	been	sent	due	to	compression
techniques	such	as	silence	detection,	and	yet	the	timestamp	allows	the	receiver	to	play	back	the	samples	with	the
correct	temporal	relationship.

The	synchronization	source	(SSRC)	is	a	32-bit	number	that	uniquely	identifies	a	single	source	of	an	RTP	stream.	In	a
given	multimedia	conference,	each	sender	picks	a	random	SSRC	and	is	expected	to	resolve	conflicts	in	the	unlikely
event	that	two	sources	pick	the	same	value.	By	making	the	source	identifier	something	other	than	the	network	or
transport	address	of	the	source,	RTP	ensures	independence	from	the	lower-layer	protocol.	It	also	enables	a	single
node	with	multiple	sources	(e.g.,	several	cameras)	to	distinguish	those	sources.	When	a	single	node	generates
different	media	streams	(e.g.,	audio	and	video),	it	is	not	required	to	use	the	same	SSRC	in	each	stream,	as	there	are
mechanisms	in	RTCP	(described	below)	to	allow	intermedia	synchronization.

The	contributing	source	(CSRC)	is	used	only	when	a	number	of	RTP	streams	pass	through	a	mixer.	A	mixer	can	be
used	to	reduce	the	bandwidth	requirements	for	a	conference	by	receiving	data	from	many	sources	and	sending	it	as	a
single	stream.	For	example,	the	audio	streams	from	several	concurrent	speakers	could	be	decoded	and	recoded	as	a
single	audio	stream.	In	this	case,	the	mixer	lists	itself	as	the	synchronization	source	but	also	lists	the	contributing
sources—the	SSRC	values	of	the	speakers	who	contributed	to	the	packet	in	question.

Control	Protocol
RTCP	provides	a	control	stream	that	is	associated	with	a	data	stream	for	a	multimedia	application.	This	control	stream
provides	three	main	functions:

1.	 Feedback	on	the	performance	of	the	application	and	the	network

2.	 A	way	to	correlate	and	synchronize	different	media	streams	that	have	come	from	the	same	sender

3.	 A	way	to	convey	the	identity	of	a	sender	for	display	on	a	user	interface	(e.g.,	the		vat		interface	shown	in	Figure	1)

The	first	function	may	be	useful	for	detecting	and	responding	to	congestion.	Some	applications	are	able	to	operate	at
different	rates	and	may	use	performance	data	to	decide	to	use	a	more	aggressive	compression	scheme	to	reduce
congestion,	for	example,	or	to	send	a	higher-quality	stream	when	there	is	little	congestion.	Performance	feedback	can
also	be	useful	in	diagnosing	network	problems.

You	might	think	that	the	second	function	is	already	provided	by	the	synchronization	source	ID	(SSRC)	of	RTP,	but	in
fact	it	is	not.	As	already	noted,	multiple	cameras	from	a	single	node	might	have	different	SSRC	values.	Furthermore,
there	is	no	requirement	that	an	audio	and	video	stream	from	the	same	node	use	the	same	SSRC.	Because	collisions
of	SSRC	values	may	occur,	it	may	be	necessary	to	change	the	SSRC	value	of	a	stream.	To	deal	with	this	problem,
RTCP	uses	the	concept	of	a	canonical	name	(CNAME)	that	is	assigned	to	a	sender,	which	is	then	associated	with	the
various	SSRC	values	that	might	be	used	by	that	sender	using	RTCP	mechanisms.

−3 −6
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Simply	correlating	two	streams	is	only	part	of	the	problem	of	intermedia	synchronization.	Because	different	streams
may	have	completely	different	clocks	(with	different	granularities	and	even	different	amounts	of	inaccuracy,	or	drift),
there	needs	to	be	a	way	to	accurately	synchronize	streams	with	each	other.	RTCP	addresses	this	problem	by
conveying	timing	information	that	correlates	actual	time	of	day	with	the	clock-rate-dependent	timestamps	that	are
carried	in	RTP	data	packets.

RTCP	defines	a	number	of	different	packet	types,	including

Sender	reports,	which	enable	active	senders	to	a	session	to	report	transmission	and	reception	statistics

Receiver	reports,	which	receivers	who	are	not	senders	use	to	report	reception	statistics

Source	descriptions,	which	carry	CNAMEs	and	other	sender	description	information

Application-specific	control	packets

These	different	RTCP	packet	types	are	sent	over	the	lower-layer	protocol,	which,	as	we	have	noted,	is	typically	UDP.
Several	RTCP	packets	can	be	packed	into	a	single	PDU	of	the	lower-level	protocol.	It	is	required	that	at	least	two
RTCP	packets	are	sent	in	every	lower-level	PDU:	One	of	these	is	a	report	packet;	the	other	is	a	source	description
packet.	Other	packets	may	be	included	up	to	the	size	limits	imposed	by	the	lower-layer	protocols.

Before	looking	further	at	the	contents	of	an	RTCP	packet,	we	note	that	there	is	a	potential	problem	with	every	member
of	a	multicast	group	sending	periodic	control	traffic.	Unless	we	take	some	steps	to	limit	it,	this	control	traffic	has	the
potential	to	be	a	significant	consumer	of	bandwidth.	In	an	audioconference,	for	example,	no	more	than	two	or	three
senders	are	likely	to	send	audio	data	at	any	instant,	since	there	is	no	point	in	everyone	talking	at	once.	But	there	is	no
such	social	limit	on	everyone	sending	control	traffic,	and	this	could	be	a	severe	problem	in	a	conference	with
thousands	of	participants.	To	deal	with	this	problem,	RTCP	has	a	set	of	mechanisms	by	which	the	participants	scale
back	their	reporting	frequency	as	the	number	of	participants	increases.	These	rules	are	somewhat	complex,	but	the
basic	goal	is	this:	Limit	the	total	amount	of	RTCP	traffic	to	a	small	percentage	(typically	5%)	of	the	RTP	data	traffic.	To
accomplish	this	goal,	the	participants	should	know	how	much	data	bandwidth	is	likely	to	be	in	use	(e.g.,	the	amount	to
send	three	audio	streams)	and	the	number	of	participants.	They	learn	the	former	from	means	outside	RTP	(known	as
session	management,	discussed	at	the	end	of	this	section),	and	they	learn	the	latter	from	the	RTCP	reports	of	other
participants.	Because	RTCP	reports	might	be	sent	at	a	very	low	rate,	it	might	only	be	possible	to	get	an	approximate
count	of	the	current	number	of	recipients,	but	that	is	typically	sufficient.	Also,	it	is	recommended	to	allocate	more
RTCP	bandwidth	to	active	senders,	on	the	assumption	that	most	participants	would	like	to	see	reports	from	them—for
example,	to	find	out	who	is	speaking.

Once	a	participant	has	determined	how	much	bandwidth	it	can	consume	with	RTCP	traffic,	it	sets	about	sending
periodic	reports	at	the	appropriate	rate.	Sender	reports	and	receiver	reports	differ	only	in	that	the	former	include	some
extra	information	about	the	sender.	Both	types	of	reports	contain	information	about	the	data	that	was	received	from	all
sources	in	the	most	recent	reporting	period.

The	extra	information	in	a	sender	report	consists	of

A	timestamp	containing	the	actual	time	of	day	when	this	report	was	generated

The	RTP	timestamp	corresponding	to	the	time	when	the	report	was	generated

Cumulative	counts	of	the	packets	and	bytes	sent	by	this	sender	since	it	began	transmission

Note	that	the	first	two	quantities	can	be	used	to	enable	synchronization	of	different	media	streams	from	the	same
source,	even	if	those	streams	use	different	clock	granularities	in	their	RTP	data	streams,	since	it	gives	the	key	to
convert	time	of	day	to	the	RTP	timestamps.

Both	sender	and	receiver	reports	contain	one	block	of	data	per	source	that	has	been	heard	from	since	the	last	report.
Each	block	contains	the	following	statistics	for	the	source	in	question:

Its	SSRC
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The	fraction	of	data	packets	from	this	source	that	were	lost	since	the	last	report	was	sent	(calculated	by
comparing	the	number	of	packets	received	with	the	number	of	packets	expected;	this	last	value	can	be
determined	from	the	RTP	sequence	numbers)

Total	number	of	packets	lost	from	this	source	since	the	first	time	it	was	heard	from

Highest	sequence	number	received	from	this	source	(extended	to	32	bits	to	account	for	wrapping	of	the	sequence
number)

Estimated	interarrival	jitter	for	the	source	(calculated	by	comparing	the	interarrival	spacing	of	received	packets
with	the	expected	spacing	at	transmission	time)

Last	actual	timestamp	received	via	RTCP	for	this	source

Delay	since	last	sender	report	received	via	RTCP	for	this	source

As	you	might	imagine,	the	recipients	of	this	information	can	learn	all	sorts	of	things	about	the	state	of	the	session.	In
particular,	they	can	see	if	other	recipients	are	getting	much	better	quality	from	some	sender	than	they	are,	which	might
be	an	indication	that	a	resource	reservation	needs	to	be	made,	or	that	there	is	a	problem	in	the	network	that	needs	to
be	attended	to.	In	addition,	if	a	sender	notices	that	many	receivers	are	experiencing	high	loss	of	its	packets,	it	might
decide	that	it	should	reduce	its	sending	rate	or	use	a	coding	scheme	that	is	more	resilient	to	loss.

The	final	aspect	of	RTCP	that	we	will	consider	is	the	source	description	packet.	Such	a	packet	contains,	at	a
minimum,	the	SSRC	of	the	sender	and	the	sender's	CNAME.	The	canonical	name	is	derived	in	such	a	way	that	all
applications	that	generate	media	streams	that	might	need	to	be	synchronized	(e.g.,	separately	generated	audio	and
video	streams	from	the	same	user)	will	choose	the	same	CNAME	even	though	they	might	choose	different	SSRC
values.	This	enables	a	receiver	to	identify	the	media	stream	that	came	from	the	same	sender.	The	most	common
format	of	the	CNAME	is	,	where		host		is	the	fully	qualified	domain	name	of	the	sending	machine.	Thus,	an	application
launched	by	the	user	whose	user	name	is		jdoe		running	on	the	machine	would	use	the	string	as	its	CNAME.	The
large	and	variable	number	of	bytes	used	in	this	representation	would	make	it	a	bad	choice	for	the	format	of	an	SSRC,
since	the	SSRC	is	sent	with	every	data	packet	and	must	be	processed	in	real	time.	Allowing	CNAMEs	to	be	bound	to
SSRC	values	in	periodic	RTCP	messages	enables	a	compact	and	efficient	format	for	the	SSRC.

Other	items	may	be	included	in	the	source	description	packet,	such	as	the	real	name	and	email	address	of	the	user.
These	are	used	in	user	interface	displays	and	to	contact	participants,	but	are	less	essential	to	the	operation	of	RTP
than	the	CNAME.

Like	TCP,	RTP	and	RTCP	are	a	fairly	complex	pair	of	protocols.	This	complexity	comes	in	large	part	from	the	desire	to
make	life	easier	for	application	designers.	Because	there	is	an	infinite	number	of	possible	applications,	the	challenge
in	designing	a	transport	protocol	is	to	make	it	general	enough	to	meet	the	widely	varying	needs	of	many	different
applications	without	making	the	protocol	itself	impossible	to	implement.	RTP	has	proven	very	successful	in	this
regard,	forming	the	basis	for	many	real-time	multimedia	applications	run	over	the	Internet	today.
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5.5	Broader	Perspective

HTTP	is	the	New	Narrow	Waist

The	Internet	has	been	described	as	having	a	narrow	waist	architecture,	with	one	universal	protocol	in	the	middle	(IP),
widening	to	support	many	transport	and	application	protocols	above	it	(e.g.,	TCP,	UDP,	RTP,	SunRPC,	DCE-RPC,
gRPC,	SMTP,	HTTP,	SNMP)	and	able	to	run	on	top	of	many	network	technologies	below	(e.g.,	Ethernet,	PPP,	WiFi,
SONET,	ATM).	This	general	structure	has	been	a	key	to	the	Internet	becoming	ubiquitous:	by	keeping	the	IP	layer
that	everyone	has	to	agree	to	minimal,	a	thousand	flowers	were	allowed	to	bloom	both	above	and	below.	This	is	now
a	widely	understood	strategy	for	any	platform	trying	to	achieve	universal	adoption.

But	something	else	has	happened	over	the	last	30	years.	By	not	addressing	all	the	issues	the	Internet	would
eventually	face	as	it	grew	(e.g.,	security,	congestion,	mobility,	real-time	responsiveness,	and	so	on)	it	became
necessary	to	introduce	a	series	of	additional	features	into	the	Internet	architecture.	Having	IP’s	universal	addresses
and	best-effort	service	model	was	a	necessary	condition	for	adoption,	but	not	a	sufficient	foundation	for	all	the
applications	people	wanted	to	build.

We’re	yet	to	see	some	of	these	solutions—future	chapters	will	describe	how	the	Internet	manages	congestion
(Chapter	6),	provides	security	(Chapter	8),	and	supports	real-time	multimedia	applications	(Chapters	7	and	9)—but	it
is	informative	to	take	this	opportunity	to	reconcile	the	value	of	a	universal	narrow	waist	with	the	evolution	that
inevitably	happens	in	any	long-lived	system:	the	“fixed	point”	around	which	the	rest	of	the	architecture	evolves	has
moved	to	a	new	spot	in	the	software	stack.	In	short,	HTTP	has	become	the	new	narrow	waist;	the	one
shared/assumed	piece	of	the	global	infrastructure	that	makes	everything	else	possible.	This	didn’t	happen	overnight
or	by	proclamation,	although	some	did	anticipate	it	would	happen.	The	narrow	waist	drifted	slowly	up	the	protocol
stack	as	a	consequence	of	an	evolution	(to	mix	geoscience	and	biological	metaphors).

Figure	1.	HTTP	(plus	TLS,	TCP,	and	IP)	forming	the	narrow	waist	of
today's	Internet	architecture.

Putting	the	narrow	waist	label	purely	on	HTTP	is	an	over	simplification.	It’s	actually	a	team	effort,	with	the
HTTP/TLS/TCP/IP	combination	now	serving	as	the	Internet’s	common	platform.

HTTP	provides	global	object	identifiers	(URIs)	and	a	simple	GET/PUT	interface.

TLS	provides	end-to-end	communication	security.

TCP	provides	connection	management,	reliable	transmission,	and	congestion	control.

IP	provides	global	host	addresses	and	a	network	abstraction	layer.
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In	other	words,	even	though	you	are	free	to	invent	your	own	congestion	control	algorithm,	TCP	solves	this	problem
quite	well,	so	it	makes	sense	to	reuse	that	solution.	Similarly,	even	though	you	are	free	to	invent	your	own	RPC
protocol,	HTTP	provides	a	perfectly	serviceable	one	(which	because	it	comes	bundled	with	proven	security,	has	the
added	feature	of	not	being	blocked	by	enterprise	firewalls),	so	again,	it	makes	sense	to	reuse	it	rather	than	reinvent
the	wheel.

Somewhat	less	obviously,	HTTP	also	provides	a	good	foundation	for	dealing	with	mobility.	If	the	resource	you	want	to
access	has	moved,	you	can	have	HTTP	return	a	redirect	response	that	points	the	client	to	a	new	location.	Similarly,
HTTP	enables	injecting	caching	proxies	between	the	client	and	server,	making	it	possible	to	replicate	popular	content
in	multiple	locations	and	save	clients	the	delay	of	going	all	the	way	across	the	Internet	to	retrieve	some	piece	of
information.	(Both	of	these	capabilities	are	discussed	in	Section	9.1.)	Finally,	HTTP	has	been	used	to	deliver	real-time
multimedia,	in	an	approach	known	as	adaptive	streaming.	(See	how	in	Section	7.2.)

Broader	Perspective

To	continue	reading	about	the	cloudification	of	the	Internet,	see	Software	Defined	Traffic	Engineering.

To	learn	more	about	the	centrality	of	HTTP,	we	recommend:

HTTP:	An	Evolvable	Narrow	Waist	for	the	Future	Internet,	January	2012.
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Chapter	6:	Congestion	Control

The	hand	that	hath	made	you	fair	hath	made	you	good.	—William	Shakespeare

Problem:	Allocating	Resources

By	now	we	have	seen	enough	layers	of	the	network	protocol	hierarchy	to	understand	how	data	can	be	transferred
among	processes	across	heterogeneous	networks.	We	now	turn	to	a	problem	that	spans	the	entire	protocol	stack—
how	to	effectively	and	fairly	allocate	resources	among	a	collection	of	competing	users.	The	resources	being	shared
include	the	bandwidth	of	the	links	and	the	buffers	on	the	routers	or	switches	where	packets	are	queued	awaiting
transmission.	Packets	contend	at	a	router	for	the	use	of	a	link,	with	each	contending	packet	placed	in	a	queue	waiting
its	turn	to	be	transmitted	over	the	link.	When	too	many	packets	are	contending	for	the	same	link,	the	queue	fills	and
two	undesirable	things	happen:	packets	experience	increased	end-to-end	delay,	and	in	the	worst	case,	the	queue
overflows	and	packets	have	to	be	dropped.	When	long	queues	persist	and	drops	become	common,	the	network	is
said	to	be	congested.	Most	networks	provide	a	congestion-control	mechanism	to	deal	with	just	such	a	situation.

Congestion	control	and	resource	allocation	are	two	sides	of	the	same	coin.	On	the	one	hand,	if	the	network	takes	an
active	role	in	allocating	resources—for	example,	scheduling	which	virtual	circuit	gets	to	use	a	given	physical	link
during	a	certain	period	of	time—then	congestion	may	be	avoided,	thereby	making	congestion	control	unnecessary.
Allocating	network	resources	with	any	precision	is	difficult,	however,	because	the	resources	in	question	are	distributed
throughout	the	network;	multiple	links	connecting	a	series	of	routers	need	to	be	scheduled.	On	the	other	hand,	you
can	always	let	packet	sources	send	as	much	data	as	they	want	and	then	recover	from	congestion	should	it	occur.	This
is	the	easier	approach,	but	it	can	be	disruptive	because	many	packets	may	be	discarded	by	the	network	before
congestion	can	be	controlled.	Furthermore,	it	is	precisely	at	those	times	when	the	network	is	congested—that	is,
resources	have	become	scarce	relative	to	demand—that	the	need	for	resource	allocation	among	competing	users	is
most	keenly	felt.	There	are	also	solutions	in	the	middle,	whereby	inexact	allocation	decisions	are	made,	but
congestion	can	still	occur	and	hence	some	mechanism	is	still	needed	to	recover	from	it.	Whether	you	call	such	a
mixed	solution	congestion	control	or	resource	allocation	does	not	really	matter.	In	some	sense,	it	is	both.

Congestion	control	and	resource	allocation	involve	both	hosts	and	network	elements	such	as	routers.	In	network
elements,	various	queuing	disciplines	can	be	used	to	control	the	order	in	which	packets	get	transmitted	and	which
packets	get	dropped.	The	queuing	discipline	can	also	segregate	traffic	to	keep	one	user's	packets	from	unduly
affecting	another	user's	packets.	At	the	end	hosts,	the	congestion-control	mechanism	paces	how	fast	sources	are
allowed	to	send	packets.	This	is	done	in	an	effort	to	keep	congestion	from	occurring	in	the	first	place	and,	should	it
occur,	to	help	eliminate	the	congestion.

This	chapter	starts	with	an	overview	of	congestion	control	and	resource	allocation.	We	then	discuss	different	queuing
disciplines	that	can	be	implemented	on	the	routers	inside	the	network,	followed	by	a	description	of	the	congestion-
control	algorithm	provided	by	TCP	on	the	hosts.	The	fourth	section	explores	various	techniques	involving	both	routers
and	hosts	that	aim	to	avoid	congestion	before	it	becomes	a	problem.	Finally,	we	examine	the	broad	area	of	quality	of
service.	We	consider	the	needs	of	applications	to	receive	different	levels	of	resource	allocation	in	the	network	and
describe	a	number	of	ways	in	which	they	can	request	these	resources	and	the	network	can	meet	the	requests.
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6.1	Issues	in	Resource	Allocation

Resource	allocation	and	congestion	control	are	complex	issues	that	have	been	the	subject	of	much	study	ever	since
the	first	network	was	designed.	They	are	still	active	areas	of	research.	One	factor	that	makes	these	issues	complex	is
that	they	are	not	isolated	to	one	single	level	of	a	protocol	hierarchy.	Resource	allocation	is	partially	implemented	in	the
routers,	switches,	and	links	inside	the	network	and	partially	in	the	transport	protocol	running	on	the	end	hosts.	End
systems	may	use	signalling	protocols	to	convey	their	resource	requirements	to	network	nodes,	which	respond	with
information	about	resource	availability.	One	of	the	main	goals	of	this	chapter	is	to	define	a	framework	in	which	these
mechanisms	can	be	understood,	as	well	as	to	give	the	relevant	details	about	a	representative	sample	of	mechanisms.

We	should	clarify	our	terminology	before	going	any	further.	By	resource	allocation,	we	mean	the	process	by	which
network	elements	try	to	meet	the	competing	demands	that	applications	have	for	network	resources—primarily	link
bandwidth	and	buffer	space	in	routers	or	switches.	Of	course,	it	will	often	not	be	possible	to	meet	all	the	demands,
meaning	that	some	users	or	applications	may	receive	fewer	network	resources	than	they	want.	Part	of	the	resource
allocation	problem	is	deciding	when	to	say	no	and	to	whom.

We	use	the	term	congestion	control	to	describe	the	efforts	made	by	network	nodes	to	prevent	or	respond	to	overload
conditions.	Since	congestion	is	generally	bad	for	everyone,	the	first	order	of	business	is	making	congestion	subside,
or	preventing	it	in	the	first	place.	This	might	be	achieved	simply	by	persuading	a	few	hosts	to	stop	sending,	thus
improving	the	situation	for	everyone	else.	However,	it	is	more	common	for	congestion-control	mechanisms	to	have
some	aspect	of	fairness—that	is,	they	try	to	share	the	pain	among	all	users,	rather	than	causing	great	pain	to	a	few.
Thus,	we	see	that	many	congestion-control	mechanisms	have	some	sort	of	resource	allocation	built	into	them.

It	is	also	important	to	understand	the	difference	between	flow	control	and	congestion	control.	Flow	control	involves
keeping	a	fast	sender	from	overrunning	a	slow	receiver.	Congestion	control,	by	contrast,	is	intended	to	keep	a	set	of
senders	from	sending	too	much	data	into	the	network	because	of	lack	of	resources	at	some	point.	These	two
concepts	are	often	confused;	as	we	will	see,	they	also	share	some	mechanisms.

Network	Model

We	begin	by	defining	three	salient	features	of	the	network	architecture.	For	the	most	part,	this	is	a	summary	of
material	presented	in	the	previous	chapters	that	is	relevant	to	the	problem	of	resource	allocation.

Packet-Switched	Network

We	consider	resource	allocation	in	a	packet-switched	network	(or	internet)	consisting	of	multiple	links	and	switches	(or
routers).	Since	most	of	the	mechanisms	described	in	this	chapter	were	designed	for	use	on	the	Internet,	and	therefore
were	originally	defined	in	terms	of	routers	rather	than	switches,	we	use	the	term	router	throughout	our	discussion.	The
problem	is	essentially	the	same,	whether	on	a	network	or	an	internetwork.

In	such	an	environment,	a	given	source	may	have	more	than	enough	capacity	on	the	immediate	outgoing	link	to	send
a	packet,	but	somewhere	in	the	middle	of	a	network	its	packets	encounter	a	link	that	is	being	used	by	many	different
traffic	sources.	Figure	1	illustrates	this	situation—two	high-speed	links	are	feeding	a	low-speed	link.	This	is	in	contrast
to	shared-access	networks	like	Ethernet	and	wireless	networks,	where	the	source	can	directly	observe	the	traffic	on
the	network	and	decide	accordingly	whether	or	not	to	send	a	packet.	We	have	already	seen	the	algorithms	used	to
allocate	bandwidth	on	shared-access	networks	(e.g.,	Ethernet	and	Wi-Fi).	These	access-control	algorithms	are,	in
some	sense,	analogous	to	congestion-control	algorithms	in	a	switched	network.

Key	Takeaway
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Note	that	congestion	control	is	a	different	problem	than	routing.	While	it	is	true	that	a	congested	link	could	be
assigned	a	large	edge	weight	by	the	routing	protocol,	and,	as	a	consequence,	routers	would	route	around	it,
"routing	around"	a	congested	link	does	not	generally	solve	the	congestion	problem.	To	see	this,	we	need	look
no	further	than	the	simple	network	depicted	in	Figure	1,	where	all	traffic	has	to	flow	through	the	same	router	to
reach	the	destination.	Although	this	is	an	extreme	example,	it	is	common	to	have	a	certain	router	that	it	is	not
possible	to	route	around.	This	router	can	become	congested,	and	there	is	nothing	the	routing	mechanism	can
do	about	it.	This	congested	router	is	sometimes	called	the	bottleneck	router.

Connectionless	Flows

For	much	of	our	discussion,	we	assume	that	the	network	is	essentially	connectionless,	with	any	connection-oriented
service	implemented	in	the	transport	protocol	that	is	running	on	the	end	hosts.	(We	explain	the	qualification
"essentially"	in	a	moment.)	This	is	precisely	the	model	of	the	Internet,	where	IP	provides	a	connectionless	datagram
delivery	service	and	TCP	implements	an	end-to-end	connection	abstraction.	Note	that	this	assumption	does	not	hold
in	virtual	circuit	networks	such	as	ATM	and	X.25.	In	such	networks,	a	connection	setup	message	traverses	the
network	when	a	circuit	is	established.	This	setup	message	reserves	a	set	of	buffers	for	the	connection	at	each	router,
thereby	providing	a	form	of	congestion	control—a	connection	is	established	only	if	enough	buffers	can	be	allocated	to
it	at	each	router.	The	major	shortcoming	of	this	approach	is	that	it	leads	to	an	underutilization	of	resources—buffers
reserved	for	a	particular	circuit	are	not	available	for	use	by	other	traffic	even	if	they	were	not	currently	being	used	by
that	circuit.	The	focus	of	this	chapter	is	on	resource	allocation	approaches	that	apply	in	an	internetwork,	and	thus	we
focus	mainly	on	connectionless	networks.

Figure	1.	A	potential	bottleneck	router.

We	need	to	qualify	the	term	connectionless	because	our	classification	of	networks	as	being	either	connectionless	or
connection	oriented	is	a	bit	too	restrictive;	there	is	a	gray	area	in	between.	In	particular,	the	assumption	that	all
datagrams	are	completely	independent	in	a	connectionless	network	is	too	strong.	The	datagrams	are	certainly
switched	independently,	but	it	is	usually	the	case	that	a	stream	of	datagrams	between	a	particular	pair	of	hosts	flows
through	a	particular	set	of	routers.	This	idea	of	a	flow—a	sequence	of	packets	sent	between	a	source/destination	pair
and	following	the	same	route	through	the	network—is	an	important	abstraction	in	the	context	of	resource	allocation;	it
is	one	that	we	will	use	in	this	chapter.

One	of	the	powers	of	the	flow	abstraction	is	that	flows	can	be	defined	at	different	granularities.	For	example,	a	flow
can	be	host-to-host	(i.e.,	have	the	same	source/destination	host	addresses)	or	process-to-process	(i.e.,	have	the
same	source/destination	host/port	pairs).	In	the	latter	case,	a	flow	is	essentially	the	same	as	a	channel,	as	we	have
been	using	that	term	throughout	this	book.	The	reason	we	introduce	a	new	term	is	that	a	flow	is	visible	to	the	routers
inside	the	network,	whereas	a	channel	is	an	end-to-end	abstraction.	Figure	2	illustrates	several	flows	passing	through
a	series	of	routers.
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Figure	2.	Multiple	flows	passing	through	a	set	of	routers.

Because	multiple	related	packets	flow	through	each	router,	it	sometimes	makes	sense	to	maintain	some	state
information	for	each	flow,	information	that	can	be	used	to	make	resource	allocation	decisions	about	the	packets	that
belong	to	the	flow.	This	state	is	sometimes	called	soft	state.	The	main	difference	between	soft	state	and	hard	state	is
that	soft	state	need	not	always	be	explicitly	created	and	removed	by	signalling.	Soft	state	represents	a	middle	ground
between	a	purely	connectionless	network	that	maintains	no	state	at	the	routers	and	a	purely	connection-oriented
network	that	maintains	hard	state	at	the	routers.	In	general,	the	correct	operation	of	the	network	does	not	depend	on
soft	state	being	present	(each	packet	is	still	routed	correctly	without	regard	to	this	state),	but	when	a	packet	happens
to	belong	to	a	flow	for	which	the	router	is	currently	maintaining	soft	state,	then	the	router	is	better	able	to	handle	the
packet.

Note	that	a	flow	can	be	either	implicitly	defined	or	explicitly	established.	In	the	former	case,	each	router	watches	for
packets	that	happen	to	be	traveling	between	the	same	source/destination	pair—the	router	does	this	by	inspecting	the
addresses	in	the	header—and	treats	these	packets	as	belonging	to	the	same	flow	for	the	purpose	of	congestion
control.	In	the	latter	case,	the	source	sends	a	flow	setup	message	across	the	network,	declaring	that	a	flow	of	packets
is	about	to	start.	While	explicit	flows	are	arguably	no	different	than	a	connection	across	a	connection-oriented	network,
we	call	attention	to	this	case	because,	even	when	explicitly	established,	a	flow	does	not	imply	any	end-to-end
semantics	and,	in	particular,	does	not	imply	the	reliable	and	ordered	delivery	of	a	virtual	circuit.	It	simply	exists	for	the
purpose	of	resource	allocation.	We	will	see	examples	of	both	implicit	and	explicit	flows	in	this	chapter.

Service	Model

In	the	early	part	of	this	chapter,	we	will	focus	on	mechanisms	that	assume	the	best-effort	service	model	of	the
Internet.	With	best-effort	service,	all	packets	are	given	essentially	equal	treatment,	with	end	hosts	given	no	opportunity
to	ask	the	network	that	some	packets	or	flows	be	given	certain	guarantees	or	preferential	service.	Defining	a	service
model	that	supports	some	kind	of	preferred	service	or	guarantee—for	example,	guaranteeing	the	bandwidth	needed
for	a	video	stream—is	the	subject	of	a	later	section.	Such	a	service	model	is	said	to	provide	multiple	qualities	of
service	(QoS).	As	we	will	see,	there	is	actually	a	spectrum	of	possibilities,	ranging	from	a	purely	best-effort	service
model	to	one	in	which	individual	flows	receive	quantitative	guarantees	of	QoS.	One	of	the	greatest	challenges	is	to
define	a	service	model	that	meets	the	needs	of	a	wide	range	of	applications	and	even	allows	for	the	applications	that
will	be	invented	in	the	future.

Taxonomy
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There	are	countless	ways	in	which	resource	allocation	mechanisms	differ,	so	creating	a	thorough	taxonomy	is	a
difficult	proposition.	For	now,	we	describe	three	dimensions	along	which	resource	allocation	mechanisms	can	be
characterized;	more	subtle	distinctions	will	be	called	out	during	the	course	of	this	chapter.

Router-Centric	versus	Host-Centric

Resource	allocation	mechanisms	can	be	classified	into	two	broad	groups:	those	that	address	the	problem	from	inside
the	network	(i.e.,	at	the	routers	or	switches)	and	those	that	address	it	from	the	edges	of	the	network	(i.e.,	in	the	hosts,
perhaps	inside	the	transport	protocol).	Since	it	is	the	case	that	both	the	routers	inside	the	network	and	the	hosts	at	the
edges	of	the	network	participate	in	resource	allocation,	the	real	issue	is	where	the	majority	of	the	burden	falls.

In	a	router-centric	design,	each	router	takes	responsibility	for	deciding	when	packets	are	forwarded	and	selecting
which	packets	are	to	be	dropped,	as	well	as	for	informing	the	hosts	that	are	generating	the	network	traffic	how	many
packets	they	are	allowed	to	send.	In	a	host-centric	design,	the	end	hosts	observe	the	network	conditions	(e.g.,	how
many	packets	they	are	successfully	getting	through	the	network)	and	adjust	their	behavior	accordingly.	Note	that
these	two	groups	are	not	mutually	exclusive.	For	example,	a	network	that	places	the	primary	burden	for	managing
congestion	on	routers	still	expects	the	end	hosts	to	adhere	to	any	advisory	messages	the	routers	send,	while	the
routers	in	networks	that	use	end-to-end	congestion	control	still	have	some	policy,	no	matter	how	simple,	for	deciding
which	packets	to	drop	when	their	queues	do	overflow.

Reservation-Based	versus	Feedback-Based

A	second	way	that	resource	allocation	mechanisms	are	sometimes	classified	is	according	to	whether	they	use
reservations	or	feedback.	In	a	reservation-based	system,	some	entity	(e.g.,	the	end	host)	asks	the	network	for	a
certain	amount	of	capacity	to	be	allocated	for	a	flow.	Each	router	then	allocates	enough	resources	(buffers	and/or
percentage	of	the	link's	bandwidth)	to	satisfy	this	request.	If	the	request	cannot	be	satisfied	at	some	router,	because
doing	so	would	overcommit	its	resources,	then	the	router	rejects	the	reservation.	This	is	analogous	to	getting	a	busy
signal	when	trying	to	make	a	phone	call.	In	a	feedback-based	approach,	the	end	hosts	begin	sending	data	without	first
reserving	any	capacity	and	then	adjust	their	sending	rate	according	to	the	feedback	they	receive.	This	feedback	can
be	either	explicit	(i.e.,	a	congested	router	sends	a	"please	slow	down"	message	to	the	host)	or	implicit	(i.e.,	the	end
host	adjusts	its	sending	rate	according	to	the	externally	observable	behavior	of	the	network,	such	as	packet	losses).

Note	that	a	reservation-based	system	always	implies	a	router-centric	resource	allocation	mechanism.	This	is	because
each	router	is	responsible	for	keeping	track	of	how	much	of	its	capacity	is	currently	available	and	deciding	whether
new	reservations	can	be	admitted.	Routers	may	also	have	to	make	sure	each	host	lives	within	the	reservation	it	made.
If	a	host	sends	data	faster	than	it	claimed	it	would	when	it	made	the	reservation,	then	that	host's	packets	are	good
candidates	for	discarding,	should	the	router	become	congested.	On	the	other	hand,	a	feedback-based	system	can
imply	either	a	router-	or	host-centric	mechanism.	Typically,	if	the	feedback	is	explicit,	then	the	router	is	involved,	to	at
least	some	degree,	in	the	resource	allocation	scheme.	If	the	feedback	is	implicit,	then	almost	all	of	the	burden	falls	to
the	end	host;	the	routers	silently	drop	packets	when	they	become	congested.

Reservations	do	not	have	to	be	made	by	end	hosts.	It	is	possible	for	a	network	administrator	to	allocate	resources	to
flows	or	to	larger	aggregates	of	traffic,	as	we	will	see	in	a	later	section.

Window	Based	versus	Rate	Based

A	third	way	to	characterize	resource	allocation	mechanisms	is	according	to	whether	they	are	window	based	or	rate
based.	This	is	one	of	the	areas,	noted	above,	where	similar	mechanisms	and	terminology	are	used	for	both	flow
control	and	congestion	control.	Both	flow-control	and	resource	allocation	mechanisms	need	a	way	to	express,	to	the
sender,	how	much	data	it	is	allowed	to	transmit.	There	are	two	general	ways	of	doing	this:	with	a	window	or	with	a
rate.	We	have	already	seen	window-based	transport	protocols,	such	as	TCP,	in	which	the	receiver	advertises	a
window	to	the	sender.	This	window	corresponds	to	how	much	buffer	space	the	receiver	has,	and	it	limits	how	much
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data	the	sender	can	transmit;	that	is,	it	supports	flow	control.	A	similar	mechanism—window	advertisement—can	be
used	within	the	network	to	reserve	buffer	space	(i.e.,	to	support	resource	allocation).	TCP's	congestion-control
mechanisms	are	window	based.

It	is	also	possible	to	control	a	sender's	behavior	using	a	rate—that	is,	how	many	bits	per	second	the	receiver	or
network	is	able	to	absorb.	Rate-based	control	makes	sense	for	many	multimedia	applications,	which	tend	to	generate
data	at	some	average	rate	and	which	need	at	least	some	minimum	throughput	to	be	useful.	For	example,	a	video
codec	might	generate	video	at	an	average	rate	of	1	Mbps	with	a	peak	rate	of	2	Mbps.	As	we	will	see	later	in	this
chapter,	rate-based	characterization	of	flows	is	a	logical	choice	in	a	reservation-based	system	that	supports	different
qualities	of	service—the	sender	makes	a	reservation	for	so	many	bits	per	second,	and	each	router	along	the	path
determines	if	it	can	support	that	rate,	given	the	other	flows	it	has	made	commitments	to.

Summary	of	Resource	Allocation	Taxonomy

Classifying	resource	allocation	approaches	at	two	different	points	along	each	of	three	dimensions,	as	we	have	just
done,	would	seem	to	suggest	up	to	eight	unique	strategies.	While	eight	different	approaches	are	certainly	possible,	we
note	that	in	practice	two	general	strategies	seem	to	be	most	prevalent;	these	two	strategies	are	tied	to	the	underlying
service	model	of	the	network.

On	the	one	hand,	a	best-effort	service	model	usually	implies	that	feedback	is	being	used,	since	such	a	model	does	not
allow	users	to	reserve	network	capacity.	This,	in	turn,	means	that	most	of	the	responsibility	for	congestion	control	falls
to	the	end	hosts,	perhaps	with	some	assistance	from	the	routers.	In	practice,	such	networks	use	window-based
information.	This	is	the	general	strategy	adopted	in	the	Internet.

On	the	other	hand,	a	QoS-based	service	model	probably	implies	some	form	of	reservation.	Support	for	these
reservations	is	likely	to	require	significant	router	involvement,	such	as	queuing	packets	differently	depending	on	the
level	of	reserved	resources	they	require.	Moreover,	it	is	natural	to	express	such	reservations	in	terms	of	rate,	since
windows	are	only	indirectly	related	to	how	much	bandwidth	a	user	needs	from	the	network.	We	discuss	this	topic	in	a
later	section.

Evaluation	Criteria

The	final	issue	is	one	of	knowing	whether	a	resource	allocation	mechanism	is	good	or	not.	Recall	that	in	the	problem
statement	at	the	start	of	this	chapter	we	posed	the	question	of	how	a	network	effectively	and	fairly	allocates	its
resources.	This	suggests	at	least	two	broad	measures	by	which	a	resource	allocation	scheme	can	be	evaluated.	We
consider	each	in	turn.

Effective	Resource	Allocation

A	good	starting	point	for	evaluating	the	effectiveness	of	a	resource	allocation	scheme	is	to	consider	the	two	principal
metrics	of	networking:	throughput	and	delay.	Clearly,	we	want	as	much	throughput	and	as	little	delay	as	possible.
Unfortunately,	these	goals	are	often	somewhat	at	odds	with	each	other.	One	sure	way	for	a	resource	allocation
algorithm	to	increase	throughput	is	to	allow	as	many	packets	into	the	network	as	possible,	so	as	to	drive	the	utilization
of	all	the	links	up	to	100%.	We	would	do	this	to	avoid	the	possibility	of	a	link	becoming	idle	because	an	idle	link
necessarily	hurts	throughput.	The	problem	with	this	strategy	is	that	increasing	the	number	of	packets	in	the	network
also	increases	the	length	of	the	queues	at	each	router.	Longer	queues,	in	turn,	mean	packets	are	delayed	longer	in
the	network.

To	describe	this	relationship,	some	network	designers	have	proposed	using	the	ratio	of	throughput	to	delay	as	a
metric	for	evaluating	the	effectiveness	of	a	resource	allocation	scheme.	This	ratio	is	sometimes	referred	to	as	the
power	of	the	network:
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Power	=	Throughput	/	Delay

Note	that	it	is	not	obvious	that	power	is	the	right	metric	for	judging	resource	allocation	effectiveness.	For	one	thing,	the
theory	behind	power	is	based	on	an	M/M/1	queuing	network	that	assumes	infinite	queues;	real	networks	have	finite
buffers	and	sometimes	have	to	drop	packets.	For	another,	power	is	typically	defined	relative	to	a	single	connection
(flow);	it	is	not	clear	how	it	extends	to	multiple,	competing	connections.	Despite	these	rather	severe	limitations,
however,	no	alternatives	have	gained	wide	acceptance,	and	so	power	continues	to	be	used.

Since	this	is	not	a	queuing	theory	book,	we	provide	only	this	brief	description	of	an	M/M/1	queue.	The	1	means
it	has	a	single	server,	and	the	Ms	mean	that	the	distribution	of	both	packet	arrival	and	service	times	is
"Markovian,"	or	exponential.

The	objective	is	to	maximize	this	ratio,	which	is	a	function	of	how	much	load	you	place	on	the	network.	The	load,	in
turn,	is	set	by	the	resource	allocation	mechanism.	Figure	3	gives	a	representative	power	curve,	where,	ideally,	the
resource	allocation	mechanism	would	operate	at	the	peak	of	this	curve.	To	the	left	of	the	peak,	the	mechanism	is
being	too	conservative;	that	is,	it	is	not	allowing	enough	packets	to	be	sent	to	keep	the	links	busy.	To	the	right	of	the
peak,	so	many	packets	are	being	allowed	into	the	network	that	increases	in	delay	due	to	queuing	are	starting	to
dominate	any	small	gains	in	throughput.

Interestingly,	this	power	curve	looks	very	much	like	the	system	throughput	curve	in	a	timesharing	computer	system.
System	throughput	improves	as	more	jobs	are	admitted	into	the	system,	until	it	reaches	a	point	when	there	are	so
many	jobs	running	that	the	system	begins	to	thrash	(spends	all	of	its	time	swapping	memory	pages)	and	the
throughput	begins	to	drop.

Figure	3.	Ratio	of	throughput	to	delay	as	a	function	of	load.

As	we	will	see	in	later	sections	of	this	chapter,	many	congestion-control	schemes	are	able	to	control	load	in	only	very
crude	ways;	that	is,	it	is	simply	not	possible	to	turn	the	"knob"	a	little	and	allow	only	a	small	number	of	additional
packets	into	the	network.	As	a	consequence,	network	designers	need	to	be	concerned	about	what	happens	even
when	the	system	is	operating	under	extremely	heavy	load—that	is,	at	the	rightmost	end	of	the	curve	in	Figure	3.
Ideally,	we	would	like	to	avoid	the	situation	in	which	the	system	throughput	goes	to	zero	because	the	system	is
thrashing.	In	networking	terminology,	we	want	a	system	that	is	stable—where	packets	continue	to	get	through	the
network	even	when	the	network	is	operating	under	heavy	load.	If	a	mechanism	is	not	stable,	the	network	may
experience	congestion	collapse.

Fair	Resource	Allocation
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The	effective	utilization	of	network	resources	is	not	the	only	criterion	for	judging	a	resource	allocation	scheme.	We
must	also	consider	the	issue	of	fairness.	However,	we	quickly	get	into	murky	waters	when	we	try	to	define	what
exactly	constitutes	fair	resource	allocation.	For	example,	a	reservation-based	resource	allocation	scheme	provides	an
explicit	way	to	create	controlled	unfairness.	With	such	a	scheme,	we	might	use	reservations	to	enable	a	video	stream
to	receive	1	Mbps	across	some	link	while	a	file	transfer	receives	only	10	kbps	over	the	same	link.

In	the	absence	of	explicit	information	to	the	contrary,	when	several	flows	share	a	particular	link,	we	would	like	for	each
flow	to	receive	an	equal	share	of	the	bandwidth.	This	definition	presumes	that	a	fair	share	of	bandwidth	means	an
equal	share	of	bandwidth.	But,	even	in	the	absence	of	reservations,	equal	shares	may	not	equate	to	fair	shares.
Should	we	also	consider	the	length	of	the	paths	being	compared?	For	example,	as	illustrated	in	Figure	4,	what	is	fair
when	one	four-hop	flow	is	competing	with	three	one-hop	flows?

Figure	4.	One	four-hop	flow	competing	with	three	one-hop	flows.

Assuming	that	fair	implies	equal	and	that	all	paths	are	of	equal	length,	networking	researcher	Raj	Jain	proposed	a
metric	that	can	be	used	to	quantify	the	fairness	of	a	congestion-control	mechanism.	Jain's	fairness	index	is	defined	as
follows.	Given	a	set	of	flow	throughputs

(x ,x ,… ,x )

(measured	in	consistent	units	such	as	bits/second),	the	following	function	assigns	a	fairness	index	to	the	flows:

f(x ,x ,… ,x ) =

The	fairness	index	always	results	in	a	number	between	0	and	1,	with	1	representing	greatest	fairness.	To	understand
the	intuition	behind	this	metric,	consider	the	case	where	all	n	flows	receive	a	throughput	of	1	unit	of	data	per	second.
We	can	see	that	the	fairness	index	in	this	case	is

= 1

Now,	suppose	one	flow	receives	a	throughput	of	1 +Δ.	Now	the	fairness	index	is

=

Note	that	the	denominator	exceeds	the	numerator	by	(n− 1)Δ .	Thus,	whether	the	odd	flow	out	was	getting	more	or

less	than	all	the	other	flows	(positive	or	negative	Δ),	the	fairness	index	has	now	dropped	below	one.	Another	simple
case	to	consider	is	where	only	k	of	the	n	flows	receive	equal	throughput,	and	the	remaining	n− k	users	receive	zero
throughput,	in	which	case	the	fairness	index	drops	to	k/n.
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6.2	Queuing	Disciplines

Regardless	of	how	simple	or	how	sophisticated	the	rest	of	the	resource	allocation	mechanism	is,	each	router	must
implement	some	queuing	discipline	that	governs	how	packets	are	buffered	while	waiting	to	be	transmitted.	The
queuing	algorithm	can	be	thought	of	as	allocating	both	bandwidth	(which	packets	get	transmitted)	and	buffer	space
(which	packets	get	discarded).	It	also	directly	affects	the	latency	experienced	by	a	packet	by	determining	how	long	a
packet	waits	to	be	transmitted.	This	section	introduces	two	common	queuing	algorithms—first-in,	first-out	(FIFO)	and
fair	queuing	(FQ)—and	identifies	several	variations	that	have	been	proposed.

FIFO

The	idea	of	FIFO	queuing,	also	called	first-come,	first-served	(FCFS)	queuing,	is	simple:	The	first	packet	that	arrives
at	a	router	is	the	first	packet	to	be	transmitted.	This	is	illustrated	in	Figure	1(a),	which	shows	a	FIFO	with	"slots"	to	hold
up	to	eight	packets.	Given	that	the	amount	of	buffer	space	at	each	router	is	finite,	if	a	packet	arrives	and	the	queue
(buffer	space)	is	full,	then	the	router	discards	that	packet,	as	shown	in	Figure	1(b).	This	is	done	without	regard	to
which	flow	the	packet	belongs	to	or	how	important	the	packet	is.	This	is	sometimes	called	tail	drop,	since	packets	that
arrive	at	the	tail	end	of	the	FIFO	are	dropped.

Figure	1.	(a)	FIFO	queuing;	(b)	tail	drop	at	a	FIFO	queue.

Note	that	tail	drop	and	FIFO	are	two	separable	ideas.	FIFO	is	a	scheduling	discipline—it	determines	the	order	in
which	packets	are	transmitted.	Tail	drop	is	a	drop	policy—it	determines	which	packets	get	dropped.	Because	FIFO
and	tail	drop	are	the	simplest	instances	of	scheduling	discipline	and	drop	policy,	respectively,	they	are	sometimes
viewed	as	a	bundle—the	vanilla	queuing	implementation.	Unfortunately,	the	bundle	is	often	referred	to	simply	as	FIFO
queuing,	when	it	should	more	precisely	be	called	FIFO	with	tail	drop.	A	later	section	provides	an	example	of	another
drop	policy,	which	uses	a	more	complex	algorithm	than	"Is	there	a	free	buffer?"	to	decide	when	to	drop	packets.	Such
a	drop	policy	may	be	used	with	FIFO,	or	with	more	complex	scheduling	disciplines.
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FIFO	with	tail	drop,	as	the	simplest	of	all	queuing	algorithms,	is	the	most	widely	used	in	Internet	routers	at	the	time	of
writing.	This	simple	approach	to	queuing	pushes	all	responsibility	for	congestion	control	and	resource	allocation	out	to
the	edges	of	the	network.	Thus,	the	prevalent	form	of	congestion	control	in	the	Internet	currently	assumes	no	help
from	the	routers:	TCP	takes	responsibility	for	detecting	and	responding	to	congestion.	We	will	see	how	this	works	in
the	next	section.

A	simple	variation	on	basic	FIFO	queuing	is	priority	queuing.	The	idea	is	to	mark	each	packet	with	a	priority;	the	mark
could	be	carried,	for	example,	in	the	IP	header,	as	we'll	discuss	in	a	later	section.	The	routers	then	implement	multiple
FIFO	queues,	one	for	each	priority	class.	The	router	always	transmits	packets	out	of	the	highest-priority	queue	if	that
queue	is	nonempty	before	moving	on	to	the	next	priority	queue.	Within	each	priority,	packets	are	still	managed	in	a
FIFO	manner.	This	idea	is	a	small	departure	from	the	best-effort	delivery	model,	but	it	does	not	go	so	far	as	to	make
guarantees	to	any	particular	priority	class.	It	just	allows	high-priority	packets	to	cut	to	the	front	of	the	line.

The	problem	with	priority	queuing,	of	course,	is	that	the	high-priority	queue	can	starve	out	all	the	other	queues;	that	is,
as	long	as	there	is	at	least	one	high-priority	packet	in	the	high-priority	queue,	lower-priority	queues	do	not	get	served.
For	this	to	be	viable,	there	needs	to	be	hard	limits	on	how	much	high-priority	traffic	is	inserted	in	the	queue.	It	should
be	immediately	clear	that	we	can't	allow	users	to	set	their	own	packets	to	high	priority	in	an	uncontrolled	way;	we	must
either	prevent	them	from	doing	this	altogether	or	provide	some	form	of	"pushback"	on	users.	One	obvious	way	to	do
this	is	to	use	economics—the	network	could	charge	more	to	deliver	high-priority	packets	than	low-priority	packets.
However,	there	are	significant	challenges	to	implementing	such	a	scheme	in	a	decentralized	environment	such	as	the
Internet.

One	situation	in	which	priority	queuing	is	used	in	the	Internet	is	to	protect	the	most	important	packets—typically,	the
routing	updates	that	are	necessary	to	stabilize	the	routing	tables	after	a	topology	change.	Often	there	is	a	special
queue	for	such	packets,	which	can	be	identified	by	the	Differentiated	Services	Code	Point	(formerly	the	TOS	field)	in
the	IP	header.	This	is	in	fact	a	simple	case	of	the	idea	of	"Differentiated	Services."

Fair	Queuing

The	main	problem	with	FIFO	queuing	is	that	it	does	not	discriminate	between	different	traffic	sources,	or,	in	the
language	introduced	in	the	previous	section,	it	does	not	separate	packets	according	to	the	flow	to	which	they	belong.
This	is	a	problem	at	two	different	levels.	At	one	level,	it	is	not	clear	that	any	congestion-control	algorithm	implemented
entirely	at	the	source	will	be	able	to	adequately	control	congestion	with	so	little	help	from	the	routers.	We	will	suspend
judgment	on	this	point	until	the	next	section	when	we	discuss	TCP	congestion	control.	At	another	level,	because	the
entire	congestion-control	mechanism	is	implemented	at	the	sources	and	FIFO	queuing	does	not	provide	a	means	to
police	how	well	the	sources	adhere	to	this	mechanism,	it	is	possible	for	an	ill-behaved	source	(flow)	to	capture	an
arbitrarily	large	fraction	of	the	network	capacity.	Considering	the	Internet	again,	it	is	certainly	possible	for	a	given
application	not	to	use	TCP	and,	as	a	consequence,	to	bypass	its	end-to-end	congestion-control	mechanism.
(Applications	such	as	Internet	telephony	do	this	today.)	Such	an	application	is	able	to	flood	the	Internet's	routers	with
its	own	packets,	thereby	causing	other	applications'	packets	to	be	discarded.

Fair	queuing	(FQ)	is	an	algorithm	that	has	been	designed	to	address	this	problem.	The	idea	of	FQ	is	to	maintain	a
separate	queue	for	each	flow	currently	being	handled	by	the	router.	The	router	then	services	these	queues	in	a	sort	of
round-robin,	as	illustrated	in	Figure	2.	When	a	flow	sends	packets	too	quickly,	then	its	queue	fills	up.	When	a	queue
reaches	a	particular	length,	additional	packets	belonging	to	that	flow's	queue	are	discarded.	In	this	way,	a	given
source	cannot	arbitrarily	increase	its	share	of	the	network's	capacity	at	the	expense	of	other	flows.
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Figure	2.	Round-robin	service	of	four	flows	at	a	router.

Note	that	FQ	does	not	involve	the	router	telling	the	traffic	sources	anything	about	the	state	of	the	router	or	in	any	way
limiting	how	quickly	a	given	source	sends	packets.	In	other	words,	FQ	is	still	designed	to	be	used	in	conjunction	with
an	end-to-end	congestion-control	mechanism.	It	simply	segregates	traffic	so	that	ill-behaved	traffic	sources	do	not
interfere	with	those	that	are	faithfully	implementing	the	end-to-end	algorithm.	FQ	also	enforces	fairness	among	a
collection	of	flows	managed	by	a	well-behaved	congestion-control	algorithm.

As	simple	as	the	basic	idea	is,	there	are	still	a	modest	number	of	details	that	you	have	to	get	right.	The	main
complication	is	that	the	packets	being	processed	at	a	router	are	not	necessarily	the	same	length.	To	truly	allocate	the
bandwidth	of	the	outgoing	link	in	a	fair	manner,	it	is	necessary	to	take	packet	length	into	consideration.	For	example,	if
a	router	is	managing	two	flows,	one	with	1000-byte	packets	and	the	other	with	500-byte	packets	(perhaps	because	of
fragmentation	upstream	from	this	router),	then	a	simple	round-robin	servicing	of	packets	from	each	flow's	queue	will
give	the	first	flow	two-thirds	of	the	link's	bandwidth	and	the	second	flow	only	one-third	of	its	bandwidth.

What	we	really	want	is	bit-by-bit	round-robin,	where	the	router	transmits	a	bit	from	flow	1,	then	a	bit	from	flow	2,	and
so	on.	Clearly,	it	is	not	feasible	to	interleave	the	bits	from	different	packets.	The	FQ	mechanism	therefore	simulates
this	behavior	by	first	determining	when	a	given	packet	would	finish	being	transmitted	if	it	were	being	sent	using	bit-by-
bit	round-robin	and	then	using	this	finishing	time	to	sequence	the	packets	for	transmission.

To	understand	the	algorithm	for	approximating	bit-by-bit	round-robin,	consider	the	behavior	of	a	single	flow	and
imagine	a	clock	that	ticks	once	each	time	one	bit	is	transmitted	from	all	of	the	active	flows.	(A	flow	is	active	when	it

has	data	in	the	queue.)	For	this	flow,	let	P 	denote	the	length	of	packet	i,	let	S 	denote	the	time	when	the	router	starts

to	transmit	packet	i,	and	let	F 	denote	the	time	when	the	router	finishes	transmitting	packet	i.	If	P 	is	expressed	in

terms	of	how	many	clock	ticks	it	takes	to	transmit	packet	i	(keeping	in	mind	that	time	advances	1	tick	each	time	this

flow	gets	1	bit's	worth	of	service),	then	it	is	easy	to	see	that	F = S + P .

When	do	we	start	transmitting	packet	i?	The	answer	to	this	question	depends	on	whether	packet	i	arrived	before	or
after	the	router	finished	transmitting	packet	i− 1	from	this	flow.	If	it	was	before,	then	logically	the	first	bit	of	packet	i	is
transmitted	immediately	after	the	last	bit	of	packet	i− 1.	On	the	other	hand,	it	is	possible	that	the	router	finished
transmitting	packet	i− 1	long	before	i	arrived,	meaning	that	there	was	a	period	of	time	during	which	the	queue	for	this

flow	was	empty,	so	the	round-robin	mechanism	could	not	transmit	any	packets	from	this	flow.	If	we	let	A 	denote	the

time	that	packet	i	arrives	at	the	router,	then	S = max(F ,A ).	Thus,	we	can	compute

F = max(F ,A ) + P

i i

i i

i i i

i

i i−1 i

i i−1 i i
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Now	we	move	on	to	the	situation	in	which	there	is	more	than	one	flow,	and	we	find	that	there	is	a	catch	to	determining	

A .	We	can't	just	read	the	wall	clock	when	the	packet	arrives.	As	noted	above,	we	want	time	to	advance	by	one	tick

each	time	all	the	active	flows	get	one	bit	of	service	under	bit-by-bit	round-robin,	so	we	need	a	clock	that	advances
more	slowly	when	there	are	more	flows.	Specifically,	the	clock	must	advance	by	one	tick	when	n	bits	are	transmitted	if

there	are	n	active	flows.	This	clock	will	be	used	to	calculate	A .

Now,	for	every	flow,	we	calculate	F 	for	each	packet	that	arrives	using	the	above	formula.	We	then	treat	all	the	F 	as

timestamps,	and	the	next	packet	to	transmit	is	always	the	packet	that	has	the	lowest	timestamp—the	packet	that,
based	on	the	above	reasoning,	should	finish	transmission	before	all	others.

Note	that	this	means	that	a	packet	can	arrive	on	a	flow,	and,	because	it	is	shorter	than	a	packet	from	some	other	flow
that	is	already	in	the	queue	waiting	to	be	transmitted,	it	can	be	inserted	into	the	queue	in	front	of	that	longer	packet.
However,	this	does	not	mean	that	a	newly	arriving	packet	can	preempt	a	packet	that	is	currently	being	transmitted.	It
is	this	lack	of	preemption	that	keeps	the	implementation	of	FQ	just	described	from	exactly	simulating	the	bit-by-bit
round-robin	scheme	that	we	are	attempting	to	approximate.

Figure	3.	Example	of	fair	queuing	in	action:	(a)	Packets	with	earlier
finishing	times	are	sent	first;	(b)	sending	of	a	packet	already	in	progress	is

completed.

To	better	see	how	this	implementation	of	fair	queuing	works,	consider	the	example	given	in	Figure	3.	Part	(a)	shows
the	queues	for	two	flows;	the	algorithm	selects	both	packets	from	flow	1	to	be	transmitted	before	the	packet	in	the	flow
2	queue,	because	of	their	earlier	finishing	times.	In	(b),	the	router	has	already	begun	to	send	a	packet	from	flow	2
when	the	packet	from	flow	1	arrives.	Though	the	packet	arriving	on	flow	1	would	have	finished	before	flow	2	if	we	had
been	using	perfect	bit-by-bit	fair	queuing,	the	implementation	does	not	preempt	the	flow	2	packet.

There	are	two	things	to	notice	about	fair	queuing.	First,	the	link	is	never	left	idle	as	long	as	there	is	at	least	one	packet
in	the	queue.	Any	queuing	scheme	with	this	characteristic	is	said	to	be	work	conserving.	One	effect	of	being	work
conserving	is	that	if	I	am	sharing	a	link	with	a	lot	of	flows	that	are	not	sending	any	data	then;	I	can	use	the	full	link
capacity	for	my	flow.	As	soon	as	the	other	flows	start	sending,	however,	they	will	start	to	use	their	share	and	the
capacity	available	to	my	flow	will	drop.

The	second	thing	to	notice	is	that	if	the	link	is	fully	loaded	and	there	are	n	flows	sending	data,	I	cannot	use	more	than	

1/n 	of	the	link	bandwidth.	If	I	try	to	send	more	than	that,	my	packets	will	be	assigned	increasingly	large	timestamps,

causing	them	to	sit	in	the	queue	longer	awaiting	transmission.	Eventually,	the	queue	will	overflow—although	whether
it	is	my	packets	or	someone	else's	that	are	dropped	is	a	decision	that	is	not	determined	by	the	fact	that	we	are	using
fair	queuing.	This	is	determined	by	the	drop	policy;	FQ	is	a	scheduling	algorithm,	which,	like	FIFO,	may	be	combined
with	various	drop	policies.

Because	FQ	is	work	conserving,	any	bandwidth	that	is	not	used	by	one	flow	is	automatically	available	to	other	flows.
For	example,	if	we	have	four	flows	passing	through	a	router,	and	all	of	them	are	sending	packets,	then	each	one	will
receive	one-quarter	of	the	bandwidth.	But,	if	one	of	them	is	idle	long	enough	that	all	its	packets	drain	out	of	the
router's	queue,	then	the	available	bandwidth	will	be	shared	among	the	remaining	three	flows,	which	will	each	now
receive	one-third	of	the	bandwidth.	Thus,	we	can	think	of	FQ	as	providing	a	guaranteed	minimum	share	of	bandwidth
to	each	flow,	with	the	possibility	that	it	can	get	more	than	its	guarantee	if	other	flows	are	not	using	their	shares.

i

i

i i

th

6.2	Queuing	Disciplines

267



It	is	possible	to	implement	a	variation	of	FQ,	called	weighted	fair	queuing	(WFQ),	that	allows	a	weight	to	be	assigned
to	each	flow	(queue).	This	weight	logically	specifies	how	many	bits	to	transmit	each	time	the	router	services	that
queue,	which	effectively	controls	the	percentage	of	the	link's	bandwidth	that	that	flow	will	get.	Simple	FQ	gives	each
queue	a	weight	of	1,	which	means	that	logically	only	1	bit	is	transmitted	from	each	queue	each	time	around.	This

results	in	each	flow	getting	1/n 	of	the	bandwidth	when	there	are	n	flows.	With	WFQ,	however,	one	queue	might

have	a	weight	of	2,	a	second	queue	might	have	a	weight	of	1,	and	a	third	queue	might	have	a	weight	of	3.	Assuming
that	each	queue	always	contains	a	packet	waiting	to	be	transmitted,	the	first	flow	will	get	one-third	of	the	available
bandwidth,	the	second	will	get	one-sixth	of	the	available	bandwidth,	and	the	third	will	get	one-half	of	the	available
bandwidth.

While	we	have	described	WFQ	in	terms	of	flows,	note	that	it	could	be	implemented	on	classes	of	traffic,	where	classes
are	defined	in	some	other	way	than	the	simple	flows	introduced	at	the	start	of	this	chapter.	For	example,	we	could	use
some	bits	in	the	IP	header	to	identify	classes	and	allocate	a	queue	and	a	weight	to	each	class.	This	is	exactly	what	is
proposed	as	part	of	the	Differentiated	Services	architecture	described	in	a	later	section.

Note	that	a	router	performing	WFQ	must	learn	what	weights	to	assign	to	each	queue	from	somewhere,	either	by
manual	configuration	or	by	some	sort	of	signalling	from	the	sources.	In	the	latter	case,	we	are	moving	toward	a
reservation-based	model.	Just	assigning	a	weight	to	a	queue	provides	a	rather	weak	form	of	reservation	because
these	weights	are	only	indirectly	related	to	the	bandwidth	the	flow	receives.	(The	bandwidth	available	to	a	flow	also
depends,	for	example,	on	how	many	other	flows	are	sharing	the	link.)	We	will	see	in	a	later	section	how	WFQ	can	be
used	as	a	component	of	a	reservation-based	resource	allocation	mechanism.

Key	Takeaway

Finally,	we	observe	that	this	whole	discussion	of	queue	management	illustrates	an	important	system	design
principle	known	as	separating	policy	and	mechanism.	The	idea	is	to	view	each	mechanism	as	a	black	box	that
provides	a	multifaceted	service	that	can	be	controlled	by	a	set	of	knobs.	A	policy	specifies	a	particular	setting	of
those	knobs	but	does	not	know	(or	care)	about	how	the	black	box	is	implemented.	In	this	case,	the	mechanism
in	question	is	the	queuing	discipline,	and	the	policy	is	a	particular	setting	of	which	flow	gets	what	level	of	service
(e.g.,	priority	or	weight).	We	discuss	some	policies	that	can	be	used	with	the	WFQ	mechanism	in	a	later
section.
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6.3	TCP	Congestion	Control

This	section	describes	the	predominant	example	of	end-to-end	congestion	control	in	use	today,	that	implemented	by
TCP.	The	essential	strategy	of	TCP	is	to	send	packets	into	the	network	without	a	reservation	and	then	to	react	to
observable	events	that	occur.	TCP	assumes	only	FIFO	queuing	in	the	network's	routers,	but	also	works	with	fair
queuing.

TCP	congestion	control	was	introduced	into	the	Internet	in	the	late	1980s	by	Van	Jacobson,	roughly	eight	years	after
the	TCP/IP	protocol	stack	had	become	operational.	Immediately	preceding	this	time,	the	Internet	was	suffering	from
congestion	collapse—hosts	would	send	their	packets	into	the	Internet	as	fast	as	the	advertised	window	would	allow,
congestion	would	occur	at	some	router	(causing	packets	to	be	dropped),	and	the	hosts	would	time	out	and	retransmit
their	packets,	resulting	in	even	more	congestion.

Broadly	speaking,	the	idea	of	TCP	congestion	control	is	for	each	source	to	determine	how	much	capacity	is	available
in	the	network,	so	that	it	knows	how	many	packets	it	can	safely	have	in	transit.	Once	a	given	source	has	this	many
packets	in	transit,	it	uses	the	arrival	of	an	ACK	as	a	signal	that	one	of	its	packets	has	left	the	network	and	that	it	is
therefore	safe	to	insert	a	new	packet	into	the	network	without	adding	to	the	level	of	congestion.	By	using	ACKs	to
pace	the	transmission	of	packets,	TCP	is	said	to	be	self-clocking.	Of	course,	determining	the	available	capacity	in	the
first	place	is	no	easy	task.	To	make	matters	worse,	because	other	connections	come	and	go,	the	available	bandwidth
changes	over	time,	meaning	that	any	given	source	must	be	able	to	adjust	the	number	of	packets	it	has	in	transit.	This
section	describes	the	algorithms	used	by	TCP	to	address	these	and	other	problems.

Note	that,	although	we	describe	the	TCP	congestion-control	mechanisms	one	at	a	time,	thereby	giving	the	impression
that	we	are	talking	about	three	independent	mechanisms,	it	is	only	when	they	are	taken	as	a	whole	that	we	have	TCP
congestion	control.	Also,	while	we	are	going	to	begin	here	with	the	variant	of	TCP	congestion	control	most	often
referred	to	as	standard	TCP,	we	will	see	that	there	are	actually	quite	a	few	variants	of	TCP	congestion	control	in	use
today,	and	researchers	continue	to	explore	new	approaches	to	addressing	this	problem.	Some	of	these	new
approaches	are	discussed	below.

Additive	Increase/Multiplicative	Decrease

TCP	maintains	a	new	state	variable	for	each	connection,	called		CongestionWindow	,	which	is	used	by	the	source	to	limit
how	much	data	it	is	allowed	to	have	in	transit	at	a	given	time.	The	congestion	window	is	congestion	control's
counterpart	to	flow	control's	advertised	window.	TCP	is	modified	such	that	the	maximum	number	of	bytes	of
unacknow-	ledged	data	allowed	is	now	the	minimum	of	the	congestion	window	and	the	advertised	window.	Thus,
using	the	variables	defined	in	the	previous	chapter,	TCP's	effective	window	is	revised	as	follows:

MaxWindow	=	MIN(CongestionWindow,	AdvertisedWindow)
EffectiveWindow	=	MaxWindow	-		(LastByteSent	-	LastByteAcked)

That	is,		MaxWindow		replaces		AdvertisedWindow		in	the	calculation	of		EffectiveWindow	.	Thus,	a	TCP	source	is	allowed	to
send	no	faster	than	the	slowest	component—the	network	or	the	destination	host—can	accommodate.

The	problem,	of	course,	is	how	TCP	comes	to	learn	an	appropriate	value	for		CongestionWindow	.	Unlike	the
	AdvertisedWindow	,	which	is	sent	by	the	receiving	side	of	the	connection,	there	is	no	one	to	send	a	suitable
	CongestionWindow		to	the	sending	side	of	TCP.	The	answer	is	that	the	TCP	source	sets	the		CongestionWindow		based	on
the	level	of	congestion	it	perceives	to	exist	in	the	network.	This	involves	decreasing	the	congestion	window	when	the
level	of	congestion	goes	up	and	increasing	the	congestion	window	when	the	level	of	congestion	goes	down.	Taken
together,	the	mechanism	is	commonly	called	additive	increase/multiplicative	decrease	(AIMD);	the	reason	for	this
mouthful	of	a	name	will	become	apparent	below.
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The	key	question,	then,	is	how	does	the	source	determine	that	the	network	is	congested	and	that	it	should	decrease
the	congestion	window?	The	answer	is	based	on	the	observation	that	the	main	reason	packets	are	not	delivered,	and
a	timeout	results,	is	that	a	packet	was	dropped	due	to	congestion.	It	is	rare	that	a	packet	is	dropped	because	of	an
error	during	transmission.	Therefore,	TCP	interprets	timeouts	as	a	sign	of	congestion	and	reduces	the	rate	at	which	it
is	transmitting.	Specifically,	each	time	a	timeout	occurs,	the	source	sets		CongestionWindow		to	half	of	its	previous	value.
This	halving	of	the		CongestionWindow		for	each	timeout	corresponds	to	the	"multiplicative	decrease"	part	of	AIMD.

Although		CongestionWindow		is	defined	in	terms	of	bytes,	it	is	easiest	to	understand	multiplicative	decrease	if	we	think	in
terms	of	whole	packets.	For	example,	suppose	the		CongestionWindow		is	currently	set	to	16	packets.	If	a	loss	is
detected,		CongestionWindow		is	set	to	8.	(Normally,	a	loss	is	detected	when	a	timeout	occurs,	but	as	we	see	below,	TCP
has	another	mechanism	to	detect	dropped	packets.)	Additional	losses	cause		CongestionWindow		to	be	reduced	to	4,
then	2,	and	finally	to	1	packet.		CongestionWindow		is	not	allowed	to	fall	below	the	size	of	a	single	packet,	or	in	TCP
terminology,	the	maximum	segment	size	.

Figure	1.	Packets	in	transit	during	additive	increase,	with	one	packet	being
added	each	RTT.

A	congestion-control	strategy	that	only	decreases	the	window	size	is	obviously	too	conservative.	We	also	need	to	be
able	to	increase	the	congestion	window	to	take	advantage	of	newly	available	capacity	in	the	network.	This	is	the
"additive	increase"	part	of	AIMD,	and	it	works	as	follows.	Every	time	the	source	successfully	sends	a
	CongestionWindow	's	worth	of	packets—that	is,	each	packet	sent	out	during	the	last	round-trip	time	(RTT)	has	been
ACKed—it	adds	the	equivalent	of	1	packet	to		CongestionWindow	.	This	linear	increase	is	illustrated	in	Figure	1.	Note	that,
in	practice,	TCP	does	not	wait	for	an	entire	window's	worth	of	ACKs	to	add	1	packet's	worth	to	the	congestion	window,
but	instead	increments		CongestionWindow		by	a	little	for	each	ACK	that	arrives.	Specifically,	the	congestion	window	is
incremented	as	follows	each	time	an	ACK	arrives:

Increment	=	MSS	x	(MSS/CongestionWindow)
CongestionWindow	+=	Increment

That	is,	rather	than	incrementing		CongestionWindow		by	an	entire		MSS		bytes	each	RTT,	we	increment	it	by	a	fraction	of
	MSS		every	time	an	ACK	is	received.	Assuming	that	each	ACK	acknowledges	the	receipt	of		MSS		bytes,	then	that
fraction	is	.
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Figure	2.	Typical	TCP	sawtooth	pattern.

This	pattern	of	continually	increasing	and	decreasing	the	congestion	window	continues	throughout	the	lifetime	of	the
connection.	In	fact,	if	you	plot	the	current	value	of		CongestionWindow		as	a	function	of	time,	you	get	a	sawtooth	pattern,
as	illustrated	in	Figure	2.	The	important	concept	to	understand	about	AIMD	is	that	the	source	is	willing	to	reduce	its
congestion	window	at	a	much	faster	rate	than	it	is	willing	to	increase	its	congestion	window.	This	is	in	contrast	to	an
additive	increase/additive	decrease	strategy	in	which	the	window	would	be	increased	by	1	packet	when	an	ACK
arrives	and	decreased	by	1	when	a	timeout	occurs.	It	has	been	shown	that	AIMD	is	a	necessary	condition	for	a
congestion-control	mechanism	to	be	stable	(see	the	Further	Reading	section).	One	intuitive	reason	to	decrease	the
window	aggressively	and	increase	it	conservatively	is	that	the	consequences	of	having	too	large	a	window	are	much
worse	than	those	of	it	being	too	small.	For	example,	when	the	window	is	too	large,	packets	that	are	dropped	will	be
retransmitted,	making	congestion	even	worse;	thus,	it	is	important	to	get	out	of	this	state	quickly.

Finally,	since	a	timeout	is	an	indication	of	congestion	that	triggers	multiplicative	decrease,	TCP	needs	the	most
accurate	timeout	mechanism	it	can	afford.	We	already	covered	TCP's	timeout	mechanism	in	an	earlier	chapter,	so	we
do	not	repeat	it	here.	The	two	main	things	to	remember	about	that	mechanism	are	that	(1)	timeouts	are	set	as	a
function	of	both	the	average	RTT	and	the	standard	deviation	in	that	average,	and	(2)	due	to	the	cost	of	measuring
each	transmission	with	an	accurate	clock,	TCP	only	samples	the	round-trip	time	once	per	RTT	(rather	than	once	per
packet)	using	a	coarse-grained	(500-ms)	clock.

Slow	Start
The	additive	increase	mechanism	just	described	is	the	right	approach	to	use	when	the	source	is	operating	close	to	the
available	capacity	of	the	network,	but	it	takes	too	long	to	ramp	up	a	connection	when	it	is	starting	from	scratch.	TCP
therefore	provides	a	second	mechanism,	ironically	called	slow	start,	which	is	used	to	increase	the	congestion	window
rapidly	from	a	cold	start.	Slow	start	effectively	increases	the	congestion	window	exponentially,	rather	than	linearly.

Specifically,	the	source	starts	out	by	setting		CongestionWindow		to	one	packet.	When	the	ACK	for	this	packet	arrives,
TCP	adds	1	to		CongestionWindow		and	then	sends	two	packets.	Upon	receiving	the	corresponding	two	ACKs,	TCP
increments		CongestionWindow		by	2—one	for	each	ACK—and	next	sends	four	packets.	The	end	result	is	that	TCP
effectively	doubles	the	number	of	packets	it	has	in	transit	every	RTT.	Figure	3	shows	the	growth	in	the	number	of
packets	in	transit	during	slow	start.	Compare	this	to	the	linear	growth	of	additive	increase	illustrated	in	Figure	1.
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Figure	3.	Packets	in	transit	during	slow	start.

Why	any	exponential	mechanism	would	be	called	"slow"	is	puzzling	at	first,	but	it	can	be	explained	if	put	in	the	proper
historical	context.	We	need	to	compare	slow	start	not	against	the	linear	mechanism	of	the	previous	subsection,	but
against	the	original	behavior	of	TCP.	Consider	what	happens	when	a	connection	is	established	and	the	source	first
starts	to	send	packets—that	is,	when	it	currently	has	no	packets	in	transit.	If	the	source	sends	as	many	packets	as	the
advertised	window	allows—which	is	exactly	what	TCP	did	before	slow	start	was	developed—then	even	if	there	is	a
fairly	large	amount	of	bandwidth	available	in	the	network,	the	routers	may	not	be	able	to	consume	this	burst	of
packets.	It	all	depends	on	how	much	buffer	space	is	available	at	the	routers.	Slow	start	was	therefore	designed	to
space	packets	out	so	that	this	burst	does	not	occur.	In	other	words,	even	though	its	exponential	growth	is	faster	than
linear	growth,	slow	start	is	much	"slower"	than	sending	an	entire	advertised	window's	worth	of	data	all	at	once.

There	are	actually	two	different	situations	in	which	slow	start	runs.	The	first	is	at	the	very	beginning	of	a	connection,	at
which	time	the	source	has	no	idea	how	many	packets	it	is	going	to	be	able	to	have	in	transit	at	a	given	time.	(Keep	in
mind	that	today	TCP	runs	over	everything	from	1-Mbps	links	to	40-Gbps	links,	so	there	is	no	way	for	the	source	to
know	the	network's	capacity.)	In	this	situation,	slow	start	continues	to	double		CongestionWindow		each	RTT	until	there	is
a	loss,	at	which	time	a	timeout	causes	multiplicative	decrease	to	divide		CongestionWindow		by	2.

The	second	situation	in	which	slow	start	is	used	is	a	bit	more	subtle;	it	occurs	when	the	connection	goes	dead	while
waiting	for	a	timeout	to	occur.	Recall	how	TCP's	sliding	window	algorithm	works—when	a	packet	is	lost,	the	source
eventually	reaches	a	point	where	it	has	sent	as	much	data	as	the	advertised	window	allows,	and	so	it	blocks	while
waiting	for	an	ACK	that	will	not	arrive.	Eventually,	a	timeout	happens,	but	by	this	time	there	are	no	packets	in	transit,
meaning	that	the	source	will	receive	no	ACKs	to	"clock"	the	transmission	of	new	packets.	The	source	will	instead
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receive	a	single	cumulative	ACK	that	reopens	the	entire	advertised	window,	but,	as	explained	above,	the	source	then
uses	slow	start	to	restart	the	flow	of	data	rather	than	dumping	a	whole	window's	worth	of	data	on	the	network	all	at
once.

Although	the	source	is	using	slow	start	again,	it	now	knows	more	information	than	it	did	at	the	beginning	of	a
connection.	Specifically,	the	source	has	a	current	(and	useful)	value	of		CongestionWindow	;	this	is	the	value	of
	CongestionWindow		that	existed	prior	to	the	last	packet	loss,	divided	by	2	as	a	result	of	the	loss.	We	can	think	of	this	as
the	target	congestion	window.	Slow	start	is	used	to	rapidly	increase	the	sending	rate	up	to	this	value,	and	then
additive	increase	is	used	beyond	this	point.	Notice	that	we	have	a	small	bookkeeping	problem	to	take	care	of,	in	that
we	want	to	remember	the	target	congestion	window	resulting	from	multiplicative	decrease	as	well	as	the	actual
congestion	window	being	used	by	slow	start.	To	address	this	problem,	TCP	introduces	a	temporary	variable	to	store
the	target	window,	typically	called		CongestionThreshold	,	that	is	set	equal	to	the		CongestionWindow		value	that	results	from
multiplicative	decrease.	The	variable		CongestionWindow		is	then	reset	to	one	packet,	and	it	is	incremented	by	one	packet
for	every	ACK	that	is	received	until	it	reaches		CongestionThreshold	,	at	which	point	it	is	incremented	by	one	packet	per
RTT.

In	other	words,	TCP	increases	the	congestion	window	as	defined	by	the	following	code	fragment:

{
				u_int				cw	=	state->CongestionWindow;
				u_int				incr	=	state->maxseg;

				if	(cw	>	state->CongestionThreshold)
								incr	=	incr	*	incr	/	cw;
				state->CongestionWindow	=	MIN(cw	+	incr,	TCP_MAXWIN);
}

where		state		represents	the	state	of	a	particular	TCP	connection	and	defines	an	upper	bound	on	how	large	the
congestion	window	is	allowed	to	grow.

Figure	4	traces	how	TCP's		CongestionWindow		increases	and	decreases	over	time	and	serves	to	illustrate	the	interplay
of	slow	start	and	additive	increase/multiplicative	decrease.	This	trace	was	taken	from	an	actual	TCP	connection	and
shows	the	current	value	of		CongestionWindow	—the	colored	line—over	time.

Figure	4.	Behavior	of	TCP	congestion	control.	Colored	line	=	value	of
CongestionWindow	over	time;	solid	bullets	at	top	of	graph	=	timeouts;	hash
marks	at	top	of	graph	=	time	when	each	packet	is	transmitted;	vertical	bars

=	time	when	a	packet	that	was	eventually	retransmitted	was	first
transmitted.

There	are	several	things	to	notice	about	this	trace.	The	first	is	the	rapid	increase	in	the	congestion	window	at	the
beginning	of	the	connection.	This	corresponds	to	the	initial	slow	start	phase.	The	slow	start	phase	continues	until
several	packets	are	lost	at	about	0.4	seconds	into	the	connection,	at	which	time		CongestionWindow		flattens	out	at	about
34	KB.	(Why	so	many	packets	are	lost	during	slow	start	is	discussed	below.)	The	reason	why	the	congestion	window
flattens	is	that	there	are	no	ACKs	arriving,	due	to	the	fact	that	several	packets	were	lost.	In	fact,	no	new	packets	are
sent	during	this	time,	as	denoted	by	the	lack	of	hash	marks	at	the	top	of	the	graph.	A	timeout	eventually	happens	at
approximately	2	seconds,	at	which	time	the	congestion	window	is	divided	by	2	(i.e.,	cut	from	approximately	34	KB	to
around	17	KB)	and		CongestionThreshold		is	set	to	this	value.	Slow	start	then	causes		CongestionWindow		to	be	reset	to	one
packet	and	to	start	ramping	up	from	there.
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There	is	not	enough	detail	in	the	trace	to	see	exactly	what	happens	when	a	couple	of	packets	are	lost	just	after	2
seconds,	so	we	jump	ahead	to	the	linear	increase	in	the	congestion	window	that	occurs	between	2	and	4	seconds.
This	corresponds	to	additive	increase.	At	about	4	seconds,		CongestionWindow		flattens	out,	again	due	to	a	lost	packet.
Now,	at	about	5.5	seconds:

1.	 A	timeout	happens,	causing	the	congestion	window	to	be	divided	by	2,	dropping	it	from	approximately	22	KB	to
11	KB,	and		CongestionThreshold		is	set	to	this	amount.

2.	 	CongestionWindow		is	reset	to	one	packet,	as	the	sender	enters	slow	start.

3.	 Slow	start	causes		CongestionWindow		to	grow	exponentially	until	it	reaches		CongestionThreshold	.

4.	 	CongestionWindow		then	grows	linearly.

The	same	pattern	is	repeated	at	around	8	seconds	when	another	timeout	occurs.

We	now	return	to	the	question	of	why	so	many	packets	are	lost	during	the	initial	slow	start	period.	At	this	point,	TCP	is
attempting	to	learn	how	much	bandwidth	is	available	on	the	network.	This	is	a	very	difficult	task.	If	the	source	is	not
aggressive	at	this	stage—for	example,	if	it	only	increases	the	congestion	window	linearly—then	it	takes	a	long	time	for
it	to	discover	how	much	bandwidth	is	available.	This	can	have	a	dramatic	impact	on	the	throughput	achieved	for	this
connection.	On	the	other	hand,	if	the	source	is	aggressive	at	this	stage,	as	TCP	is	during	exponential	growth,	then	the
source	runs	the	risk	of	having	half	a	window's	worth	of	packets	dropped	by	the	network.

To	see	what	can	happen	during	exponential	growth,	consider	the	situation	in	which	the	source	was	just	able	to
successfully	send	16	packets	through	the	network,	causing	it	to	double	its	congestion	window	to	32.	Suppose,
however,	that	the	network	happens	to	have	just	enough	capacity	to	support	16	packets	from	this	source.	The	likely
result	is	that	16	of	the	32	packets	sent	under	the	new	congestion	window	will	be	dropped	by	the	network;	actually,	this
is	the	worst-case	outcome,	since	some	of	the	packets	will	be	buffered	in	some	router.	This	problem	will	become
increasingly	severe	as	the	delay	×	bandwidth	product	of	networks	increases.	For	example,	a	delay	×	bandwidth
product	of	500	KB	means	that	each	connection	has	the	potential	to	lose	up	to	500	KB	of	data	at	the	beginning	of	each
connection.	Of	course,	this	assumes	that	both	the	source	and	the	destination	implement	the	"big	windows"	extension.

Alternatives	to	slow	start,	whereby	the	source	tries	to	estimate	the	available	bandwidth	by	more	sophisticated	means,
have	also	been	explored.	One	example	is	called	quick-start.	The	basic	idea	is	that	a	TCP	sender	can	ask	for	an	initial
sending	rate	greater	than	slow	start	would	allow	by	putting	a	requested	rate	in	its	SYN	packet	as	an	IP	option.	Routers
along	the	path	can	examine	the	option,	evaluate	the	current	level	of	congestion	on	the	outgoing	link	for	this	flow,	and
decide	if	that	rate	is	acceptable,	if	a	lower	rate	would	be	acceptable,	or	if	standard	slow	start	should	be	used.	By	the
time	the	SYN	reaches	the	receiver,	it	will	contain	either	a	rate	that	was	acceptable	to	all	routers	on	the	path	or	an
indication	that	one	or	more	routers	on	the	path	could	not	support	the	quick-start	request.	In	the	former	case,	the	TCP
sender	uses	that	rate	to	begin	transmission;	in	the	latter	case,	it	falls	back	to	standard	slow	start.	If	TCP	is	allowed	to
start	off	sending	at	a	higher	rate,	a	session	could	more	quickly	reach	the	point	of	filling	the	pipe,	rather	than	taking
many	round-trip	times	to	do	so.

Clearly	one	of	the	challenges	to	this	sort	of	enhancement	to	TCP	is	that	it	requires	substantially	more	cooperation
from	the	routers	than	standard	TCP	does.	If	a	single	router	in	the	path	does	not	support	quick-start,	then	the	system
reverts	to	standard	slow	start.	Thus,	it	could	be	a	long	time	before	these	types	of	enhancements	could	make	it	into	the
Internet;	for	now,	they	are	more	likely	to	be	used	in	controlled	network	environments	(e.g.,	research	networks).

Fast	Retransmit	and	Fast	Recovery
The	mechanisms	described	so	far	were	part	of	the	original	proposal	to	add	congestion	control	to	TCP.	It	was	soon
discovered,	however,	that	the	coarse-grained	implementation	of	TCP	timeouts	led	to	long	periods	of	time	during	which
the	connection	went	dead	while	waiting	for	a	timer	to	expire.	Because	of	this,	a	new	mechanism	called	fast	retransmit
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was	added	to	TCP.	Fast	retransmit	is	a	heuristic	that	sometimes	triggers	the	retransmission	of	a	dropped	packet
sooner	than	the	regular	timeout	mechanism.	The	fast	retransmit	mechanism	does	not	replace	regular	timeouts;	it	just
enhances	that	facility.

The	idea	of	fast	retransmit	is	straightforward.	Every	time	a	data	packet	arrives	at	the	receiving	side,	the	receiver
responds	with	an	acknowledgment,	even	if	this	sequence	number	has	already	been	acknowledged.	Thus,	when	a
packet	arrives	out	of	order—when	TCP	cannot	yet	acknowledge	the	data	the	packet	contains	because	earlier	data
has	not	yet	arrived—TCP	resends	the	same	acknowledgment	it	sent	the	last	time.	This	second	transmission	of	the
same	acknowledgment	is	called	a	duplicate	ACK.	When	the	sending	side	sees	a	duplicate	ACK,	it	knows	that	the
other	side	must	have	received	a	packet	out	of	order,	which	suggests	that	an	earlier	packet	might	have	been	lost.
Since	it	is	also	possible	that	the	earlier	packet	has	only	been	delayed	rather	than	lost,	the	sender	waits	until	it	sees
some	number	of	duplicate	ACKs	and	then	retransmits	the	missing	packet.	In	practice,	TCP	waits	until	it	has	seen
three	duplicate	ACKs	before	retransmitting	the	packet.

Figure	5.	Fast	retransmit	based	on	duplicate	ACKs.

Figure	5	illustrates	how	duplicate	ACKs	lead	to	a	fast	retransmit.	In	this	example,	the	destination	receives	packets	1
and	2,	but	packet	3	is	lost	in	the	network.	Thus,	the	destination	will	send	a	duplicate	ACK	for	packet	2	when	packet	4
arrives,	again	when	packet	5	arrives,	and	so	on.	(To	simplify	this	example,	we	think	in	terms	of	packets	1,	2,	3,	and	so
on,	rather	than	worrying	about	the	sequence	numbers	for	each	byte.)	When	the	sender	sees	the	third	duplicate	ACK
for	packet	2—the	one	sent	because	the	receiver	had	gotten	packet	6—it	retransmits	packet	3.	Note	that	when	the
retransmitted	copy	of	packet	3	arrives	at	the	destination,	the	receiver	then	sends	a	cumulative	ACK	for	everything	up
to	and	including	packet	6	back	to	the	source.
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Figure	6.	Trace	of	TCP	with	fast	retransmit.	Colored	line	=
CongestionWindow;	solid	bullet	=	timeout;	hash	marks	=	time	when	each

packet	is	transmitted;	vertical	bars	=	time	when	a	packet	that	was
eventually	retransmitted	was	first	transmitted.

Figure	6	illustrates	the	behavior	of	a	version	of	TCP	with	the	fast	retransmit	mechanism.	It	is	interesting	to	compare
this	trace	with	that	given	in	Figure	4,	where	fast	retransmit	was	not	implemented—the	long	periods	during	which	the
congestion	window	stays	flat	and	no	packets	are	sent	has	been	eliminated.	In	general,	this	technique	is	able	to
eliminate	about	half	of	the	coarse-grained	timeouts	on	a	typical	TCP	connection,	resulting	in	roughly	a	20%
improvement	in	the	throughput	over	what	could	otherwise	have	been	achieved.	Notice,	however,	that	the	fast
retransmit	strategy	does	not	eliminate	all	coarse-grained	timeouts.	This	is	because	for	a	small	window	size	there	will
not	be	enough	packets	in	transit	to	cause	enough	duplicate	ACKs	to	be	delivered.	Given	enough	lost	packets—for
example,	as	happens	during	the	initial	slow	start	phase—the	sliding	window	algorithm	eventually	blocks	the	sender
until	a	timeout	occurs.	In	practice,	TCP's	fast	retransmit	mechanism	can	detect	up	to	three	dropped	packets	per
window.

Finally,	there	is	one	last	improvement	we	can	make.	When	the	fast	retransmit	mechanism	signals	congestion,	rather
than	drop	the	congestion	window	all	the	way	back	to	one	packet	and	run	slow	start,	it	is	possible	to	use	the	ACKs	that
are	still	in	the	pipe	to	clock	the	sending	of	packets.	This	mechanism,	which	is	called	fast	recovery,	effectively	removes
the	slow	start	phase	that	happens	between	when	fast	retransmit	detects	a	lost	packet	and	additive	increase	begins.
For	example,	fast	recovery	avoids	the	slow	start	period	between	3.8	and	4	seconds	in	Figure	6	and	instead	simply
cuts	the	congestion	window	in	half	(from	22	KB	to	11	KB)	and	resumes	additive	increase.	In	other	words,	slow	start	is
only	used	at	the	beginning	of	a	connection	and	whenever	a	coarse-grained	timeout	occurs.	At	all	other	times,	the
congestion	window	is	following	a	pure	additive	increase/multiplicative	decrease	pattern.

TCP	CUBIC

A	variant	of	the	standard	TCP	algorithm	just	described,	called	CUBIC,	is	the	default	congestion	control	algorithm
distributed	with	Linux.	CUBIC’s	primary	goal	is	to	support	networks	with	large	delay	×	bandwidth	products,	which	are
sometimes	called	long-fat	networks.	Such	networks	suffer	from	the	original	TCP	algorithm	requiring	too	many	round-
trips	to	reach	the	available	capacity	of	the	end-to-end	path.	CUBIC	does	this	by	being	more	aggressive	in	how	it
increases	the	window	size,	but	of	course	the	trick	is	to	be	more	aggressive	without	being	so	aggressive	as	to
adversely	affect	other	flows.

One	important	aspect	of	CUBIC’s	approach	is	to	adjust	its	congestion	window	at	regular	intervals,	based	on	the
amount	of	time	that	has	elapsed	since	the	last	congestion	event	(e.g.,	the	arrival	of	a	duplicate	ACK),	rather	than	only
when	ACKs	arrive	(the	latter	being	a	function	of	RTT).	This	allows	CUBIC	to	behave	fairly	when	competing	with	short-
RTT	flows,	which	will	have	ACKs	arriving	more	frequently.

Figure	7.	Generic	cubic	function	illustrsting	the	change	in	the	congestion
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window	as	a	function	of	time.

The	second	important	aspect	of	CUBIC	is	its	use	of	a	cubic	function	to	adjust	the	congestion	window.	The	basic	idea
is	easiest	to	understand	by	looking	at	the	general	shape	of	a	cubic	function,	which	has	three	phases:	slowing	growth,
flatten	plateau,	increasing	growth.	A	generic	example	is	shown	in	Figure	7,	which	we	have	annotated	with	one	extra
piece	of	information:	the	maximum	congestion	window	size	achieved	just	before	the	last	congestion	event	as	a	target

(denoted	W ).	The	idea	is	to	start	fast	but	slow	the	growth	rate	as	you	get	close	to	W ,	be	cautious	and	have

near-zero	growth	when	close	to	W ,	and	then	increase	the	growth	rate	as	you	move	away	from	W .	The	latter

phase	is	essentially	probing	for	a	new	achievable	W .

Specifically,	CUBIC	computes	the	congestion	window	as	a	function	of	time	(t)	since	the	last	congestion	event

CWND(t) = C× (t− K) +W

where

K =

C	is	a	scaling	constant	and	β	is	the	multiplicative	decrease	factor.	CUBIC	sets	the	latter	to	0.7	rather	than	the	0.5	that
standard	TCP	uses.	Looking	back	at	Figure	7,	CUBIC	is	often	described	as	shifting	between	a	concave	function	to
being	convex	(whereas	standard	TCP's	additive	function	is	only	convex).

max max

max max
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3
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6.4	Advanced	Congestion	Control

This	section	explores	congestion	control	more	deeply.	In	doing	so,	it	is	important	to	understand	that	the	standard
TCP's	strategy	is	to	control	congestion	once	it	happens,	as	opposed	to	trying	to	avoid	congestion	in	the	first	place.	In
fact,	TCP	repeatedly	increases	the	load	it	imposes	on	the	network	in	an	effort	to	find	the	point	at	which	congestion
occurs,	and	then	it	backs	off	from	this	point.	Said	another	way,	TCP	needs	to	create	losses	to	find	the	available
bandwidth	of	the	connection.	An	appealing	alternative	is	to	predict	when	congestion	is	about	to	happen	and	then	to
reduce	the	rate	at	which	hosts	send	data	just	before	packets	start	being	discarded.	We	call	such	a	strategy	congestion
avoidance	to	distinguish	it	from	congestion	control,	but	it's	probably	most	accurate	to	think	of	"avoidance"	as	a	subset
of	"control."

We	describe	two	different	approaches	to	congestion-avoidance.	The	first	puts	a	small	amount	of	additional
functionality	into	the	router	to	assist	the	end	node	in	the	anticipation	of	congestion.	This	approach	is	often	referred	to
as	Active	Queue	Management	(AQM).	The	second	approach	attempts	to	avoid	congestion	purely	from	the	end	hosts.
This	approach	is	implemented	in	TCP,	making	it	variant	of	the	congestion	control	mechanisms	described	in	the
previous	section.

Active	Queue	Management	(DECbit,	RED,	ECN)

The	first	approach	requires	changes	to	routers,	which	has	never	been	the	Internet's	preferred	way	of	introducing	new
features,	but	nonetheless,	has	been	a	constant	source	of	consternation	over	the	last	20	years.	The	problem	is	that
while	it's	generally	agreed	that	routers	are	in	an	ideal	position	to	detect	the	onset	of	congestion—i.e.,	their	queues
start	to	fill	up—there	has	not	been	a	consensus	on	exactly	what	the	best	algorithm	is.	The	following	describes	two	of
the	classic	mechanisms,	and	concludes	with	a	brief	discussion	of	where	things	stand	today.

DECbit

The	first	mechanism	was	developed	for	use	on	the	Digital	Network	Architecture	(DNA),	a	connectionless	network	with
a	connection-oriented	transport	protocol.	This	mechanism	could,	therefore,	also	be	applied	to	TCP	and	IP.	As	noted
above,	the	idea	here	is	to	more	evenly	split	the	responsibility	for	congestion	control	between	the	routers	and	the	end
nodes.	Each	router	monitors	the	load	it	is	experiencing	and	explicitly	notifies	the	end	nodes	when	congestion	is	about
to	occur.	This	notification	is	implemented	by	setting	a	binary	congestion	bit	in	the	packets	that	flow	through	the	router,
hence	the	name	DECbit.	The	destination	host	then	copies	this	congestion	bit	into	the	ACK	it	sends	back	to	the	source.
Finally,	the	source	adjusts	its	sending	rate	so	as	to	avoid	congestion.	The	following	discussion	describes	the	algorithm
in	more	detail,	starting	with	what	happens	in	the	router.

A	single	congestion	bit	is	added	to	the	packet	header.	A	router	sets	this	bit	in	a	packet	if	its	average	queue	length	is
greater	than	or	equal	to	1	at	the	time	the	packet	arrives.	This	average	queue	length	is	measured	over	a	time	interval
that	spans	the	last	busy+idle	cycle,	plus	the	current	busy	cycle.	(The	router	is	busy	when	it	is	transmitting	and	idle
when	it	is	not.)	Figure	1	shows	the	queue	length	at	a	router	as	a	function	of	time.	Essentially,	the	router	calculates	the
area	under	the	curve	and	divides	this	value	by	the	time	interval	to	compute	the	average	queue	length.	Using	a	queue
length	of	1	as	the	trigger	for	setting	the	congestion	bit	is	a	trade-off	between	significant	queuing	(and	hence	higher
throughput)	and	increased	idle	time	(and	hence	lower	delay).	In	other	words,	a	queue	length	of	1	seems	to	optimize
the	power	function.
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Figure	1.	Computing	average	queue	length	at	a	router.

Now	turning	our	attention	to	the	host	half	of	the	mechanism,	the	source	records	how	many	of	its	packets	resulted	in
some	router	setting	the	congestion	bit.	In	particular,	the	source	maintains	a	congestion	window,	just	as	in	TCP,	and
watches	to	see	what	fraction	of	the	last	window's	worth	of	packets	resulted	in	the	bit	being	set.	If	less	than	50%	of	the
packets	had	the	bit	set,	then	the	source	increases	its	congestion	window	by	one	packet.	If	50%	or	more	of	the	last
window's	worth	of	packets	had	the	congestion	bit	set,	then	the	source	decreases	its	congestion	window	to	0.875	times
the	previous	value.	The	value	50%	was	chosen	as	the	threshold	based	on	analysis	that	showed	it	to	correspond	to	the
peak	of	the	power	curve.	The	"increase	by	1,	decrease	by	0.875"	rule	was	selected	because	additive
increase/multiplicative	decrease	makes	the	mechanism	stable.

Random	Early	Detection

A	second	mechanism,	called	random	early	detection	(RED),	is	similar	to	the	DECbit	scheme	in	that	each	router	is
programmed	to	monitor	its	own	queue	length	and,	when	it	detects	that	congestion	is	imminent,	to	notify	the	source	to
adjust	its	congestion	window.	RED,	invented	by	Sally	Floyd	and	Van	Jacobson	in	the	early	1990s,	differs	from	the
DECbit	scheme	in	two	major	ways.

The	first	is	that	rather	than	explicitly	sending	a	congestion	notification	message	to	the	source,	RED	is	most	commonly
implemented	such	that	it	implicitly	notifies	the	source	of	congestion	by	dropping	one	of	its	packets.	The	source	is,
therefore,	effectively	notified	by	the	subsequent	timeout	or	duplicate	ACK.	In	case	you	haven't	already	guessed,	RED
is	designed	to	be	used	in	conjunction	with	TCP,	which	currently	detects	congestion	by	means	of	timeouts	(or	some
other	means	of	detecting	packet	loss	such	as	duplicate	ACKs).	As	the	"early"	part	of	the	RED	acronym	suggests,	the
gateway	drops	the	packet	earlier	than	it	would	have	to,	so	as	to	notify	the	source	that	it	should	decrease	its
congestion	window	sooner	than	it	would	normally	have.	In	other	words,	the	router	drops	a	few	packets	before	it	has
exhausted	its	buffer	space	completely,	so	as	to	cause	the	source	to	slow	down,	with	the	hope	that	this	will	mean	it
does	not	have	to	drop	lots	of	packets	later	on.

The	second	difference	between	RED	and	DECbit	is	in	the	details	of	how	RED	decides	when	to	drop	a	packet	and
what	packet	it	decides	to	drop.	To	understand	the	basic	idea,	consider	a	simple	FIFO	queue.	Rather	than	wait	for	the
queue	to	become	completely	full	and	then	be	forced	to	drop	each	arriving	packet	(the	tail	drop	policy	of	the	previous
section),	we	could	decide	to	drop	each	arriving	packet	with	some	drop	probability	whenever	the	queue	length	exceeds
some	drop	level.	This	idea	is	called	early	random	drop.	The	RED	algorithm	defines	the	details	of	how	to	monitor	the
queue	length	and	when	to	drop	a	packet.

In	the	following	paragraphs,	we	describe	the	RED	algorithm	as	originally	proposed	by	Floyd	and	Jacobson.	We	note
that	several	modifications	have	since	been	proposed	both	by	the	inventors	and	by	other	researchers;	some	of	these
are	discussed	in	Further	Reading.	However,	the	key	ideas	are	the	same	as	those	presented	below,	and	most	current
implementations	are	close	to	the	algorithm	that	follows.

6.4	Advanced	Congestion	Control

279



First,	RED	computes	an	average	queue	length	using	a	weighted	running	average	similar	to	the	one	used	in	the
original	TCP	timeout	computation.	That	is,		AvgLen		is	computed	as

AvgLen	=	(1	-	Weight)	x	AvgLen	+	Weight	x	SampleLen

where	0	<		Weight		<	1	and		SampleLen		is	the	length	of	the	queue	when	a	sample	measurement	is	made.	In	most
software	implementations,	the	queue	length	is	measured	every	time	a	new	packet	arrives	at	the	gateway.	In
hardware,	it	might	be	calculated	at	some	fixed	sampling	interval.

The	reason	for	using	an	average	queue	length	rather	than	an	instantaneous	one	is	that	it	more	accurately	captures
the	notion	of	congestion.	Because	of	the	bursty	nature	of	Internet	traffic,	queues	can	become	full	very	quickly	and	then
become	empty	again.	If	a	queue	is	spending	most	of	its	time	empty,	then	it's	probably	not	appropriate	to	conclude	that
the	router	is	congested	and	to	tell	the	hosts	to	slow	down.	Thus,	the	weighted	running	average	calculation	tries	to
detect	long-lived	congestion,	as	indicated	in	the	right-hand	portion	of	Figure	2,	by	filtering	out	short-term	changes	in
the	queue	length.	You	can	think	of	the	running	average	as	a	low-pass	filter,	where		Weight		determines	the	time
constant	of	the	filter.	The	question	of	how	we	pick	this	time	constant	is	discussed	below.

Figure	2.	Weighted	running	average	queue	length.

Second,	RED	has	two	queue	length	thresholds	that	trigger	certain	activity:		MinThreshold		and		MaxThreshold	.	When	a
packet	arrives	at	the	gateway,	RED	compares	the	current		AvgLen		with	these	two	thresholds,	according	to	the
following	rules:

if	AvgLen	<=	MinThreshold
				queue	the	packet
if	MinThreshold	<	AvgLen	<	MaxThreshold
				calculate	probability	P
				drop	the	arriving	packet	with	probability	P
if	MaxThreshold	<=	AvgLen
				drop	the	arriving	packet

If	the	average	queue	length	is	smaller	than	the	lower	threshold,	no	action	is	taken,	and	if	the	average	queue	length	is
larger	than	the	upper	threshold,	then	the	packet	is	always	dropped.	If	the	average	queue	length	is	between	the	two
thresholds,	then	the	newly	arriving	packet	is	dropped	with	some	probability		P	.	This	situation	is	depicted	in	Figure	3.
The	approximate	relationship	between		P		and		AvgLen		is	shown	in	Figure	4.	Note	that	the	probability	of	drop	increases
slowly	when		AvgLen		is	between	the	two	thresholds,	reaching		MaxP		at	the	upper	threshold,	at	which	point	it	jumps	to
unity.	The	rationale	behind	this	is	that,	if		AvgLen		reaches	the	upper	threshold,	then	the	gentle	approach	(dropping	a
few	packets)	is	not	working	and	drastic	measures	are	called	for:	dropping	all	arriving	packets.	Some	research	has
suggested	that	a	smoother	transition	from	random	dropping	to	complete	dropping,	rather	than	the	discontinuous
approach	shown	here,	may	be	appropriate.
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Figure	3.	RED	thresholds	on	a	FIFO	queue.

Figure	4.	Drop	probability	function	for	RED.

Although	Figure	4	shows	the	probability	of	drop	as	a	function	only	of		AvgLen	,	the	situation	is	actually	a	little	more
complicated.	In	fact,		P		is	a	function	of	both		AvgLen		and	how	long	it	has	been	since	the	last	packet	was	dropped.
Specifically,	it	is	computed	as	follows:

TempP	=	MaxP	x	(AvgLen	-	MinThreshold)	/	(MaxThreshold	-	MinThreshold)
P	=	TempP/(1	-	count	x	TempP)

	TempP		is	the	variable	that	is	plotted	on	the	y-axis	in	Figure	4,		count		keeps	track	of	how	many	newly	arriving	packets
have	been	queued	(not	dropped),	and		AvgLen		has	been	between	the	two	thresholds.		P		increases	slowly	as		count	
increases,	thereby	making	a	drop	increasingly	likely	as	the	time	since	the	last	drop	increases.	This	makes	closely
spaced	drops	relatively	less	likely	than	widely	spaced	drops.	This	extra	step	in	calculating		P		was	introduced	by	the
inventors	of	RED	when	they	observed	that,	without	it,	the	packet	drops	were	not	well	distributed	in	time	but	instead
tended	to	occur	in	clusters.	Because	packet	arrivals	from	a	certain	connection	are	likely	to	arrive	in	bursts,	this
clustering	of	drops	is	likely	to	cause	multiple	drops	in	a	single	connection.	This	is	not	desirable,	since	only	one	drop
per	round-trip	time	is	enough	to	cause	a	connection	to	reduce	its	window	size,	whereas	multiple	drops	might	send	it
back	into	slow	start.

As	an	example,	suppose	that	we	set		MaxP		to	0.02	and		count		is	initialized	to	zero.	If	the	average	queue	length	were
halfway	between	the	two	thresholds,	then		TempP	,	and	the	initial	value	of		P	,	would	be	half	of		MaxP	,	or	0.01.	An
arriving	packet,	of	course,	has	a	99	in	100	chance	of	getting	into	the	queue	at	this	point.	With	each	successive	packet
that	is	not	dropped,		P		slowly	increases,	and	by	the	time	50	packets	have	arrived	without	a	drop,		P		would	have
doubled	to	0.02.	In	the	unlikely	event	that	99	packets	arrived	without	loss,		P		reaches	1,	guaranteeing	that	the	next
packet	is	dropped.	The	important	thing	about	this	part	of	the	algorithm	is	that	it	ensures	a	roughly	even	distribution	of
drops	over	time.
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The	intent	is	that,	if	RED	drops	a	small	percentage	of	packets	when		AvgLen		exceeds		MinThreshold	,	this	will	cause	a
few	TCP	connections	to	reduce	their	window	sizes,	which	in	turn	will	reduce	the	rate	at	which	packets	arrive	at	the
router.	All	going	well,		AvgLen		will	then	decrease	and	congestion	is	avoided.	The	queue	length	can	be	kept	short,	while
throughput	remains	high	since	few	packets	are	dropped.

Note	that,	because	RED	is	operating	on	a	queue	length	averaged	over	time,	it	is	possible	for	the	instantaneous	queue
length	to	be	much	longer	than		AvgLen	.	In	this	case,	if	a	packet	arrives	and	there	is	nowhere	to	put	it,	then	it	will	have
to	be	dropped.	When	this	happens,	RED	is	operating	in	tail	drop	mode.	One	of	the	goals	of	RED	is	to	prevent	tail	drop
behavior	if	possible.

The	random	nature	of	RED	confers	an	interesting	property	on	the	algorithm.	Because	RED	drops	packets	randomly,
the	probability	that	RED	decides	to	drop	a	particular	flow's	packet(s)	is	roughly	proportional	to	the	share	of	the
bandwidth	that	that	flow	is	currently	getting	at	that	router.	This	is	because	a	flow	that	is	sending	a	relatively	large
number	of	packets	is	providing	more	candidates	for	random	dropping.	Thus,	there	is	some	sense	of	fair	resource
allocation	built	into	RED,	although	it	is	by	no	means	precise.

Key	Takeaway

Note	that	a	fair	amount	of	analysis	has	gone	into	setting	the	various	RED	parameters—for	example,	and
	Weight	—all	in	the	name	of	optimizing	the	power	function	(throughput-to-delay	ratio).	The	performance	of	these
parameters	has	also	been	confirmed	through	simulation,	and	the	algorithm	has	been	shown	not	to	be	overly
sensitive	to	them.	It	is	important	to	keep	in	mind,	however,	that	all	of	this	analysis	and	simulation	hinges	on	a
particular	characterization	of	the	network	workload.	The	real	contribution	of	RED	is	a	mechanism	by	which	the
router	can	more	accurately	manage	its	queue	length.	Defining	precisely	what	constitutes	an	optimal	queue
length	depends	on	the	traffic	mix	and	is	still	a	subject	of	research,	with	real	information	now	being	gathered
from	operational	deployment	of	RED	in	the	Internet.

Consider	the	setting	of	the	two	thresholds,		MinThreshold		and		MaxThreshold	.	If	the	traffic	is	fairly	bursty,	then
	MinThreshold		should	be	sufficiently	large	to	allow	the	link	utilization	to	be	maintained	at	an	acceptably	high	level.	Also,
the	difference	between	the	two	thresholds	should	be	larger	than	the	typical	increase	in	the	calculated	average	queue
length	in	one	RTT.	Setting		MaxThreshold		to	twice		MinThreshold		seems	to	be	a	reasonable	rule	of	thumb	given	the
traffic	mix	on	today's	Internet.	In	addition,	since	we	expect	the	average	queue	length	to	hover	between	the	two
thresholds	during	periods	of	high	load,	there	should	be	enough	free	buffer	space	above		MaxThreshold		to	absorb	the
natural	bursts	that	occur	in	Internet	traffic	without	forcing	the	router	to	enter	tail	drop	mode.

We	noted	above	that		Weight		determines	the	time	constant	for	the	running	average	low-pass	filter,	and	this	gives	us	a
clue	as	to	how	we	might	pick	a	suitable	value	for	it.	Recall	that	RED	is	trying	to	send	signals	to	TCP	flows	by	dropping
packets	during	times	of	congestion.	Suppose	that	a	router	drops	a	packet	from	some	TCP	connection	and	then
immediately	forwards	some	more	packets	from	the	same	connection.	When	those	packets	arrive	at	the	receiver,	it
starts	sending	duplicate	ACKs	to	the	sender.	When	the	sender	sees	enough	duplicate	ACKs,	it	will	reduce	its	window
size.	So,	from	the	time	the	router	drops	a	packet	until	the	time	when	the	same	router	starts	to	see	some	relief	from	the
affected	connection	in	terms	of	a	reduced	window	size,	at	least	one	round-trip	time	must	elapse	for	that	connection.
There	is	probably	not	much	point	in	having	the	router	respond	to	congestion	on	time	scales	much	less	than	the	round-
trip	time	of	the	connections	passing	through	it.	As	noted	previously,	100	ms	is	not	a	bad	estimate	of	average	round-
trip	times	in	the	Internet.	Thus,		Weight		should	be	chosen	such	that	changes	in	queue	length	over	time	scales	much
less	than	100	ms	are	filtered	out.

Since	RED	works	by	sending	signals	to	TCP	flows	to	tell	them	to	slow	down,	you	might	wonder	what	would	happen	if
those	signals	are	ignored.	This	is	often	called	the	unresponsive	flow	problem.	Unresponsive	flows	use	more	than	their
fair	share	of	network	resources	and	could	cause	congestive	collapse	if	there	were	enough	of	them,	just	as	in	the	days
before	TCP	congestion	control.	Some	of	the	techniques	described	in	the	next	section	can	help	with	this	problem	by
isolating	certain	classes	of	traffic	from	others.	There	is	also	the	possibility	that	a	variant	of	RED	could	drop	more
heavily	from	flows	that	are	unresponsive	to	the	initial	hints	that	it	sends.
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Explicit	Congestion	Notification

RED	is	the	most	extensively	studied	AQM	mechanism,	but	it	has	not	been	widely	deployed,	due	in	part	to	the	fact	that
it	does	not	result	in	ideal	behavior	in	all	circumstances.	It	is,	however,	the	benchmark	for	understanding	AQM
behavior.	The	other	thing	that	came	out	of	RED	is	the	recognition	that	TCP	could	do	a	better	job	if	routers	were	to
send	a	more	explicit	congestion	signal.

That	is,	instead	of	dropping	a	packet	and	assuming	TCP	will	eventually	notice	(e.g.,	due	to	the	arrival	of	a	duplicate
ACK),	RED	(or	any	AQM	algorithm	for	that	matter)	can	do	a	better	job	if	it	instead	marks	the	packet	and	continues	to
send	it	along	its	way	to	the	destination.	This	idea	was	codified	in	changes	to	the	IP	and	TCP	headers	known	as
Explicit	Congestion	Notification	(ECN).

Specifically,	this	feedback	is	implemented	by	treating	two	bits	in	the	IP		TOS		field	as	ECN	bits.	One	bit	is	set	by	the
source	to	indicate	that	it	is	ECN-capable,	that	is,	able	to	react	to	a	congestion	notification.	This	is	called	the		ECT		bit
(ECN-Capable	Transport).	The	other	bit	is	set	by	routers	along	the	end-to-end	path	when	congestion	is	encountered,
as	computed	by	whatever	AQM	algorithm	it	is	running.	This	is	called	the		CE		bit	(Congestion	Encountered).

In	addition	to	these	two	bits	in	the	IP	header	(which	are	transport-agnostic),	ECN	also	includes	the	addition	of	two
optional	flags	to	the	TCP	header.	The	first,		ECE		(ECN-Echo),	communicates	from	the	receiver	to	the	sender	that	it
has	received	a	packet	with	the		CE		bit	set.	The	second,		CWR		(Congestion	Window	Reduced)	communicates	from	the
sender	to	the	receiver	that	it	has	reduced	the	congestion	window.

While	ECN	is	now	the	standard	interpretation	of	two	of	the	eight	bits	in	the		TOS		field	of	the	IP	header	and	support	for
ECN	is	highly	recommended,	it	is	not	required.	Moreover,	there	is	no	single	recommended	AQM	algorithm,	but
instead,	there	is	a	list	of	requirements	a	good	AQM	algorithm	should	meet.	Like	TCP	congestion	control	algorithms,
every	AQM	algorithm	has	its	advantages	and	disadvantages,	and	so	we	need	a	lot	of	them.	There	is	one	particular
scenario,	however,	where	the	TCP	congestion	control	algorithm	and	AQM	algorithm	are	designed	to	work	in	concert:
the	datacenter.	We	return	to	this	use	case	at	the	end	of	this	section.

Source-Based	Approaches	(Vegas,	BBR,	DCTCP)

Unlike	the	previous	congestion-avoidance	schemes,	which	depended	on	cooperation	from	routers,	we	now	describe	a
strategy	for	detecting	the	incipient	stages	of	congestion—before	losses	occur—from	the	end	hosts.	We	first	give	a
brief	overview	of	a	collection	of	related	mechanisms	that	use	different	information	to	detect	the	early	stages	of
congestion,	and	then	we	describe	two	specific	mechanisms	in	more	detail.

The	general	idea	of	these	techniques	is	to	watch	for	a	sign	from	the	network	that	some	router's	queue	is	building	up
and	that	congestion	will	happen	soon	if	nothing	is	done	about	it.	For	example,	the	source	might	notice	that	as	packet
queues	build	up	in	the	network's	routers,	there	is	a	measurable	increase	in	the	RTT	for	each	successive	packet	it
sends.	One	particular	algorithm	exploits	this	observation	as	follows:	The	congestion	window	normally	increases	as	in
TCP,	but	every	two	round-trip	delays	the	algorithm	checks	to	see	if	the	current	RTT	is	greater	than	the	average	of	the
minimum	and	maximum	RTTs	seen	so	far.	If	it	is,	then	the	algorithm	decreases	the	congestion	window	by	one-eighth.

A	second	algorithm	does	something	similar.	The	decision	as	to	whether	or	not	to	change	the	current	window	size	is
based	on	changes	to	both	the	RTT	and	the	window	size.	The	window	is	adjusted	once	every	two	round-trip	delays
based	on	the	product

(CurrentWindow	-	OldWindow)	x	(CurrentRTT	-	OldRTT)

If	the	result	is	positive,	the	source	decreases	the	window	size	by	one-eighth;	if	the	result	is	negative	or	0,	the	source
increases	the	window	by	one	maximum	packet	size.	Note	that	the	window	changes	during	every	adjustment;	that	is,	it
oscillates	around	its	optimal	point.
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Another	change	seen	as	the	network	approaches	congestion	is	the	flattening	of	the	sending	rate.	A	third	scheme
takes	advantage	of	this	fact.	Every	RTT,	it	increases	the	window	size	by	one	packet	and	compares	the	throughput
achieved	to	the	throughput	when	the	window	was	one	packet	smaller.	If	the	difference	is	less	than	one-half	the
throughput	achieved	when	only	one	packet	was	in	transit—as	was	the	case	at	the	beginning	of	the	connection—the
algorithm	decreases	the	window	by	one	packet.	This	scheme	calculates	the	throughput	by	dividing	the	number	of
bytes	outstanding	in	the	network	by	the	RTT.

TCP	Vegas

The	mechanism	we	are	going	to	describe	in	more	detail	is	similar	to	the	last	algorithm	in	that	it	looks	at	changes	in	the
throughput	rate	or,	more	specifically,	changes	in	the	sending	rate.	However,	it	differs	from	the	previous	algorithm	in
the	way	it	calculates	throughput,	and	instead	of	looking	for	a	change	in	the	slope	of	the	throughput	it	compares	the
measured	throughput	rate	with	an	expected	throughput	rate.	The	algorithm,	TCP	Vegas,	is	not	widely	deployed	in	the
Internet	today,	but	the	strategy	it	uses	has	been	adopted	by	other	implementations	that	are	now	being	deployed.

The	intuition	behind	the	Vegas	algorithm	can	be	seen	in	the	trace	of	standard	TCP	given	in	Figure	5.	The	top	graph
shown	in	Figure	5	traces	the	connection's	congestion	window;	it	shows	the	same	information	as	the	traces	given
earlier	in	this	section.	The	middle	and	bottom	graphs	depict	new	information:	The	middle	graph	shows	the	average
sending	rate	as	measured	at	the	source,	and	the	bottom	graph	shows	the	average	queue	length	as	measured	at	the
bottleneck	router.	All	three	graphs	are	synchronized	in	time.	In	the	period	between	4.5	and	6.0	seconds	(shaded
region),	the	congestion	window	increases	(top	graph).	We	expect	the	observed	throughput	to	also	increase,	but
instead	it	stays	flat	(middle	graph).	This	is	because	the	throughput	cannot	increase	beyond	the	available	bandwidth.
Beyond	this	point,	any	increase	in	the	window	size	only	results	in	packets	taking	up	buffer	space	at	the	bottleneck
router	(bottom	graph).

Figure	5.	Congestion	window	versus	observed	throughput	rate	(the	three
graphs	are	synchronized).	Top,	congestion	window;	middle,	observed
throughput;	bottom,	buffer	space	taken	up	at	the	router.	Colored	line	=	

;	solid	bullet	=	timeout;	hash	marks	=	time
when	each	packet	is	transmitted;	vertical	bars	=	time	when	a	packet	that

was	eventually	retransmitted	was	first	transmitted.

A	useful	metaphor	that	describes	the	phenomenon	illustrated	in	Figure	5	is	driving	on	ice.	The	speedometer
(congestion	window)	may	say	that	you	are	going	30	miles	an	hour,	but	by	looking	out	the	car	window	and	seeing
people	pass	you	on	foot	(measured	sending	rate)	you	know	that	you	are	going	no	more	than	5	miles	an	hour.	The
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extra	energy	is	being	absorbed	by	the	car's	tires	(router	buffers).

TCP	Vegas	uses	this	idea	to	measure	and	control	the	amount	of	extra	data	this	connection	has	in	transit,	where	by
"extra	data"	we	mean	data	that	the	source	would	not	have	transmitted	had	it	been	trying	to	match	exactly	the	available
bandwidth	of	the	network.	The	goal	of	TCP	Vegas	is	to	maintain	the	"right"	amount	of	extra	data	in	the	network.
Obviously,	if	a	source	is	sending	too	much	extra	data,	it	will	cause	long	delays	and	possibly	lead	to	congestion.	Less
obviously,	if	a	connection	is	sending	too	little	extra	data,	it	cannot	respond	rapidly	enough	to	transient	increases	in	the
available	network	bandwidth.	TCP	Vegas's	congestion-avoidance	actions	are	based	on	changes	in	the	estimated
amount	of	extra	data	in	the	network,	not	only	on	dropped	packets.	We	now	describe	the	algorithm	in	detail.

First,	define	a	given	flow's		BaseRTT		to	be	the	RTT	of	a	packet	when	the	flow	is	not	congested.	In	practice,	TCP	Vegas
sets		BaseRTT		to	the	minimum	of	all	measured	round-trip	times;	it	is	commonly	the	RTT	of	the	first	packet	sent	by	the
connection,	before	the	router	queues	increase	due	to	traffic	generated	by	this	flow.	If	we	assume	that	we	are	not
overflowing	the	connection,	then	the	expected	throughput	is	given	by

ExpectedRate	=	CongestionWindow	/	BaseRTT

where		CongestionWindow		is	the	TCP	congestion	window,	which	we	assume	(for	the	purpose	of	this	discussion)	to	be
equal	to	the	number	of	bytes	in	transit.

Second,	TCP	Vegas	calculates	the	current	sending	rate,		ActualRate	.	This	is	done	by	recording	the	sending	time	for	a
distinguished	packet,	recording	how	many	bytes	are	transmitted	between	the	time	that	packet	is	sent	and	when	its
acknowledgment	is	received,	computing	the	sample	RTT	for	the	distinguished	packet	when	its	acknowledgment
arrives,	and	dividing	the	number	of	bytes	transmitted	by	the	sample	RTT.	This	calculation	is	done	once	per	round-trip
time.

Third,	TCP	Vegas	compares		ActualRate		to		ExpectedRate		and	adjusts	the	window	accordingly.	We	let		Diff	=
ExpectedRate	-	ActualRate	.	Note	that		Diff		is	positive	or	0	by	definition,	since		ActualRate	>ExpectedRate		implies	that	we
need	to	change		BaseRTT		to	the	latest	sampled	RTT.	We	also	define	two	thresholds,	α < β,	roughly	corresponding	to
having	too	little	and	too	much	extra	data	in	the	network,	respectively.	When		Diff		<	α,	TCP	Vegas	increases	the
congestion	window	linearly	during	the	next	RTT,	and	when		Diff		>	β,	TCP	Vegas	decreases	the	congestion	window
linearly	during	the	next	RTT.	TCP	Vegas	leaves	the	congestion	window	unchanged	when	α	<		Diff		<	β.

Intuitively,	we	can	see	that	the	farther	away	the	actual	throughput	gets	from	the	expected	throughput,	the	more
congestion	there	is	in	the	network,	which	implies	that	the	sending	rate	should	be	reduced.	The	β	threshold	triggers
this	decrease.	On	the	other	hand,	when	the	actual	throughput	rate	gets	too	close	to	the	expected	throughput,	the
connection	is	in	danger	of	not	utilizing	the	available	bandwidth.	The	α	threshold	triggers	this	increase.	The	overall	goal
is	to	keep	between	α	and	β	extra	bytes	in	the	network.

Figure	6.	Trace	of	TCP	Vegas	congestion-avoidance	mechanism.	Top,
congestion	window;	bottom,	expected	(colored	line)	and	actual	(black	line)

throughput.	The	shaded	area	is	the	region	between	the	α	and	beta
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thresholds.

Figure	6	traces	the	TCP	Vegas	congestion-avoidance	algorithm.	The	top	graph	traces	the	congestion	window,
showing	the	same	information	as	the	other	traces	given	throughout	this	chapter.	The	bottom	graph	traces	the
expected	and	actual	throughput	rates	that	govern	how	the	congestion	window	is	set.	It	is	this	bottom	graph	that	best
illustrates	how	the	algorithm	works.	The	colored	line	tracks	the		ExpectedRate	,	while	the	black	line	tracks	the
	ActualRate	.	The	wide	shaded	strip	gives	the	region	between	the	α	and	β	thresholds;	the	top	of	the	shaded	strip	is	α
KBps	away	from		ExpectedRate	,	and	the	bottom	of	the	shaded	strip	is	β	KBps	away	from		ExpectedRate	.	The	goal	is	to
keep	the		ActualRate		between	these	two	thresholds,	within	the	shaded	region.	Whenever		ActualRate		falls	below	the
shaded	region	(i.e.,	gets	too	far	from		ExpectedRate	),	TCP	Vegas	decreases	the	congestion	window	because	it	fears
that	too	many	packets	are	being	buffered	in	the	network.	Likewise,	whenever		ActualRate		goes	above	the	shaded
region	(i.e.,	gets	too	close	to	the		ExpectedRate	),	TCP	Vegas	increases	the	congestion	window	because	it	fears	that	it	is
underutilizing	the	network.

Because	the	algorithm,	as	just	presented,	compares	the	difference	between	the	actual	and	expected	throughput	rates
to	the	α	and	β	thresholds,	these	two	thresholds	are	defined	in	terms	of	KBps.	However,	it	is	perhaps	more	accurate	to
think	in	terms	of	how	many	extra	buffers	the	connection	is	occupying	in	the	network.	For	example,	on	a	connection
with	a		BaseRTT		of	100	ms	and	a	packet	size	of	1	KB,	if	α	=	30	KBps	and	β	=	60	KBps,	then	we	can	think	of	α	as
specifying	that	the	connection	needs	to	be	occupying	at	least	3	extra	buffers	in	the	network	and	β	as	specifying	that
the	connection	should	occupy	no	more	than	6	extra	buffers	in	the	network.	In	practice,	a	setting	of	α	to	1	buffer	and	β
to	3	buffers	works	well.

Finally,	you	will	notice	that	TCP	Vegas	decreases	the	congestion	window	linearly,	seemingly	in	conflict	with	the	rule
that	multiplicative	decrease	is	needed	to	ensure	stability.	The	explanation	is	that	TCP	Vegas	does	use	multiplicative
decrease	when	a	timeout	occurs;	the	linear	decrease	just	described	is	an	early	decrease	in	the	congestion	window
that	should	happen	before	congestion	occurs	and	packets	start	being	dropped.

TCP	BBR

BBR	(Bottleneck	Bandwidth	and	RTT)	is	a	new	TCP	congestion	control	algorithm	developed	by	researchers	at
Google.	Like	Vegas,	BBR	is	delay	based,	which	means	it	tries	to	detect	buffer	growth	so	as	to	avoid	congestion	and
packet	loss.	Both	BBR	and	Vegas	use	the	minimum	RTT	and	maximum	RTT,	as	calculated	over	some	time	interval,
as	their	main	control	signals.

BBR	also	introduces	new	mechanisms	to	improve	performance,	including	packet	pacing,	bandwidth	probing,	and	RTT
probing.	Packet	pacing	spaces	the	packets	based	on	the	estimate	of	the	available	bandwidth.	This	eliminates	bursts
and	unnecessary	queueing,	which	results	in	a	better	feedback	signal.	BBR	also	periodically	increases	its	rate,	thereby
probing	the	available	bandwidth.	Similarly,	BBR	periodically	decreases	its	rate,	thereby	probing	for	a	new	minimum
RTT.	The	RTT	probing	mechanism	attempts	to	be	self-synchronizing,	which	is	to	say,	when	there	are	multiple	BBR
flows,	their	respective	RTT	probes	happen	at	the	same	time.	This	gives	a	more	accurate	view	of	the	actual
uncongested	path	RTT,	which	solves	one	of	the	major	issues	with	delay-based	congestion	control	mechanisms:
having	accurate	knowledge	of	the	uncongested	path	RTT.

BBR	is	actively	being	worked	on	and	rapidly	evolving.	One	major	focus	is	fairness.	For	example,	some	experiments
show	CUBIC	flows	get	100x	less	bandwidth	when	competing	with	BBR	flows,	and	other	experiments	show	that
unfairness	among	BBR	flows	is	even	possible.	Another	major	focus	is	avoiding	high	retransmission	rates,	where	in
some	cases	as	many	as	10%	of	packets	are	retransmitted.

DCTCP

We	conclude	with	an	example	of	a	situation	where	a	variant	of	the	TCP	congestion	control	algorithm	has	been
designed	to	work	in	concert	with	ECN:	in	cloud	datacenters.	The	combination	is	called	DCTCP,	which	stands	for	Data
Center	TCP.	The	situation	is	unique	in	that	a	datacenter	is	self-contained,	and	so	it	is	possible	to	deploy	a	tailor-made

6.4	Advanced	Congestion	Control

286



version	of	TCP	that	does	not	need	to	worry	about	treating	other	TCP	flows	fairly.	Datacenters	are	also	unique	in	that
they	are	built	using	low-cost	white-box	switches,	and	because	there	is	no	need	to	worry	about	long-fat	pipes	spanning
a	continent,	the	switches	are	typically	provisioned	without	an	excess	of	buffers.

The	idea	is	straightforward.	DCTCP	adapts	ECN	by	estimating	the	fraction	of	bytes	that	encounter	congestion	rather
than	simply	detecting	that	some	congestion	is	about	to	occur.	At	the	end	hosts,	DCTCP	then	scales	the	congestion
window	based	on	this	estimate.	The	standard	TCP	algorithm	still	kicks	in	should	a	packet	actually	be	lost.	The
approach	is	designed	to	achieve	high-burst	tolerance,	low	latency,	and	high	throughput	with	shallow-buffered
switches.

The	key	challenge	DCTCP	faces	is	to	estimate	the	fraction	of	bytes	encountering	congestion.	Each	switch	is	simple.	If
a	packet	arrives	and	the	switch	sees	the	queue	length	(K)	is	above	some	threshold;	e.g.,

K > (RTT× C)/7

where	C	is	the	link	rate	in	packets	per	second,	then	the	switch	sets	the	CE	bit	in	the	IP	header.	The	complexity	of
RED	is	not	required.

The	receiver	then	maintains	a	boolean	variable	for	every	flow,	which	we'll	denote		SeenCE	,	and	implements	the
following	state	machine	in	response	to	every	received	packet:

If	the	CE	bit	is	set	and		SeenCE=False	,	set		SeenCE		to	True	and	send	an	immediate	ACK.

If	the	CE	bit	is	not	set	and		SeenCE=True	,	set		SeenCE		to	False	and	send	an	immediate	ACK.

Otherwise,	ignore	the	CE	bit.

The	non-obvious	consequence	of	the	"otherwise"	case	is	that	the	receiver	continues	to	send	delayed	ACKs	once
every	n	packets,	whether	or	not	the	CE	bit	is	set.	This	has	proven	important	to	maintaining	high	performance.

Finally,	the	sender	computes	the	fraction	of	bytes	that	encountered	congestion	during	the	previous	observation
window	(usually	chosen	to	be	approximately	the	RTT),	as	the	ratio	of	the	total	bytes	transmitted	and	the	bytes
acknowledged	with	the	ECE	flag	set.	DCTCP	grows	the	congestion	window	in	exactly	the	same	way	as	the	standard
algorithm,	but	it	reduces	the	window	in	proportion	to	how	many	bytes	encountered	congestion	during	the	last
observation	window.
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6.5	Quality	of	Service

The	promise	of	general-purpose	packet-switched	networks	is	that	they	support	all	kinds	of	applications	and	data,
including	multimedia	applications	that	transmit	digitized	audio	and	video	streams.	In	the	early	days,	one	obstacle	to
the	fulfillment	of	this	promise	was	the	need	for	higher-bandwidth	links.	That	is	no	longer	an	issue,	but	there	is	more	to
transmitting	audio	and	video	over	a	network	than	just	providing	sufficient	bandwidth.

Participants	in	a	telephone	conversation,	for	example,	expect	to	be	able	to	converse	in	such	a	way	that	one	person
can	respond	to	something	said	by	the	other	and	be	heard	almost	immediately.	Thus,	the	timeliness	of	delivery	can	be
very	important.	We	refer	to	applications	that	are	sensitive	to	the	timeliness	of	data	as	real-time	applications.	Voice	and
video	applications	tend	to	be	the	canonical	examples,	but	there	are	others	such	as	industrial	control—you	would	like	a
command	sent	to	a	robot	arm	to	reach	it	before	the	arm	crashes	into	something.	Even	file	transfer	applications	can
have	timeliness	constraints,	such	as	a	requirement	that	a	database	update	complete	overnight	before	the	business
that	needs	the	data	resumes	on	the	next	day.

The	distinguishing	characteristic	of	real-time	applications	is	that	they	need	some	sort	of	assurance	from	the	network
that	data	is	likely	to	arrive	on	time	(for	some	definition	of	"on	time").	Whereas	a	non-real-time	application	can	use	an
end-to-end	retransmission	strategy	to	make	sure	that	data	arrives	correctly,	such	a	strategy	cannot	provide	timeliness:
Retransmission	only	adds	to	total	latency	if	data	arrives	late.	Timely	arrival	must	be	provided	by	the	network	itself	(the
routers),	not	just	at	the	network	edges	(the	hosts).	We	therefore	conclude	that	the	best-effort	model,	in	which	the
network	tries	to	deliver	your	data	but	makes	no	promises	and	leaves	the	cleanup	operation	to	the	edges,	is	not
sufficient	for	real-time	applications.	What	we	need	is	a	new	service	model,	in	which	applications	that	need	higher
assurances	can	ask	the	network	for	them.	The	network	may	then	respond	by	providing	an	assurance	that	it	will	do
better	or	perhaps	by	saying	that	it	cannot	promise	anything	better	at	the	moment.	Note	that	such	a	service	model	is	a
superset	of	the	original	model:	Applications	that	are	happy	with	best-effort	service	should	be	able	to	use	the	new
service	model;	their	requirements	are	just	less	stringent.	This	implies	that	the	network	will	treat	some	packets
differently	from	others—something	that	is	not	done	in	the	best-effort	model.	A	network	that	can	provide	these	different
levels	of	service	is	often	said	to	support	quality	of	service	(QoS).

Application	Requirements
Before	looking	at	the	various	protocols	and	mechanisms	that	may	be	used	to	provide	quality	of	service	to	applications,
we	should	try	to	understand	what	the	needs	of	those	applications	are.	To	begin,	we	can	divide	applications	into	two
types:	real-time	and	non-real-time.	The	latter	are	sometimes	called	traditional	data	applications,	since	they	have
traditionally	been	the	major	applications	found	on	data	networks.	They	include	most	popular	applications	like	SSH,	file
transfer,	email,	web	browsing,	and	so	on.	All	of	these	applications	can	work	without	guarantees	of	timely	delivery	of
data.	Another	term	for	this	non-real-time	class	of	applications	is	elastic,	since	they	are	able	to	stretch	gracefully	in	the
face	of	increased	delay.	Note	that	these	applications	can	benefit	from	shorter-length	delays,	but	they	do	not	become
unusable	as	delays	increase.	Also	note	that	their	delay	requirements	vary	from	the	interactive	applications	like	SSH	to
more	asynchronous	ones	like	email,	with	interactive	bulk	transfers	like	file	transfer	in	the	middle.

Figure	1.	An	audio	application.

Real-Time	Audio	Example
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As	a	concrete	example	of	a	real-time	application,	consider	an	audio	application	similar	to	the	one	illustrated	in	Figure
1.	Data	is	generated	by	collecting	samples	from	a	microphone	and	digitizing	them	using	an	analog-to-digital	(A-to-D)
converter.	The	digital	samples	are	placed	in	packets,	which	are	transmitted	across	the	network	and	received	at	the
other	end.	At	the	receiving	host,	the	data	must	be	played	back	at	some	appropriate	rate.	For	example,	if	the	voice
samples	were	collected	at	a	rate	of	one	per	125	μs,	they	should	be	played	back	at	the	same	rate.	Thus,	we	can	think
of	each	sample	as	having	a	particular	playback	time:	the	point	in	time	at	which	it	is	needed	in	the	receiving	host.	In	the
voice	example,	each	sample	has	a	playback	time	that	is	125	μs	later	than	the	preceding	sample.	If	data	arrives	after
its	appropriate	playback	time,	either	because	it	was	delayed	in	the	network	or	because	it	was	dropped	and
subsequently	retransmitted,	it	is	essentially	useless.	It	is	the	complete	worthlessness	of	late	data	that	characterizes
real-time	applications.	In	elastic	applications,	it	might	be	nice	if	data	turns	up	on	time,	but	we	can	still	use	it	when	it
does	not.

One	way	to	make	our	voice	application	work	would	be	to	make	sure	all	samples	take	exactly	the	same	amount	of	time
to	traverse	the	network.	Then,	since	samples	are	injected	at	a	rate	of	one	per	125	μs,	they	will	appear	at	the	receiver
at	the	same	rate,	ready	to	be	played	back.	However,	it	is	generally	difficult	to	guarantee	that	all	data	traversing	a
packet-switched	network	will	experience	exactly	the	same	delay.	Packets	encounter	queues	in	switches	or	routers,
and	the	lengths	of	these	queues	vary	with	time,	meaning	that	the	delays	tend	to	vary	with	time	and,	as	a
consequence,	are	potentially	different	for	each	packet	in	the	audio	stream.	The	way	to	deal	with	this	at	the	receiver
end	is	to	buffer	up	some	amount	of	data	in	reserve,	thereby	always	providing	a	store	of	packets	waiting	to	be	played
back	at	the	right	time.	If	a	packet	is	delayed	a	short	time,	it	goes	in	the	buffer	until	its	playback	time	arrives.	If	it	gets
delayed	a	long	time,	then	it	will	not	need	to	be	stored	for	very	long	in	the	receiver's	buffer	before	being	played	back.
Thus,	we	have	effectively	added	a	constant	offset	to	the	playback	time	of	all	packets	as	a	form	of	insurance.	We	call
this	offset	the	playback	point.	The	only	time	we	run	into	trouble	is	if	packets	get	delayed	in	the	network	for	such	a	long
time	that	they	arrive	after	their	playback	time,	causing	the	playback	buffer	to	be	drained.

The	operation	of	a	playback	buffer	is	illustrated	in	Figure	2.	The	left-hand	diagonal	line	shows	packets	being
generated	at	a	steady	rate.	The	wavy	line	shows	when	the	packets	arrive,	some	variable	amount	of	time	after	they
were	sent,	depending	on	what	they	encountered	in	the	network.	The	right-hand	diagonal	line	shows	the	packets	being
played	back	at	a	steady	rate,	after	sitting	in	the	playback	buffer	for	some	period	of	time.	As	long	as	the	playback	line	is
far	enough	to	the	right	in	time,	the	variation	in	network	delay	is	never	noticed	by	the	application.	However,	if	we	move
the	playback	line	a	little	to	the	left,	then	some	packets	will	begin	to	arrive	too	late	to	be	useful.

Figure	2.	A	playback	buffer.

For	our	audio	application,	there	are	limits	to	how	far	we	can	delay	playing	back	data.	It	is	hard	to	carry	on	a
conversation	if	the	time	between	when	you	speak	and	when	your	listener	hears	you	is	more	than	300	ms.	Thus,	what
we	want	from	the	network	in	this	case	is	a	guarantee	that	all	our	data	will	arrive	within	300	ms.	If	data	arrives	early,	we
buffer	it	until	its	correct	playback	time.	If	it	arrives	late,	we	have	no	use	for	it	and	must	discard	it.
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Figure	3.	Example	distribution	of	delays	for	an	Internet	connection.

To	get	a	better	appreciation	of	how	variable	network	delay	can	be,	Figure	3	shows	the	one-way	delay	measured	over
a	certain	path	across	the	Internet	over	the	course	of	one	particular	day.	While	the	exact	numbers	would	vary
depending	on	the	path	and	the	date,	the	key	factor	here	is	the	variability	of	the	delay,	which	is	consistently	found	on
almost	any	path	at	any	time.	As	denoted	by	the	cumulative	percentages	given	across	the	top	of	the	graph,	97%	of	the
packets	in	this	case	had	a	latency	of	100	ms	or	less.	This	means	that	if	our	example	audio	application	were	to	set	the
playback	point	at	100	ms,	then,	on	average,	3	out	of	every	100	packets	would	arrive	too	late	to	be	of	any	use.	One
important	thing	to	notice	about	this	graph	is	that	the	tail	of	the	curve—how	far	it	extends	to	the	right—is	very	long.	We
would	have	to	set	the	playback	point	at	over	200	ms	to	ensure	that	all	packets	arrived	in	time.

Taxonomy	of	Real-Time	Applications

Now	that	we	have	a	concrete	idea	of	how	real-time	applications	work,	we	can	look	at	some	different	classes	of
applications	that	serve	to	motivate	our	service	model.	The	following	taxonomy	owes	much	to	the	work	of	Clark,
Braden,	Shenker,	and	Zhang,	whose	papers	on	this	subject	can	be	found	in	the	Further	Reading	section	for	this
chapter.	The	taxonomy	of	applications	is	summarized	in	Figure	4.

Figure	4.	Taxonomy	of	applications.

The	first	characteristic	by	which	we	can	categorize	applications	is	their	tolerance	of	loss	of	data,	where	"loss"	might
occur	because	a	packet	arrived	too	late	to	be	played	back	as	well	as	arising	from	the	usual	causes	in	the	network.	On
the	one	hand,	one	lost	audio	sample	can	be	interpolated	from	the	surrounding	samples	with	relatively	little	effect	on
the	perceived	audio	quality.	It	is	only	as	more	and	more	samples	are	lost	that	quality	declines	to	the	point	that	the
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speech	becomes	incomprehensible.	On	the	other	hand,	a	robot	control	program	is	likely	to	be	an	example	of	a	real-
time	application	that	cannot	tolerate	loss—losing	the	packet	that	contains	the	command	instructing	the	robot	arm	to
stop	is	unacceptable.	Thus,	we	can	categorize	real-time	applications	as	tolerant	or	intolerant	depending	on	whether
they	can	tolerate	occasional	loss.	(As	an	aside,	note	that	many	real-time	applications	are	more	tolerant	of	occasional
loss	than	non-real-time	applications;	for	example,	compare	our	audio	application	to	file	transfer,	where	the
uncorrected	loss	of	one	bit	might	render	a	file	completely	useless.)

A	second	way	to	characterize	real-time	applications	is	by	their	adaptability.	For	example,	an	audio	application	might
be	able	to	adapt	to	the	amount	of	delay	that	packets	experience	as	they	traverse	the	network.	If	we	notice	that
packets	are	almost	always	arriving	within	300	ms	of	being	sent,	then	we	can	set	our	playback	point	accordingly,
buffering	any	packets	that	arrive	in	less	than	300	ms.	Suppose	that	we	subsequently	observe	that	all	packets	are
arriving	within	100	ms	of	being	sent.	If	we	moved	up	our	playback	point	to	100	ms,	then	the	users	of	the	application
would	probably	perceive	an	improvement.	The	process	of	shifting	the	playback	point	would	actually	require	us	to	play
out	samples	at	an	increased	rate	for	some	period	of	time.	With	a	voice	application,	this	can	be	done	in	a	way	that	is
barely	perceptible,	simply	by	shortening	the	silences	between	words.	Thus,	playback	point	adjustment	is	fairly	easy	in
this	case,	and	it	has	been	effectively	implemented	for	several	voice	applications	such	as	the	audio	teleconferencing
program	known	as		vat	.	Note	that	playback	point	adjustment	can	happen	in	either	direction,	but	that	doing	so	actually
involves	distorting	the	played-back	signal	during	the	period	of	adjustment,	and	that	the	effects	of	this	distortion	will
very	much	depend	on	how	the	end	user	uses	the	data.

Observe	that	if	we	set	our	playback	point	on	the	assumption	that	all	packets	will	arrive	within	100	ms	and	then	find
that	some	packets	are	arriving	slightly	late,	we	will	have	to	drop	them,	whereas	we	would	not	have	had	to	drop	them	if
we	had	left	the	playback	point	at	300	ms.	Thus,	we	should	advance	the	playback	point	only	when	it	provides	a
perceptible	advantage	and	only	when	we	have	some	evidence	that	the	number	of	late	packets	will	be	acceptably
small.	We	may	do	this	because	of	observed	recent	history	or	because	of	some	assurance	from	the	network.

We	call	applications	that	can	adjust	their	playback	point	delay-adaptive	applications.	Another	class	of	adaptive
applications	is	rate	adaptive.	For	example,	many	video	coding	algorithms	can	trade	off	bit	rate	versus	quality.	Thus,	if
we	find	that	the	network	can	support	a	certain	bandwidth,	we	can	set	our	coding	parameters	accordingly.	If	more
bandwidth	becomes	available	later,	we	can	change	parameters	to	increase	the	quality.

Approaches	to	QoS	Support

Considering	this	rich	space	of	application	requirements,	what	we	need	is	a	richer	service	model	that	meets	the	needs
of	any	application.	This	leads	us	to	a	service	model	with	not	just	one	class	(best	effort),	but	with	several	classes,	each
available	to	meet	the	needs	of	some	set	of	applications.	Towards	this	end,	we	are	now	ready	to	look	at	some	of	the
approaches	that	have	been	developed	to	provide	a	range	of	qualities	of	service.	These	can	be	divided	into	two	broad
categories:

Fine-grained	approaches,	which	provide	QoS	to	individual	applications	or	flows

Coarse-grained	approaches,	which	provide	QoS	to	large	classes	of	data	or	aggregated	traffic

In	the	first	category,	we	find	Integrated	Services,	a	QoS	architecture	developed	in	the	IETF	and	often	associated	with
the	Resource	Reservation	Protocol	(RSVP).	In	the	second	category	lies	Differentiated	Services,	which	is	probably	the
most	widely	deployed	QoS	mechanism	today.	We	discuss	these	in	turn	in	the	next	two	subsections.

Finally,	as	we	suggested	at	the	start	of	this	section,	adding	QoS	support	to	the	network	isn't	necessarily	the	entire
story	about	supporting	real-time	applications.	We	conclude	our	discussion	by	revisiting	what	the	end-host	might	do	to
better	support	real-time	streams,	independent	of	how	widely	deployed	QoS	mechanisms	like	Integrated	or
Differentiated	Services	become.

Integrated	Services	(RSVP)

6.5	Quality	of	Service

291



The	term	Integrated	Services	(often	called	IntServ	for	short)	refers	to	a	body	of	work	that	was	produced	by	the	IETF
around	1995-97.	The	IntServ	working	group	developed	specifications	of	a	number	of	service	classes	designed	to	meet
the	needs	of	some	of	the	application	types	described	above.	It	also	defined	how	RSVP	could	be	used	to	make
reservations	using	these	service	classes.	The	following	paragraphs	provide	an	overview	of	these	specifications	and
the	mechanisms	that	are	used	to	implement	them.

Service	Classes

One	of	the	service	classes	is	designed	for	intolerant	applications.	These	applications	require	that	a	packet	never
arrive	late.	The	network	should	guarantee	that	the	maximum	delay	that	any	packet	will	experience	has	some	specified
value;	the	application	can	then	set	its	playback	point	so	that	no	packet	will	ever	arrive	after	its	playback	time.	We
assume	that	early	arrival	of	packets	can	always	be	handled	by	buffering.	This	service	is	referred	to	as	the	guaranteed
service.

In	addition	to	the	guaranteed	service,	the	IETF	considered	several	other	services,	but	eventually	settled	on	one	to
meet	the	needs	of	tolerant,	adaptive	applications.	The	service	is	known	as	controlled	load	and	was	motivated	by	the
observation	that	existing	applications	of	this	type	run	quite	well	on	networks	that	are	not	heavily	loaded.	The	audio
application		vat	,	for	example,	adjusts	its	playback	point	as	network	delay	varies	and	produces	reasonable	audio
quality	as	long	as	loss	rates	remain	on	the	order	of	10%	or	less.

The	aim	of	the	controlled	load	service	is	to	emulate	a	lightly	loaded	network	for	those	applications	that	request	the
service,	even	though	the	network	as	a	whole	may	in	fact	be	heavily	loaded.	The	trick	to	this	is	to	use	a	queuing
mechanism	such	as	WFQ	to	isolate	the	controlled	load	traffic	from	the	other	traffic	and	some	form	of	admission	control
to	limit	the	total	amount	of	controlled	load	traffic	on	a	link	such	that	the	load	is	kept	reasonably	low.	We	discuss
admission	control	in	more	detail	below.

Clearly,	these	two	service	classes	are	a	subset	of	all	the	classes	that	might	be	provided.	In	fact,	other	services	were
specified	but	never	standardized	as	part	of	the	IETF's	work.	So	far,	the	two	services	described	above	(along	with
traditional	best	effort)	have	proven	flexible	enough	to	meet	the	needs	of	a	wide	range	of	applications.

Overview	of	Mechanisms

Now	that	we	have	augmented	our	best-effort	service	model	with	some	new	service	classes,	the	next	question	is	how
we	implement	a	network	that	provides	these	services	to	applications.	This	section	outlines	the	key	mechanisms.	Keep
in	mind	while	reading	this	section	that	the	mechanisms	being	described	are	still	being	hammered	out	by	the	Internet
design	community.	The	main	thing	to	take	away	from	the	discussion	is	a	general	understanding	of	the	pieces	involved
in	supporting	the	service	model	outlined	above.

First,	whereas	with	a	best-effort	service	we	can	just	tell	the	network	where	we	want	our	packets	to	go	and	leave	it	at
that,	a	real-time	service	involves	telling	the	network	something	more	about	the	type	of	service	we	require.	We	may
give	it	qualitative	information	such	as	"use	a	controlled	load	service"	or	quantitative	information	such	as	"I	need	a
maximum	delay	of	100	ms."	In	addition	to	describing	what	we	want,	we	need	to	tell	the	network	something	about	what
we	are	going	to	inject	into	it,	since	a	low-bandwidth	application	is	going	to	require	fewer	network	resources	than	a
high-bandwidth	application.	The	set	of	information	that	we	provide	to	the	network	is	referred	to	as	a	flowspec.	This
name	comes	from	the	idea	that	a	set	of	packets	associated	with	a	single	application	and	that	share	common
requirements	is	called	a	flow,	consistent	with	our	use	of	the	term	in	the	earlier	section	outlining	the	relevant	issues.

Second,	when	we	ask	the	network	to	provide	us	with	a	particular	service,	the	network	needs	to	decide	if	it	can	in	fact
provide	that	service.	For	example,	if	10	users	ask	for	a	service	in	which	each	will	consistently	use	2	Mbps	of	link
capacity,	and	they	all	share	a	link	with	10-Mbps	capacity,	the	network	will	have	to	say	no	to	some	of	them.	The
process	of	deciding	when	to	say	no	is	called	admission	control.
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Third,	we	need	a	mechanism	by	which	the	users	of	the	network	and	the	components	of	the	network	itself	exchange
information	such	as	requests	for	service,	flowspecs,	and	admission	control	decisions.	This	is	sometimes	called
signalling,	but	since	that	word	has	several	meanings,	we	refer	to	this	process	as	resource	reservation,	and	it	is
achieved	using	a	resource	reservation	protocol.

Finally,	when	flows	and	their	requirements	have	been	described,	and	admission	control	decisions	have	been	made,
the	network	switches	and	routers	need	to	meet	the	requirements	of	the	flows.	A	key	part	of	meeting	these
requirements	is	managing	the	way	packets	are	queued	and	scheduled	for	transmission	in	the	switches	and	routers.
This	last	mechanism	is	packet	scheduling.

Flowspecs

There	are	two	separable	parts	to	the	flowspec:	the	part	that	describes	the	flow's	traffic	characteristics	(called	the
TSpec)	and	the	part	that	describes	the	service	requested	from	the	network	(the	RSpec).	The	RSpec	is	very	service
specific	and	relatively	easy	to	describe.	For	example,	with	a	controlled	load	service,	the	RSpec	is	trivial:	The
application	just	requests	controlled	load	service	with	no	additional	parameters.	With	a	guaranteed	service,	you	could
specify	a	delay	target	or	bound.	(In	the	IETF's	guaranteed	service	specification,	you	specify	not	a	delay	but	another
quantity	from	which	delay	can	be	calculated.)

The	TSpec	is	a	little	more	complicated.	As	our	example	above	showed,	we	need	to	give	the	network	enough
information	about	the	bandwidth	used	by	the	flow	to	allow	intelligent	admission	control	decisions	to	be	made.	For	most
applications,	however,	the	bandwidth	is	not	a	single	number;	it	is	something	that	varies	constantly.	A	video
application,	for	example,	will	generally	generate	more	bits	per	second	when	the	scene	is	changing	rapidly	than	when	it
is	still.	Just	knowing	the	long-term	average	bandwidth	is	not	enough,	as	the	following	example	illustrates.	Suppose
that	we	have	10	flows	that	arrive	at	a	switch	on	separate	input	ports	and	that	all	leave	on	the	same	10-Mbps	link.
Assume	that	over	some	suitably	long	interval	each	flow	can	be	expected	to	send	no	more	than	1	Mbps.	You	might
think	that	this	presents	no	problem.	However,	if	these	are	variable	bit	rate	applications,	such	as	compressed	video,
then	they	will	occasionally	send	more	than	their	average	rates.	If	enough	sources	send	at	above	their	average	rates,
then	the	total	rate	at	which	data	arrives	at	the	switch	will	be	greater	than	10	Mbps.	This	excess	data	will	be	queued
before	it	can	be	sent	on	the	link.	The	longer	this	condition	persists,	the	longer	the	queue	will	get.	Packets	might	have
to	be	dropped	and,	even	if	it	doesn't	come	to	that,	data	sitting	in	the	queue	is	being	delayed.	If	packets	are	delayed
long	enough,	the	service	that	was	requested	will	not	be	provided.

Exactly	how	we	manage	our	queues	to	control	delay	and	avoid	dropping	packets	is	something	we	discuss	below.
However,	note	here	that	we	need	to	know	something	about	how	the	bandwidth	of	our	sources	varies	with	time.	One
way	to	describe	the	bandwidth	characteristics	of	sources	is	called	a	token	bucket	filter.	Such	a	filter	is	described	by
two	parameters:	a	token	rate	r,	and	a	bucket	depth	B.	It	works	as	follows.	To	be	able	to	send	a	byte,	I	must	have	a
token.	To	send	a	packet	of	length	n,	I	need	n	tokens.	I	start	with	no	tokens	and	I	accumulate	them	at	a	rate	of	r	per
second.	I	can	accumulate	no	more	than	B	tokens.	What	this	means	is	that	I	can	send	a	burst	of	as	many	as	B	bytes
into	the	network	as	fast	as	I	want,	but	over	a	sufficiently	long	interval	I	can't	send	more	than	r	bytes	per	second.	It
turns	out	that	this	information	is	very	helpful	to	the	admission	control	algorithm	when	it	tries	to	figure	out	whether	it	can
accommodate	a	new	request	for	service.
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Figure	5.	Two	flows	with	equal	average	rates	but	different	token	bucket
descriptions.

Figure	5	illustrates	how	a	token	bucket	can	be	used	to	characterize	a	flow's	bandwidth	requirements.	For	simplicity,
assume	that	each	flow	can	send	data	as	individual	bytes	rather	than	as	packets.	Flow	A	generates	data	at	a	steady
rate	of	1	MBps,	so	it	can	be	described	by	a	token	bucket	filter	with	a	rate	r = 1	MBps	and	a	bucket	depth	of	1	byte.
This	means	that	it	receives	tokens	at	a	rate	of	1	MBps	but	that	it	cannot	store	more	than	1	token—it	spends	them
immediately.	Flow	B	also	sends	at	a	rate	that	averages	out	to	1	MBps	over	the	long	term,	but	does	so	by	sending	at
0.5	MBps	for	2	seconds	and	then	at	2	MBps	for	1	second.	Since	the	token	bucket	rate	r	is,	in	a	sense,	a	long-term
average	rate,	flow	B	can	be	described	by	a	token	bucket	with	a	rate	of	1	MBps.	Unlike	flow	A,	however,	flow	B	needs
a	bucket	depth	B	of	at	least	1	MB,	so	that	it	can	store	up	tokens	while	it	sends	at	less	than	1	MBps	to	be	used	when	it
sends	at	2	MBps.	For	the	first	2	seconds	in	this	example,	it	receives	tokens	at	a	rate	of	1	MBps	but	spends	them	at
only	0.5	MBps,	so	it	can	save	up	2	×	0.5	=	1	MB	of	tokens,	which	it	then	spends	in	the	third	second	(along	with	the
new	tokens	that	continue	to	accrue	in	that	second)	to	send	data	at	2	MBps.	At	the	end	of	the	third	second,	having
spent	the	excess	tokens,	it	starts	to	save	them	up	again	by	sending	at	0.5	MBps	again.

It	is	interesting	to	note	that	a	single	flow	can	be	described	by	many	different	token	buckets.	As	a	trivial	example,	flow
A	could	be	described	by	the	same	token	bucket	as	flow	B,	with	a	rate	of	1	MBps	and	a	bucket	depth	of	1	MB.	The	fact
that	it	never	actually	needs	to	accumulate	tokens	does	not	make	that	an	inaccurate	description,	but	it	does	mean	that
we	have	failed	to	convey	some	useful	information	to	the	network—the	fact	that	flow	A	is	actually	very	consistent	in	its
bandwidth	needs.	In	general,	it	is	good	to	be	as	explicit	about	the	bandwidth	needs	of	an	application	as	possible	to
avoid	over-allocation	of	resources	in	the	network.

Admission	Control

The	idea	behind	admission	control	is	simple:	When	some	new	flow	wants	to	receive	a	particular	level	of	service,
admission	control	looks	at	the	TSpec	and	RSpec	of	the	flow	and	tries	to	decide	if	the	desired	service	can	be	provided
to	that	amount	of	traffic,	given	the	currently	available	resources,	without	causing	any	previously	admitted	flow	to
receive	worse	service	than	it	had	requested.	If	it	can	provide	the	service,	the	flow	is	admitted;	if	not,	then	it	is	denied.
The	hard	part	is	figuring	out	when	to	say	yes	and	when	to	say	no.

Admission	control	is	very	dependent	on	the	type	of	requested	service	and	on	the	queuing	discipline	employed	in	the
routers;	we	discuss	the	latter	topic	later	in	this	section.	For	a	guaranteed	service,	you	need	to	have	a	good	algorithm
to	make	a	definitive	yes/no	decision.	The	decision	is	fairly	straightforward	if	weighted	fair	queuing	is	used	at	each
router.	For	a	controlled	load	service,	the	decision	may	be	based	on	heuristics,	such	as	"The	last	time	I	allowed	a	flow
with	this	TSpec	into	this	class,	the	delays	for	the	class	exceeded	the	acceptable	bound,	so	I'd	better	say	no"	or	"My
current	delays	are	so	far	inside	the	bounds	that	I	should	be	able	to	admit	another	flow	without	difficulty."
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Admission	control	should	not	be	confused	with	policing.	The	former	is	a	per-flow	decision	to	admit	a	new	flow	or	not.
The	latter	is	a	function	applied	on	a	per-packet	basis	to	make	sure	that	a	flow	conforms	to	the	TSpec	that	was	used	to
make	the	reservation.	If	a	flow	does	not	conform	to	its	TSpec—for	example,	because	it	is	sending	twice	as	many
bytes	per	second	as	it	said	it	would—then	it	is	likely	to	interfere	with	the	service	provided	to	other	flows,	and	some
corrective	action	must	be	taken.	There	are	several	options,	the	obvious	one	being	to	drop	offending	packets.
However,	another	option	would	be	to	check	if	the	packets	really	are	interfering	with	the	service	of	other	flows.	If	they
are	not	interfering,	the	packets	could	be	sent	on	after	being	marked	with	a	tag	that	says,	in	effect,	"This	is	a
nonconforming	packet.	Drop	it	first	if	you	need	to	drop	any	packets."

Admission	control	is	closely	related	to	the	important	issue	of	policy.	For	example,	a	network	administrator	might	wish
to	allow	reservations	made	by	his	company's	CEO	to	be	admitted	while	rejecting	reservations	made	by	more	lowly
employees.	Of	course,	the	CEO's	reservation	request	might	still	fail	if	the	requested	resources	aren't	available,	so	we
see	that	issues	of	policy	and	resource	availability	may	both	be	addressed	when	admission	control	decisions	are
made.	The	application	of	policy	to	networking	is	an	area	receiving	much	attention	at	the	time	of	writing.

Reservation	Protocol

While	connection-oriented	networks	have	always	needed	some	sort	of	setup	protocol	to	establish	the	necessary
virtual	circuit	state	in	the	switches,	connectionless	networks	like	the	Internet	have	had	no	such	protocols.	As	this
section	has	indicated,	however,	we	need	to	provide	a	lot	more	information	to	our	network	when	we	want	a	real-time
service	from	it.	While	there	have	been	a	number	of	setup	protocols	proposed	for	the	Internet,	the	one	on	which	most
current	attention	is	focused	is	the	RSVP.	It	is	particularly	interesting	because	it	differs	so	substantially	from
conventional	signalling	protocols	for	connection-oriented	networks.

One	of	the	key	assumptions	underlying	RSVP	is	that	it	should	not	detract	from	the	robustness	that	we	find	in	today's
connectionless	networks.	Because	connectionless	networks	rely	on	little	or	no	state	being	stored	in	the	network	itself,
it	is	possible	for	routers	to	crash	and	reboot	and	for	links	to	go	up	and	down	while	end-to-end	connectivity	is	still
maintained.	RSVP	tries	to	maintain	this	robustness	by	using	the	idea	of	soft	state	in	the	routers.	Soft	state—in
contrast	to	the	hard	state	found	in	connection-oriented	networks—does	not	need	to	be	explicitly	deleted	when	it	is	no
longer	needed.	Instead,	it	times	out	after	some	fairly	short	period	(say,	a	minute)	if	it	is	not	periodically	refreshed.	We
will	see	later	how	this	helps	robustness.

Another	important	characteristic	of	RSVP	is	that	it	aims	to	support	multicast	flows	just	as	effectively	as	unicast	flows.
This	is	not	surprising,	since	many	of	the	first	applications	that	could	benefit	from	improved	quality	of	service	were	also
multicast	applications—	vat		and		vic	,	for	example.	One	of	the	insights	of	RSVP's	designers	is	that	most	multicast
applications	have	many	more	receivers	than	senders,	as	typified	by	the	large	audience	and	one	speaker	for	a	lecture.
Also,	receivers	may	have	different	requirements.	For	example,	one	receiver	might	want	to	receive	data	from	only	one
sender,	while	others	might	wish	to	receive	data	from	all	senders.	Rather	than	having	the	senders	keep	track	of	a
potentially	large	number	of	receivers,	it	makes	more	sense	to	let	the	receivers	keep	track	of	their	own	needs.	This
suggests	the	receiver-oriented	approach	adopted	by	RSVP.	In	contrast,	connection-oriented	networks	usually	leave
resource	reservation	to	the	sender,	just	as	it	is	normally	the	originator	of	a	phone	call	who	causes	resources	to	be
allocated	in	the	phone	network.

The	soft	state	and	receiver-oriented	nature	of	RSVP	give	it	a	number	of	good	properties.	One	such	property	is	that	it	is
very	straightforward	to	increase	or	decrease	the	level	of	resource	allocation	provided	to	a	receiver.	Since	each
receiver	periodically	sends	refresh	messages	to	keep	the	soft	state	in	place,	it	is	easy	to	send	a	new	reservation	that
asks	for	a	new	level	of	resources.	Further,	soft	state	deals	gracefully	with	the	possibility	of	network	or	node	failures.	In
the	event	of	a	host	crash,	resources	allocated	by	that	host	to	a	flow	will	naturally	time	out	and	be	released.	To	see
what	happens	in	the	event	of	a	router	or	link	failure,	we	need	to	look	a	little	more	closely	at	the	mechanics	of	making	a
reservation.
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Initially,	consider	the	case	of	one	sender	and	one	receiver	trying	to	get	a	reservation	for	traffic	flowing	between	them.
There	are	two	things	that	need	to	happen	before	a	receiver	can	make	the	reservation.	First,	the	receiver	needs	to
know	what	traffic	the	sender	is	likely	to	send	so	that	it	can	make	an	appropriate	reservation.	That	is,	it	needs	to	know
the	sender's	TSpec.	Second,	it	needs	to	know	what	path	the	packets	will	follow	from	sender	to	receiver,	so	that	it	can
establish	a	resource	reservation	at	each	router	on	the	path.	Both	of	these	requirements	can	be	met	by	sending	a
message	from	the	sender	to	the	receiver	that	contains	the	TSpec.	Obviously,	this	gets	the	TSpec	to	the	receiver.	The
other	thing	that	happens	is	that	each	router	looks	at	this	message	(called	a	PATH	message)	as	it	goes	past,	and	it
figures	out	the	reverse	path	that	will	be	used	to	send	reservations	from	the	receiver	back	to	the	sender	in	an	effort	to
get	the	reservation	to	each	router	on	the	path.	Building	the	multicast	tree	in	the	first	place	is	done	by	mechanisms
such	as	those	described	in	another	chapter.

Having	received	a	PATH	message,	the	receiver	sends	a	reservation	back	up	the	multicast	tree	in	a	RESV	message.
This	message	contains	the	sender's	TSpec	and	an	RSpec	describing	the	requirements	of	this	receiver.	Each	router	on
the	path	looks	at	the	reservation	request	and	tries	to	allocate	the	necessary	resources	to	satisfy	it.	If	the	reservation
can	be	made,	the	RESV	request	is	passed	on	to	the	next	router.	If	not,	an	error	message	is	returned	to	the	receiver
who	made	the	request.	If	all	goes	well,	the	correct	reservation	is	installed	at	every	router	between	the	sender	and	the
receiver.	As	long	as	the	receiver	wants	to	retain	the	reservation,	it	sends	the	same	RESV	message	about	once	every
30	seconds.

Now	we	can	see	what	happens	when	a	router	or	link	fails.	Routing	protocols	will	adapt	to	the	failure	and	create	a	new
path	from	sender	to	receiver.	PATH	messages	are	sent	about	every	30	seconds,	and	may	be	sent	sooner	if	a	router
detects	a	change	in	its	forwarding	table,	so	the	first	one	after	the	new	route	stabilizes	will	reach	the	receiver	over	the
new	path.	The	receiver's	next	RESV	message	will	follow	the	new	path	and,	if	all	goes	well,	establish	a	new	reservation
on	the	new	path.	Meanwhile,	the	routers	that	are	no	longer	on	the	path	will	stop	getting	RESV	messages,	and	these
reservations	will	time	out	and	be	released.	Thus,	RSVP	deals	quite	well	with	changes	in	topology,	as	long	as	routing
changes	are	not	excessively	frequent.

Figure	6.	Making	reservations	on	a	multicast	tree.

The	next	thing	we	need	to	consider	is	how	to	cope	with	multicast,	where	there	may	be	multiple	senders	to	a	group	and
multiple	receivers.	This	situation	is	illustrated	in	Figure	6.	First,	let's	deal	with	multiple	receivers	for	a	single	sender.	As
a	RESV	message	travels	up	the	multicast	tree,	it	is	likely	to	hit	a	piece	of	the	tree	where	some	other	receiver's
reservation	has	already	been	established.	It	may	be	the	case	that	the	resources	reserved	upstream	of	this	point	are
adequate	to	serve	both	receivers.	For	example,	if	receiver	A	has	already	made	a	reservation	that	provides	for	a
guaranteed	delay	of	less	than	100	ms,	and	the	new	request	from	receiver	B	is	for	a	delay	of	less	than	200	ms,	then	no
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new	reservation	is	required.	On	the	other	hand,	if	the	new	request	were	for	a	delay	of	less	than	50	ms,	then	the	router
would	first	need	to	see	if	it	could	accept	the	request;	if	so,	it	would	send	the	request	on	upstream.	The	next	time
receiver	A	asked	for	a	minimum	of	a	100-ms	delay,	the	router	would	not	need	to	pass	this	request	on.	In	general,
reservations	can	be	merged	in	this	way	to	meet	the	needs	of	all	receivers	downstream	of	the	merge	point.

If	there	are	also	multiple	senders	in	the	tree,	receivers	need	to	collect	the	TSpecs	from	all	senders	and	make	a
reservation	that	is	large	enough	to	accommodate	the	traffic	from	all	senders.	However,	this	may	not	mean	that	the
TSpecs	need	to	be	added	up.	For	example,	in	an	audioconference	with	10	speakers,	there	is	not	much	point	in
allocating	enough	resources	to	carry	10	audio	streams,	since	the	result	of	10	people	speaking	at	once	would	be
incomprehensible.	Thus,	we	could	imagine	a	reservation	that	is	large	enough	to	accommodate	two	speakers	and	no
more.	Calculating	the	correct	overall	TSpec	from	all	of	the	sender	TSpecs	is	clearly	application	specific.	Also,	we	may
only	be	interested	in	hearing	from	a	subset	of	all	possible	speakers;	RSVP	has	different	reservation	styles	to	deal	with
such	options	as	"Reserve	resources	for	all	speakers,"	"Reserve	resources	for	any	n	speakers,"	and	"Reserve
resources	for	speakers	A	and	B	only."

Packet	Classifying	and	Scheduling

Once	we	have	described	our	traffic	and	our	desired	network	service	and	have	installed	a	suitable	reservation	at	all	the
routers	on	the	path,	the	only	thing	that	remains	is	for	the	routers	to	actually	deliver	the	requested	service	to	the	data
packets.	There	are	two	things	that	need	to	be	done:

Associate	each	packet	with	the	appropriate	reservation	so	that	it	can	be	handled	correctly,	a	process	known	as
classifying	packets.

Manage	the	packets	in	the	queues	so	that	they	receive	the	service	that	has	been	requested,	a	process	known	as
packet	scheduling.

The	first	part	is	done	by	examining	up	to	five	fields	in	the	packet:	the	source	address,	destination	address,	protocol
number,	source	port,	and	destination	port.	(In	IPv6,	it	is	possible	that	the		FlowLabel		field	in	the	header	could	be	used
to	enable	the	lookup	to	be	done	based	on	a	single,	shorter	key.)	Based	on	this	information,	the	packet	can	be	placed
in	the	appropriate	class.	For	example,	it	may	be	classified	into	the	controlled	load	classes,	or	it	may	be	part	of	a
guaranteed	flow	that	needs	to	be	handled	separately	from	all	other	guaranteed	flows.	In	short,	there	is	a	mapping	from
the	flow-specific	information	in	the	packet	header	to	a	single	class	identifier	that	determines	how	the	packet	is	handled
in	the	queue.	For	guaranteed	flows	this	might	be	a	one-to-one	mapping,	while	for	other	services	it	might	be	many	to
one.	The	details	of	classification	are	closely	related	to	the	details	of	queue	management.

It	should	be	clear	that	something	as	simple	as	a	FIFO	queue	in	a	router	will	be	inadequate	to	provide	many	different
services	and	to	provide	different	levels	of	delay	within	each	service.	Several	more	sophisticated	queue	management
disciplines	were	discussed	in	an	earlier	section,	and	some	combination	of	these	is	likely	to	be	used	in	a	router.

The	details	of	packet	scheduling	ideally	should	not	be	specified	in	the	service	model.	Instead,	this	is	an	area	where
implementors	can	try	to	do	creative	things	to	realize	the	service	model	efficiently.	In	the	case	of	guaranteed	service,	it
has	been	established	that	a	weighted	fair	queuing	discipline,	in	which	each	flow	gets	its	own	individual	queue	with	a
certain	share	of	the	link,	will	provide	a	guaranteed	end-to-end	delay	bound	that	can	readily	be	calculated.	For
controlled	load,	simpler	schemes	may	be	used.	One	possibility	includes	treating	all	the	controlled	load	traffic	as	a
single,	aggregated	flow	(as	far	as	the	scheduling	mechanism	is	concerned),	with	the	weight	for	that	flow	being	set
based	on	the	total	amount	of	traffic	admitted	in	the	controlled	load	class.	The	problem	is	made	harder	when	you
consider	that,	in	a	single	router,	many	different	services	are	likely	to	be	provided	concurrently	and	that	each	of	these
services	may	require	a	different	scheduling	algorithm.	Thus,	some	overall	queue	management	algorithm	is	needed	to
manage	the	resources	between	the	different	services.

Scalability	Issues
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Although	the	Integrated	Services	architecture	and	RSVP	represented	a	significant	enhancement	of	the	best-effort
service	model	of	IP,	many	Internet	service	providers	felt	that	it	was	not	the	right	model	for	them	to	deploy.	The	reason
for	this	reticence	relates	to	one	of	the	fundamental	design	goals	of	IP:	scalability.	In	the	best-effort	service	model,
routers	in	the	Internet	store	little	or	no	state	about	the	individual	flows	passing	through	them.	Thus,	as	the	Internet
grows,	the	only	thing	routers	have	to	do	to	keep	up	with	that	growth	is	to	move	more	bits	per	second	and	to	deal	with
larger	routing	tables,	but	RSVP	raises	the	possibility	that	every	flow	passing	through	a	router	might	have	a
corresponding	reservation.	To	understand	the	severity	of	this	problem,	suppose	that	every	flow	on	an	OC-48	(2.5-
Gbps)	link	represents	a	64-kbps	audio	stream.	The	number	of	such	flows	is

2.5 × 10 /64 × 10 = 39,000

Each	of	those	reservations	needs	some	amount	of	state	that	needs	to	be	stored	in	memory	and	refreshed	periodically.
The	router	needs	to	classify,	police,	and	queue	each	of	those	flows.	Admission	control	decisions	need	to	be	made
every	time	such	a	flow	requests	a	reservation,	and	some	mechanisms	are	needed	to	"push	back"	on	users	so	that
they	don't	make	arbitrarily	large	reservations	for	long	periods	of	time.

Charging	per	reservation	would	be	one	way	to	push	back,	consistent	with	the	telephony	model	of	billing	for
each	phone	call.	This	is	not	the	only	way	to	push	back,	and	per-call	billing	is	believed	to	be	one	of	the	major
costs	of	operating	the	phone	network.

These	scalability	concerns	have	limited	widespread	deployment	of	IntServ.	Because	of	these	concerns,	other
approaches	that	do	not	require	so	much	"per-flow"	state	have	been	developed.	The	next	section	discusses	a	number
of	such	approaches.

Differentiated	Services	(EF,	AF)
Whereas	the	Integrated	Services	architecture	allocates	resources	to	individual	flows,	the	Differentiated	Services
model	(often	called	DiffServ	for	short)	allocates	resources	to	a	small	number	of	classes	of	traffic.	In	fact,	some
proposed	approaches	to	DiffServ	simply	divide	traffic	into	two	classes.	This	is	an	eminently	sensible	approach	to	take:
If	you	consider	the	difficulty	that	network	operators	experience	just	trying	to	keep	a	best-effort	internet	running
smoothly,	it	makes	sense	to	add	to	the	service	model	in	small	increments.

Suppose	that	we	have	decided	to	enhance	the	best-effort	service	model	by	adding	just	one	new	class,	which	we'll	call
"premium."	Clearly,	we	will	need	some	way	to	figure	out	which	packets	are	premium	and	which	are	regular	old	best
effort.	Rather	than	using	a	protocol	like	RSVP	to	tell	all	the	routers	that	some	flow	is	sending	premium	packets,	it
would	be	much	easier	if	the	packets	could	just	identify	themselves	to	the	router	when	they	arrive.	This	could	obviously
be	done	by	using	a	bit	in	the	packet	header—if	that	bit	is	a	1,	the	packet	is	a	premium	packet;	if	it's	a	0,	the	packet	is
best	effort.	With	this	in	mind,	there	are	two	questions	we	need	to	address:

Who	sets	the	premium	bit	and	under	what	circumstances?

What	does	a	router	do	differently	when	it	sees	a	packet	with	the	bit	set?

There	are	many	possible	answers	to	the	first	question,	but	a	common	approach	is	to	set	the	bit	at	an	administrative
boundary.	For	example,	the	router	at	the	edge	of	an	Internet	service	provider's	network	might	set	the	bit	for	packets
arriving	on	an	interface	that	connects	to	a	particular	company's	network.	The	Internet	service	provider	might	do	this
because	that	company	has	paid	for	a	higher	level	of	service	than	best	effort.	It	is	also	possible	that	not	all	packets
would	be	marked	as	premium;	for	example,	the	router	might	be	configured	to	mark	packets	as	premium	up	to	some
maximum	rate	and	to	leave	all	excess	packets	as	best	effort.

Assuming	that	packets	have	been	marked	in	some	way,	what	do	the	routers	that	encounter	marked	packets	do	with
them?	Here	again	there	are	many	answers.	In	fact,	the	IETF	standardized	a	set	of	router	behaviors	to	be	applied	to
marked	packets.	These	are	called	per-hop	behaviors	(PHBs),	a	term	that	indicates	that	they	define	the	behavior	of
individual	routers	rather	than	end-to-end	services.	Because	there	is	more	than	one	new	behavior,	there	is	also	a	need
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for	more	than	1	bit	in	the	packet	header	to	tell	the	routers	which	behavior	to	apply.	The	IETF	decided	to	take	the	old
	TOS		byte	from	the	IP	header,	which	had	not	been	widely	used,	and	redefine	it.	Six	bits	of	this	byte	have	been
allocated	for	DiffServ	code	points	(DSCPs),	where	each	DSCP	is	a	6-bit	value	that	identifies	a	particular	PHB	to	be
applied	to	a	packet.	(The	remaining	two	bits	are	used	by	ECN.)

The	Expedited	Forwarding	(EF)	PHB

One	of	the	simplest	PHBs	to	explain	is	known	as	expedited	forwarding	(EF).	Packets	marked	for	EF	treatment	should
be	forwarded	by	the	router	with	minimal	delay	and	loss.	The	only	way	that	a	router	can	guarantee	this	to	all	EF
packets	is	if	the	arrival	rate	of	EF	packets	at	the	router	is	strictly	limited	to	be	less	than	the	rate	at	which	the	router	can
forward	EF	packets.	For	example,	a	router	with	a	100-Mbps	interface	needs	to	be	sure	that	the	arrival	rate	of	EF
packets	destined	for	that	interface	never	exceeds	100	Mbps.	It	might	also	want	to	be	sure	that	the	rate	will	be
somewhat	below	100	Mbps,	so	that	it	occasionally	has	time	to	send	other	packets	such	as	routing	updates.

The	rate	limiting	of	EF	packets	is	achieved	by	configuring	the	routers	at	the	edge	of	an	administrative	domain	to	allow
a	certain	maximum	rate	of	EF	packet	arrivals	into	the	domain.	A	simple,	albeit	conservative,	approach	would	be	to
ensure	that	the	sum	of	the	rates	of	all	EF	packets	entering	the	domain	is	less	than	the	bandwidth	of	the	slowest	link	in
the	domain.	This	would	ensure	that,	even	in	the	worst	case	where	all	EF	packets	converge	on	the	slowest	link,	it	is	not
overloaded	and	can	provide	the	correct	behavior.

There	are	several	possible	implementation	strategies	for	the	EF	behavior.	One	is	to	give	EF	packets	strict	priority	over
all	other	packets.	Another	is	to	perform	weighted	fair	queuing	between	EF	packets	and	other	packets,	with	the	weight
of	EF	set	sufficiently	high	that	all	EF	packets	can	be	delivered	quickly.	This	has	an	advantage	over	strict	priority:	The
non-EF	packets	can	be	assured	of	getting	some	access	to	the	link,	even	if	the	amount	of	EF	traffic	is	excessive.	This
might	mean	that	the	EF	packets	fail	to	get	exactly	the	specified	behavior,	but	it	could	also	prevent	essential	routing
traffic	from	being	locked	out	of	the	network	in	the	event	of	an	excessive	load	of	EF	traffic.

The	Assured	Forwarding	(AF)	PHB

The	assured	forwarding	(AF)	PHB	has	its	roots	in	an	approach	known	as	RED	with	In	and	Out	(RIO)	or	Weighted
RED,	both	of	which	are	enhancements	to	the	basic	RED	algorithm	described	in	an	earlier	section.	Figure	7	shows
how	RIO	works;	as	with	RED,	we	see	drop	probability	on	the	y-axis	increasing	as	average	queue	length	increases
along	the	$x$-axis.	But	now,	for	our	two	classes	of	traffic,	we	have	two	separate	drop	probability	curves.	RIO	calls	the
two	classes	"in"	and	"out"	for	reasons	that	will	become	clear	shortly.	Because	the	"out"	curve	has	a	lower
	MinThreshold		than	the	"in"	curve,	it	is	clear	that,	under	low	levels	of	congestion,	only	packets	marked	"out"	will	be
discarded	by	the	RED	algorithm.	If	the	congestion	becomes	more	serious,	a	higher	percentage	of	"out"	packets	are
dropped,	and	then	if	the	average	queue	length	exceeds	,	RED	starts	to	drop	"in"	packets	as	well.
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Figure	7.	RED	with	In	and	Out	drop	probabilities.

The	reason	for	calling	the	two	classes	of	packets	"in"	and	"out"	stems	from	the	way	the	packets	are	marked.	We
already	noted	that	packet	marking	can	be	performed	by	a	router	at	the	edge	of	an	administrative	domain.	We	can
think	of	this	router	as	being	at	the	boundary	between	a	network	service	provider	and	some	customer	of	that	network.
The	customer	might	be	any	other	network—for	example,	the	network	of	a	corporation	or	of	another	network	service
provider.	The	customer	and	the	network	service	provider	agree	on	some	sort	of	profile	for	the	assured	service	(and
perhaps	the	customer	pays	the	network	service	provider	for	this	profile).	The	profile	might	be	something	like
"Customer	X	is	allowed	to	send	up	to	y	Mbps	of	assured	traffic,"	or	it	could	be	significantly	more	complex.	Whatever
the	profile	is,	the	edge	router	can	clearly	mark	the	packets	that	arrive	from	this	customer	as	being	either	in	or	out	of
profile.	In	the	example	just	mentioned,	as	long	as	the	customer	sends	less	than	y	Mbps,	all	his	packets	will	be	marked
"in,"	but	once	he	exceeds	that	rate	the	excess	packets	will	be	marked	"out."

The	combination	of	a	profile	meter	at	the	edge	and	RIO	in	all	the	routers	of	the	service	provider's	network	should
provide	the	customer	with	a	high	assurance	(but	not	a	guarantee)	that	packets	within	his	profile	can	be	delivered.	In
particular,	if	the	majority	of	packets,	including	those	sent	by	customers	who	have	not	paid	extra	to	establish	a	profile,
are	"out"	packets,	then	it	should	usually	be	the	case	that	the	RIO	mechanism	will	act	to	keep	congestion	low	enough
that	"in"	packets	are	rarely	dropped.	Clearly,	there	must	be	enough	bandwidth	in	the	network	so	that	the	"in"	packets
alone	are	rarely	able	to	congest	a	link	to	the	point	where	RIO	starts	dropping	"in"	packets.

Just	like	RED,	the	effectiveness	of	a	mechanism	like	RIO	depends	to	some	extent	on	correct	parameter	choices,	and
there	are	considerably	more	parameters	to	set	for	RIO.	Exactly	how	well	the	scheme	will	work	in	production	networks
is	not	known	at	the	time	of	writing.

One	interesting	property	of	RIO	is	that	it	does	not	change	the	order	of	"in"	and	"out"	packets.	For	example,	if	a	TCP
connection	is	sending	packets	through	a	profile	meter,	and	some	packets	are	being	marked	"in"	while	others	are
marked	"out,"	those	packets	will	receive	different	drop	probabilities	in	the	router	queues,	but	they	will	be	delivered	to
the	receiver	in	the	same	order	in	which	they	were	sent.	This	is	important	for	most	TCP	implementations,	which
perform	much	better	when	packets	arrive	in	order,	even	if	they	are	designed	to	cope	with	misordering.	Note	also	that
mechanisms	such	as	fast	retransmit	can	be	falsely	triggered	when	misordering	happens.

The	idea	of	RIO	can	be	generalized	to	provide	more	than	two	drop	probability	curves,	and	this	is	the	idea	behind	the
approach	known	as	weighted	RED	(WRED).	In	this	case,	the	value	of	the	DSCP	field	is	used	to	pick	one	of	several
drop	probability	curves,	so	that	several	different	classes	of	service	can	be	provided.

A	third	way	to	provide	Differentiated	Services	is	to	use	the	DSCP	value	to	determine	which	queue	to	put	a	packet	into
in	a	weighted	fair	queuing	scheduler.	As	a	very	simple	case,	we	might	use	one	code	point	to	indicate	the	best-effort
queue	and	a	second	code	point	to	select	the	premium	queue.	We	then	need	to	choose	a	weight	for	the	premium
queue	that	makes	the	premium	packets	get	better	service	than	the	best-effort	packets.	This	depends	on	the	offered
load	of	premium	packets.	For	example,	if	we	give	the	premium	queue	a	weight	of	1	and	the	best-effort	queue	a	weight
of	4,	that	ensures	that	the	bandwidth	available	to	premium	packets	is

B =W /(W +W ) = 1/(1 + 4) = 0.2

That	is,	we	have	effectively	reserved	20%	of	the	link	for	premium	packets,	so	if	the	offered	load	of	premium	traffic	is
only	10%	of	the	link	on	average,	then	the	premium	traffic	will	behave	as	if	it	is	running	on	a	very	underloaded	network
and	the	service	will	be	very	good.	In	particular,	the	delay	experienced	by	the	premium	class	can	be	kept	low,	since
WFQ	will	try	to	transmit	premium	packets	as	soon	as	they	arrive	in	this	scenario.	On	the	other	hand,	if	the	premium
traffic	load	were	30%,	it	would	behave	like	a	highly	loaded	network,	and	delay	could	be	very	high	for	the	premium
packets—even	worse	than	for	the	so-called	best-effort	packets.	Thus,	knowledge	of	the	offered	load	and	careful
setting	of	weights	is	important	for	this	type	of	service.	However,	note	that	the	safe	approach	is	to	be	very	conservative
in	setting	the	weight	for	the	premium	queue.	If	this	weight	is	made	very	high	relative	to	the	expected	load,	it	provides	a
margin	of	error	and	yet	does	not	prevent	the	best-effort	traffic	from	using	any	bandwidth	that	has	been	reserved	for
premium	but	is	not	used	by	premium	packets.

premium premium premium best−effort
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Just	as	in	WRED,	we	can	generalize	this	WFQ-based	approach	to	allow	more	than	two	classes	represented	by
different	code	points.	Furthermore,	we	can	combine	the	idea	of	a	queue	selector	with	a	drop	preference.	For	example,
with	12	code	points	we	can	have	four	queues	with	different	weights,	each	of	which	has	three	drop	preferences.	This	is
exactly	what	the	IETF	has	done	in	the	definition	of	"assured	service."

Equation-Based	Congestion	Control

We	conclude	our	discussion	of	QoS	by	returning	full	circle	to	TCP	congestion	control,	but	this	time	in	the	context	of
real-time	applications.	Recall	that	TCP	adjusts	the	sender's	congestion	window	(and,	hence,	the	rate	at	which	it	can
transmit)	in	response	to	ACK	and	timeout	events.	One	of	the	strengths	of	this	approach	is	that	it	does	not	require
cooperation	from	the	network's	routers;	it	is	a	purely	host-based	strategy.	Such	a	strategy	complements	the	QoS
mechanisms	we've	been	considering,	because	(1)	applications	can	use	host-based	solutions	without	depending	on
router	support,	and	(2)	even	with	DiffServ	fully	deployed,	it	is	still	possible	for	a	router	queue	to	be	oversubscribed,
and	we	would	like	real-time	applications	to	react	in	a	reasonable	way	should	this	happen.

While	we	would	like	to	take	advantage	of	TCP's	congestion	control	algorithm,	TCP	itself	is	not	appropriate	for	real-
time	applications.	One	reason	is	that	TCP	is	a	reliable	protocol,	and	real-time	applications	often	cannot	afford	the
delays	introduced	by	retransmission.	However,	what	if	we	were	to	decouple	TCP	from	its	congestion	control
mechanism,	to	add	TCP-like	congestion	control	to	an	unreliable	protocol	like	UDP?	Could	real-time	applications	make
use	of	such	a	protocol?

On	the	one	hand,	this	is	an	appealing	idea	because	it	would	cause	real-time	streams	to	compete	fairly	with	TCP
streams.	The	alternative	(which	happens	today)	is	that	video	applications	use	UDP	without	any	form	of	congestion
control	and,	as	a	consequence,	steal	bandwidth	away	from	TCP	flows	that	back	off	in	the	presence	of	congestion.	On
the	other	hand,	the	sawtooth	behavior	of	TCP's	congestion-control	algorithm	is	not	appropriate	for	real-time
applications;	it	means	that	the	rate	at	which	the	application	transmits	is	constantly	going	up	and	down.	In	contrast,
real-time	applications	work	best	when	they	are	able	to	sustain	a	smooth	transmission	rate	over	a	relatively	long	period
of	time.

Is	it	possible	to	achieve	the	best	of	both	worlds:	compatibility	with	TCP	congestion	control	for	the	sake	of	fairness,
while	sustaining	a	smooth	transmission	rate	for	the	sake	of	the	application?	Recent	work	suggests	that	the	answer	is
yes.	Specifically,	several	so	called	TCP-friendly	congestion-control	algorithms	have	been	proposed.	These	algorithms
have	two	main	goals.	One	is	to	slowly	adapt	the	congestion	window.	This	is	done	by	adapting	over	relatively	longer
time	periods	(e.g.,	an	RTT)	rather	than	on	a	per-packet	basis.	This	smooths	out	the	transmission	rate.	The	second	is
to	be	TCP	friendly	in	the	sense	of	being	fair	to	competing	TCP	flows.	This	property	is	often	enforced	by	ensuring	that
the	flow's	behavior	adheres	to	an	equation	that	models	TCP's	behavior.	Hence,	this	approach	is	sometimes	called
equation-based	congestion	control.

We	saw	a	simplified	form	of	the	TCP	rate	equation	in	an	earlier	section.	The	interested	reader	is	referred	to	the	papers
cited	at	the	end	of	this	chapter	for	details	about	the	full	model.	For	our	purposes,	it	is	sufficient	to	note	that	the
equation	takes	this	general	form:

Rate ∝

which	says	that	to	be	TCP-friendly,	the	transmission	rate	must	be	inversely	proportional	to	the	round-trip	time	(RTT)
and	the	square	root	of	the	loss	rate	(ρ).	In	other	words,	to	build	a	congestion	control	mechanism	out	of	this
relationship,	the	receiver	must	periodically	report	the	loss	rate	it	is	experiencing	back	to	the	sender	(e.g.,	it	might
report	that	it	failed	to	receive	10%	of	the	last	100	packets),	and	the	sender	then	adjusts	its	sending	rate	up	or	down,
such	that	this	relationship	continues	to	hold.	Of	course,	it	is	still	up	to	the	application	to	adapt	to	these	changes	in	the
available	rate,	but	as	we	will	see	in	the	next	chapter,	many	real-time	applications	are	quite	adaptable.

(
RTT ×√ρ

1 )
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6.6	Broader	Perspective

Software-Defined	Traffic	Engineering

The	overarching	problem	this	chapter	addresses	is	how	to	allocate	the	available	network	bandwidth	to	a	set	of	end-to-
end	flows.	Whether	it’s	TCP	congestion	control,	integrated	services,	or	differentiated	services,	there	is	an	assumption
that	the	underlying	network	bandwidth	being	allocated	is	fixed:	a	1-Gbps	link	between	site	A	and	site	B	is	always	a	1-
Gbps	link,	and	the	algorithms	focus	on	how	to	best	share	that	1-Gbps	among	competing	users.	But	what	if	that’s	not
the	case?	What	if	you	could	“instantly”	acquire	additional	capacity,	so	the	1-Gbps	link	is	upgraded	to	a	10-Gbps	link,
or	perhaps	you	could	add	a	new	link	between	two	sites	that	had	not	previously	been	connected?

This	possibility	is	real,	and	it’s	a	topic	that’s	usually	referred	to	as	traffic	engineering,	a	term	that	dates	back	to	the
early	days	of	networking	when	operators	would	analyze	the	traffic	workloads	on	their	network,	and	periodically	re-
engineer	their	networks	to	add	capacity	when	the	existing	links	became	chronically	overloaded.	In	those	early	days,
the	decision	to	add	capacity	was	not	taken	lightly;	you	needed	to	be	sure	the	usage	trend	you	observed	was	not	just	a
passing	blip	since	it	would	take	a	significant	amount	of	time	and	money	to	change	the	network.	In	the	worse	case,	it
might	involve	laying	cable	across	an	ocean	or	launching	a	satellite	into	space.

But	with	the	advent	of	technologies	like	DWDM	(Section	3.1)	and	MPLS	(Section	4.3),	we	don't	always	have	to	lay
more	fiber,	but	can	instead	turn	on	additional	wavelengths	or	establish	new	circuits	between	any	pair	of	sites.	(These
sites	need	not	be	directly	connected	by	fiber.	For	example,	a	wavelength	between	Boston	and	San	Francisco	might
run	through	ROADMs	in	Chicago	and	Denver,	but	from	the	perspective	of	the	L2/L3	network	topology,	Boston	and
San	Francisco	are	connected	by	a	direct	link.)	This	dramatically	lowers	the	time-to-availability,	but	reconfiguring
hardware	still	requires	manual	intervention,	and	so	our	definition	of	“instantly”	is	still	measured	in	days,	if	not	weeks.
Afterall,	there	are	requisition	forms	to	be	filled	out,	in	triplicate!

But	as	we	have	seen	again	and	again,	once	you	provide	the	right	programmatic	interfaces,	software	can	be	brought	to
bear	on	the	problem,	and	“instantly”	can,	for	all	practical	purposes,	be	truly	instantaneous.	This	is	effectively	what
cloud	providers	do	with	the	private	backbones	they	build	to	interconnect	their	datacenters.	For	example,	Google	has
publicly	described	their	private	WAN,	called	B4,	which	is	built	entirely	using	white-box	switches	and	SDN.	B4	does	not
add/drop	wavelengths	to	adjust	inter-node	bandwidth—it	dynamically	builds	end-to-end	tunnels	using	a	technique
called	Equal-Cost	Multipath	(ECMP),	an	alternative	to	CSPF	introduced	in	Section	4.3—but	the	flexibility	it	affords	is
similar.

A	Traffic	Engineering	(TE)	control	program	then	provisions	the	network	according	to	the	needs	of	various	classes	of
applications.	B4	identifies	three	such	classes:	(1)	copying	user	data	(e.g.,	email,	documents,	audio/video)	to	remote
datacenters	for	availability;	(2)	accessing	remote	storage	by	computations	that	run	over	distributed	data	sources;	and
(3)	pushing	large-scale	data	to	synchronize	state	across	multiple	datacenters.	These	classes	are	ordered	in
increasing	volume,	decreasing	latency	sensitivity,	and	decreasing	overall	priority.	For	example,	user-data	represents
the	lowest	volume	on	B4,	is	the	most	latency	sensitive,	and	is	of	the	highest	priority.

By	centralizing	the	decision-making	process,	which	is	one	of	the	claimed	advantages	of	SDN,	Google	has	been	able
to	drive	their	link	utilizations	to	near	100%.	This	is	two	to	three	times	better	than	the	30-40%	average	utilization	that
WAN	links	are	typically	provisioned	for,	which	is	necessary	to	allow	those	networks	to	deal	with	both	traffic	bursts	and
link/switch	failures.	If	you	can	centrally	decide	how	to	allocate	resources	across	the	entire	network,	it	is	possible	to	run
the	network	much	closer	to	maximum	utilization.	Keep	in	mind	that	provisioning	links	in	the	network	is	done	for
coarse-grain	application	classes.	TCP	congestion	control	still	operates	on	a	connection-by-connection	basis,	and
routing	decisions	are	still	made	on	top	of	the	B4	topology.	(As	an	aside,	it	is	worth	noting	that	because	B4	is	a	private
WAN,	Google	is	free	to	run	their	own	congestion	control	algorithm,	such	as	BBR,	without	fear	that	it	will	unfairly
disadvantage	other	algorithms.)
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One	lesson	to	take	away	from	systems	like	B4	is	that	the	line	between	traffic	engineering	and	congestion	control	(as
well	as	between	traffic	engineering	and	routing)	is	fuzzy.	There	are	different	mechanisms	working	to	address	the
same	general	problem,	and	so	there	is	no	fixed-and-hard	line	that	says	where	one	mechanism	stops	and	another
begins.	In	short,	layer	boundaries	become	soft	(and	easy	to	move)	when	the	layers	are	implemented	in	software
rather	than	hardware.	This	is	increasingly	becoming	the	norm.

Broader	Perspective

To	continue	reading	about	the	cloudification	of	the	Internet,	see	Big	Data	and	Analytics.

To	learn	more	about	the	B4,	we	recommend:

B4:	Experience	with	a	Globally	Deployed	Software	Defined	WAN,	August	2013.
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Chapter	7:	End-to-End	Data

It	is	a	capital	mistake	to	theorize	before	one	has	data.	—Sir	Arthur	Conan	Doyle

Problem:	What	Do	We	Do	with	the	Data?

From	the	network's	perspective,	application	programs	send	messages	to	each	other.	Each	of	these	messages	is	just
an	uninterpreted	string	of	bytes.	From	the	application's	perspective,	however,	these	messages	contain	various	kinds
of	data—arrays	of	integers,	video	frames,	lines	of	text,	digital	images,	and	so	on.	In	other	words,	these	bytes	have
meaning.	We	now	consider	the	problem	of	how	best	to	encode	the	different	kinds	of	data	that	application	programs
want	to	exchange	into	byte	strings.	In	many	respects,	this	is	similar	to	the	problem	of	encoding	byte	strings	into
electromagnetic	signals	that	we	saw	in	an	earlier	chapter.

Thinking	back	to	our	discussion	of	encoding,	there	are	essentially	two	concerns.	The	first	is	that	the	receiver	be	able
to	extract	the	same	message	from	the	signal	as	the	transmitter	sent;	this	is	the	framing	problem.	The	second	is
making	the	encoding	as	efficient	as	possible.	Both	of	these	concerns	are	also	present	when	encoding	application	data
into	network	messages.

In	order	for	the	receiver	to	extract	the	message	sent	by	the	transmitter,	the	two	sides	need	to	agree	to	a	message
format,	often	called	the	presentation	format.	If	the	sender	wants	to	send	the	receiver	an	array	of	integers,	for	example,
then	the	two	sides	have	to	agree	what	each	integer	looks	like	(how	many	bits	long	it	is,	what	order	the	bytes	are
arranged	in,	and	whether	the	most	significant	bit	comes	first	or	last,	for	example)	and	how	many	elements	are	in	the
array.	The	first	section	describes	various	encodings	of	traditional	computer	data,	such	as	integers,	floating-point
numbers,	character	strings,	arrays,	and	structures.	Well-established	formats	also	exist	for	multimedia	data:	Video,	for
example,	is	typically	transmitted	in	one	of	the	formats	created	by	the	Moving	Picture	Experts	Group	(MPEG),	and	still
images	are	usually	transmitted	in	Joint	Photographic	Experts	Group	(JPEG)	format.	The	particular	issues	that	arise	in
the	encoding	of	multimedia	data	are	discussed	in	the	next	section.

Multimedia	data	types	require	us	to	think	about	both	presentation	and	compression.	The	well-known	formats	for	the
transmission	and	storage	of	audio	and	video	deal	with	both	these	issues:	making	sure	that	what	was	recorded,
photographed,	or	heard	at	the	sender	can	be	interpreted	correctly	by	the	receiver,	and	doing	so	in	a	way	that	does	not
overwhelm	the	network	with	massive	amounts	of	multimedia	data.

Compression	and,	more	generally,	the	efficiency	of	encoding	have	a	rich	history,	dating	back	to	Shannon's	pioneering
work	on	information	theory	in	the	1940s.	In	effect,	there	are	two	opposing	forces	at	work	here.	In	one	direction,	you
would	like	as	much	redundancy	in	the	data	as	possible	so	that	the	receiver	is	able	to	extract	the	right	data	even	if
errors	are	introduced	into	the	message.	The	error	detection	and	correcting	codes	we	saw	in	an	earlier	chapter	add
redundant	information	to	messages	for	exactly	this	purpose.	In	the	other	direction,	we	would	like	to	remove	as	much
redundancy	from	the	data	as	possible	so	that	we	may	encode	it	in	as	few	bits	as	possible.	It	turns	out	the	multimedia
data	offers	a	wealth	of	opportunities	for	compression	because	of	the	way	our	senses	and	brains	process	visual	and
auditory	signals.	We	don't	hear	high	frequencies	as	well	as	lower	ones,	and	we	don't	notice	fine	detail	as	much	as	the
bigger	picture	in	an	image,	especially	if	the	image	is	moving.

Compression	is	important	to	the	designers	of	networks	for	many	reasons,	not	just	because	we	rarely	find	ourselves
with	an	abundance	of	bandwidth	everywhere	in	the	network.	For	example,	the	way	we	design	a	compression
algorithm	affects	our	sensitivity	to	lost	or	delayed	data	and	thus	may	influence	the	design	of	resource	allocation
mechanisms	and	end-to-end	protocols.	Conversely,	if	the	underlying	network	is	unable	to	guarantee	a	fixed	amount	of
bandwidth	for	the	duration	of	a	videoconference,	we	may	choose	to	design	compression	algorithms	that	can	adapt	to
changing	network	conditions.
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Finally,	an	important	aspect	of	both	presentation	formatting	and	data	compression	is	that	they	require	the	sending	and
receiving	hosts	to	process	every	byte	of	data	in	the	message.	It	is	for	this	reason	that	presentation	formatting	and
compression	are	sometimes	called	data	manipulation	functions.	This	is	in	contrast	to	most	of	the	protocols	we	have
seen	up	to	this	point,	which	process	a	message	without	ever	looking	at	its	contents.	Because	of	this	need	to	read,
compute	on,	and	write	every	byte	of	data	in	a	message,	data	manipulations	affect	end-to-end	throughput	over	the
network.	In	some	cases,	these	manipulations	can	be	the	limiting	factor.
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7.1	Presentation	Formatting

One	of	the	most	common	transformations	of	network	data	is	from	the	representation	used	by	the	application	program
into	a	form	that	is	suitable	for	transmission	over	a	network	and	vice	versa.	This	transformation	is	typically	called
presentation	formatting.	As	illustrated	in	Figure	1,	the	sending	program	translates	the	data	it	wants	to	transmit	from
the	representation	it	uses	internally	into	a	message	that	can	be	transmitted	over	the	network;	that	is,	the	data	is
encoded	in	a	message.	On	the	receiving	side,	the	application	translates	this	arriving	message	into	a	representation
that	it	can	then	process;	that	is,	the	message	is	decoded.	This	process	is	sometimes	called	argument	marshalling	or
serialization.	This	terminology	comes	from	the	Remote	Procedure	Call	(RPC)	world,	where	the	client	thinks	it	is
invoking	a	procedure	with	a	set	of	arguments,	but	these	arguments	are	then	"brought	together	and	ordered	in	an
appropriate	and	effective	way"	to	form	a	network	message.

Figure	1.	Presentation	formatting	involves	encoding	and	decoding
application	data.

You	might	ask	what	makes	this	problem	challenging.	One	reason	is	that	computers	represent	data	in	different	ways.
For	example,	some	computers	represent	floating-point	numbers	in	IEEE	standard	754	format,	while	some	older
machines	still	use	their	own	nonstandard	format.	Even	for	something	as	simple	as	integers,	different	architectures	use
different	sizes	(e.g.,	16-bit,	32-bit,	64-bit).	To	make	matters	worse,	on	some	machines	integers	are	represented	in	big-
endian	form	(the	most	significant	bit	of	a	word	is	in	the	byte	with	the	highest	address),	while	on	other	machines
integers	are	represented	in	little-endian	form	(the	most	significant	bit	is	in	the	byte	with	the	lowest	address).	For
example,	PowerPC	processors	are	big-endian	machines,	and	the	Intel	x86	family	is	a	little-endian	architecture.	Today,
many	architectures	support	both	representations	(and	so	are	called	bi-endian),	but	the	point	is	that	you	can	never	be
sure	how	the	host	you	are	communicating	with	stores	integers.	The	big-endian	and	little-endian	representations	of	the
integer	34,677,374	are	given	in	Figure	2.

Figure	2.	Big-endian	and	little-endian	byte	order	for	the	integer	34,677,374
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Another	reason	that	marshalling	is	difficult	is	that	application	programs	are	written	in	different	languages,	and	even
when	you	are	using	a	single	language	there	may	be	more	than	one	compiler.	For	example,	compilers	have	a	fair
amount	of	latitude	in	how	they	lay	out	structures	(records)	in	memory,	such	as	how	much	padding	they	put	between
the	fields	that	make	up	the	structure.	Thus,	you	could	not	simply	transmit	a	structure	from	one	machine	to	another,
even	if	both	machines	were	of	the	same	architecture	and	the	program	was	written	in	the	same	language,	because	the
compiler	on	the	destination	machine	might	align	the	fields	in	the	structure	differently.

Taxonomy

Although	argument	marshalling	is	not	rocket	science—it	is	a	small	matter	of	bit	twiddling—there	are	a	surprising
number	of	design	choices	that	you	must	address.	We	begin	by	giving	a	simple	taxonomy	for	argument	marshalling
systems.	The	following	is	by	no	means	the	only	viable	taxonomy,	but	it	is	sufficient	to	cover	most	of	the	interesting
alternatives.

Data	Types

The	first	question	is	what	data	types	the	system	is	going	to	support.	In	general,	we	can	classify	the	types	supported	by
an	argument	marshalling	mechanism	at	three	levels.	Each	level	complicates	the	task	faced	by	the	marshalling	system.

At	the	lowest	level,	a	marshalling	system	operates	on	some	set	of	base	types.	Typically,	the	base	types	include
integers,	floating-point	numbers,	and	characters.	The	system	might	also	support	ordinal	types	and	Booleans.	As
described	above,	the	implication	of	the	set	of	base	types	is	that	the	encoding	process	must	be	able	to	convert	each
base	type	from	one	representation	to	another—for	example,	convert	an	integer	from	big-endian	to	little-endian.

At	the	next	level	are	flat	types—structures	and	arrays.	While	flat	types	might	at	first	not	appear	to	complicate
argument	marshalling,	the	reality	is	that	they	do.	The	problem	is	that	the	compilers	used	to	compile	application
programs	sometimes	insert	padding	between	the	fields	that	make	up	the	structure	so	as	to	align	these	fields	on	word
boundaries.	The	marshalling	system	typically	packs	structures	so	that	they	contain	no	padding.

At	the	highest	level,	the	marshalling	system	might	have	to	deal	with	complex	types—those	types	that	are	built	using
pointers.	That	is,	the	data	structure	that	one	program	wants	to	send	to	another	might	not	be	contained	in	a	single
structure,	but	might	instead	involve	pointers	from	one	structure	to	another.	A	tree	is	a	good	example	of	a	complex	type
that	involves	pointers.	Clearly,	the	data	encoder	must	prepare	the	data	structure	for	transmission	over	the	network
because	pointers	are	implemented	by	memory	addresses,	and	just	because	a	structure	lives	at	a	certain	memory
address	on	one	machine	does	not	mean	it	will	live	at	the	same	address	on	another	machine.	In	other	words,	the
marshalling	system	must	serialize	(flatten)	complex	data	structures.

Key	Takeaway

In	summary,	depending	on	how	complicated	the	type	system	is,	the	task	of	argument	marshalling	usually
involves	converting	the	base	types,	packing	the	structures,	and	linearizing	the	complex	data	structures,	all	to
form	a	contiguous	message	that	can	be	transmitted	over	the	network.	Figure	3	illustrates	this	task.

7.1	Presentation	Formatting

308



Figure	3.	Argument	marshalling:	converting,	packing,	and	linearizing

Conversion	Strategy

Once	the	type	system	is	established,	the	next	issue	is	what	conversion	strategy	the	argument	marshaller	will	use.
There	are	two	general	options:	canonical	intermediate	form	and	receiver-makes-right.	We	consider	each,	in	turn.

The	idea	of	canonical	intermediate	form	is	to	settle	on	an	external	representation	for	each	type;	the	sending	host
translates	from	its	internal	representation	to	this	external	representation	before	sending	data,	and	the	receiver
translates	from	this	external	representation	into	its	local	representation	when	receiving	data.	To	illustrate	the	idea,
consider	integer	data;	other	types	are	treated	in	a	similar	manner.	You	might	declare	that	the	big-endian	format	will	be
used	as	the	external	representation	for	integers.	The	sending	host	must	translate	each	integer	it	sends	into	big-endian
form,	and	the	receiving	host	must	translate	big-endian	integers	into	whatever	representation	it	uses.	(This	is	what	is
done	in	the	Internet	for	protocol	headers.)	Of	course,	a	given	host	might	already	use	big-endian	form,	in	which	case
no	conversion	is	necessary.

The	alternative,	receiver-makes-right,	has	the	sender	transmit	data	in	its	own	internal	format;	the	sender	does	not
convert	the	base	types,	but	usually	has	to	pack	and	flatten	more	complex	data	structures.	The	receiver	is	then
responsible	for	translating	the	data	from	the	sender's	format	into	its	own	local	format.	The	problem	with	this	strategy	is
that	every	host	must	be	prepared	to	convert	data	from	all	other	machine	architectures.	In	networking,	this	is	known	as
an	N-by-N	solution:	Each	of	N	machine	architectures	must	be	able	to	handle	all	N	architectures.	In	contrast,	in	a
system	that	uses	a	canonical	intermediate	form,	each	host	needs	to	know	only	how	to	convert	between	its	own
representation	and	a	single	other	representation—the	external	one.

Using	a	common	external	format	is	clearly	the	correct	thing	to	do,	right?	This	has	certainly	been	the	conventional
wisdom	in	the	networking	community	for	over	30	years.	The	answer	is	not	cut	and	dried,	however.	It	turns	out	that
there	are	not	that	many	different	representations	for	the	various	base	classes,	or,	said	another	way,	N	is	not	that
large.	In	addition,	the	most	common	case	is	for	two	machines	of	the	same	type	to	be	communicating	with	each	other.
In	this	situation,	it	seems	silly	to	translate	data	from	that	architecture's	representation	into	some	foreign	external
representation,	only	to	have	to	translate	the	data	back	into	the	same	architecture's	representation	on	the	receiver.

A	third	option,	although	we	know	of	no	existing	system	that	exploits	it,	is	to	use	receiver-makes-right	if	the	sender
knows	that	the	destination	has	the	same	architecture;	the	sender	would	use	some	canonical	intermediate	form	if	the
two	machines	use	different	architectures.	How	would	a	sender	learn	the	receiver's	architecture?	It	could	learn	this
information	either	from	a	name	server	or	by	first	using	a	simple	test	case	to	see	if	the	appropriate	result	occurs.
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Tags

The	third	issue	in	argument	marshalling	is	how	the	receiver	knows	what	kind	of	data	is	contained	in	the	message	it
receives.	There	are	two	common	approaches:	tagged	and	untagged	data.	The	tagged	approach	is	more	intuitive,	so
we	describe	it	first.

A	tag	is	any	additional	information	included	in	a	message—beyond	the	concrete	representation	of	the	base	types—
that	helps	the	receiver	decode	the	message.	There	are	several	possible	tags	that	might	be	included	in	a	message.	For
example,	each	data	item	might	be	augmented	with	a	type	tag.	A	type	tag	indicates	that	the	value	that	follows	is	an
integer,	a	floating-point	number,	or	whatever.	Another	example	is	a	length	tag.	Such	a	tag	is	used	to	indicate	the
number	of	elements	in	an	array	or	the	size	of	an	integer.	A	third	example	is	an	architecture	tag,	which	might	be	used
in	conjunction	with	the	receiver-makes-right	strategy	to	specify	the	architecture	on	which	the	data	contained	in	the
message	was	generated.	Figure	4	depicts	how	a	simple	32-bit	integer	might	be	encoded	in	a	tagged	message.

Figure	4.	A	32-bit	integer	encoded	in	a	tagged	message.

The	alternative,	of	course,	is	not	to	use	tags.	How	does	the	receiver	know	how	to	decode	the	data	in	this	case?	It
knows	because	it	was	programmed	to	know.	In	other	words,	if	you	call	a	remote	procedure	that	takes	two	integers	and
a	floating-point	number	as	arguments,	then	there	is	no	reason	for	the	remote	procedure	to	inspect	tags	to	know	what	it
has	just	received.	It	simply	assumes	that	the	message	contains	two	integers	and	a	float	and	decodes	it	accordingly.
Note	that,	while	this	works	for	most	cases,	the	one	place	it	breaks	down	is	when	sending	variable-length	arrays.	In
such	a	case,	a	length	tag	is	commonly	used	to	indicate	how	long	the	array	is.

It	is	also	worth	noting	that	the	untagged	approach	means	that	the	presentation	formatting	is	truly	end	to	end.	It	is	not
possible	for	some	intermediate	agent	to	interpret	the	message	unless	the	data	is	tagged.	Why	would	an	intermediate
agent	need	to	interpret	a	message,	you	might	ask?	Stranger	things	have	happened,	mostly	resulting	from	ad	hoc
solutions	to	unexpected	problems	that	the	system	was	not	engineered	to	handle.	Poor	network	design	is	beyond	the
scope	of	this	book.

Stubs

A	stub	is	the	piece	of	code	that	implements	argument	marshalling.	Stubs	are	typically	used	to	support	RPC.	On	the
client	side,	the	stub	marshals	the	procedure	arguments	into	a	message	that	can	be	transmitted	by	means	of	the	RPC
protocol.	On	the	server	side,	the	stub	converts	the	message	back	into	a	set	of	variables	that	can	be	used	as
arguments	to	call	the	remote	procedure.	Stubs	can	either	be	interpreted	or	compiled.

In	a	compilation-based	approach,	each	procedure	has	a	customized	client	and	server	stub.	While	it	is	possible	to	write
stubs	by	hand,	they	are	typically	generated	by	a	stub	compiler,	based	on	a	description	of	the	procedure's	interface.
This	situation	is	illustrated	in	Figure	5.	Since	the	stub	is	compiled,	it	is	usually	very	efficient.	In	an	interpretation-based
approach,	the	system	provides	generic	client	and	server	stubs	that	have	their	parameters	set	by	a	description	of	the
procedure's	interface.	Because	it	is	easy	to	change	this	description,	interpreted	stubs	have	the	advantage	of	being
flexible.	Compiled	stubs	are	more	common	in	practice.
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Figure	5.	Stub	compiler	takes	interface	description	as	input	and	outputs
client	and	server	stubs.

Examples	(XDR,	ASN.1,	NDR,	ProtoBufs)

We	now	briefly	describe	four	popular	network	data	representations	in	terms	of	this	taxonomy.	We	use	the	integer	base
type	to	illustrate	how	each	system	works.

XDR

External	Data	Representation	(XDR)	is	the	network	format	used	with	SunRPC.	In	the	taxonomy	just	introduced,	XDR

Supports	the	entire	C-type	system	with	the	exception	of	function	pointers

Defines	a	canonical	intermediate	form

Does	not	use	tags	(except	to	indicate	array	lengths)

Uses	compiled	stubs

An	XDR	integer	is	a	32-bit	data	item	that	encodes	a	C	integer.	It	is	represented	in	twos'	complement	notation,	with	the
most	significant	byte	of	the	C	integer	in	the	first	byte	of	the	XDR	integer	and	the	least	significant	byte	of	the	C	integer
in	the	fourth	byte	of	the	XDR	integer.	That	is,	XDR	uses	big-endian	format	for	integers.	XDR	supports	both	signed	and
unsigned	integers,	just	as	C	does.

XDR	represents	variable-length	arrays	by	first	specifying	an	unsigned	integer	(4	bytes)	that	gives	the	number	of
elements	in	the	array,	followed	by	that	many	elements	of	the	appropriate	type.	XDR	encodes	the	components	of	a
structure	in	the	order	of	their	declaration	in	the	structure.	For	both	arrays	and	structures,	the	size	of	each
element/component	is	represented	in	a	multiple	of	4	bytes.	Smaller	data	types	are	padded	out	to	4	bytes	with	0s.	The
exception	to	this	"pad	to	4	bytes"	rule	is	made	for	characters,	which	are	encoded	one	per	byte.
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Figure	6.	Example	encoding	of	a	structure	in	XDR.

The	following	code	fragment	gives	an	example	C	structure	(	item	)	and	the	XDR	routine	that	encodes/decodes	this
structure	(	xdr_item	).	Figure	6	schematically	depicts	XDR's	on-the-wire	representation	of	this	structure	when	the	field
	name		is	seven	characters	long	and	the	array		list		has	three	values	in	it.

In	this	example,		xdr_array	,		xdr_int	,	and		xdr_string		are	three	primitive	functions	provided	by	XDR	to	encode	and
decode	arrays,	integers,	and	character	strings,	respectively.	Argument		xdrs		is	a	context	variable	that	XDR	uses	to
keep	track	of	where	it	is	in	the	message	being	processed;	it	includes	a	flag	that	indicates	whether	this	routine	is	being
used	to	encode	or	decode	the	message.	In	other	words,	routines	like		xdr_item		are	used	on	both	the	client	and	the
server.	Note	that	the	application	programmer	can	either	write	the	routine		xdr_item		by	hand	or	use	a	stub	compiler
called		rpcgen		(not	shown)	to	generate	this	encoding/decoding	routine.	In	the	latter	case,		rpcgen		takes	the	remote
procedure	that	defines	the	data	structure		item		as	input	and	outputs	the	corresponding	stub.

#define	MAXNAME	256;
#define	MAXLIST	100;

struct	item	{
			int					count;
			char				name[MAXNAME];
			int					list[MAXLIST];
};

bool_t
xdr_item(XDR	*xdrs,	struct	item	*ptr)
{
				return(xdr_int(xdrs,	&ptr->count)	&&
							xdr_string(xdrs,	&ptr->name,	MAXNAME)	&&
							xdr_array(xdrs,	&ptr->list,	&ptr->count,	MAXLIST,
																	sizeof(int),	xdr_int));
}

Exactly	how	XDR	performs	depends,	of	course,	on	the	complexity	of	the	data.	In	a	simple	case	of	an	array	of	integers,
where	each	integer	has	to	be	converted	from	one	byte	order	to	another,	an	average	of	three	instructions	are	required
for	each	byte,	meaning	that	converting	the	whole	array	is	likely	to	be	limited	by	the	memory	bandwidth	of	the	machine.
More	complex	conversions	that	require	significantly	more	instructions	per	byte	will	be	CPU	limited	and	thus	perform	at
a	data	rate	less	than	the	memory	bandwidth.

ASN.1

Abstract	Syntax	Notation	One	(ASN.1)	is	an	ISO	standard	that	defines,	among	other	things,	a	representation	for	data
sent	over	a	network.	The	representation-specific	part	of	ASN.1	is	called	the	Basic	Encoding	Rules	(BER).	ASN.1
supports	the	C-type	system	without	function	pointers,	defines	a	canonical	intermediate	form,	and	uses	type	tags.	Its
stubs	can	be	either	interpreted	or	compiled.	One	of	the	claims	to	fame	of	ASN.1	BER	is	that	it	is	used	by	the	Internet
standard	Simple	Network	Management	Protocol	(SNMP).

ASN.1	represents	each	data	item	with	a	triple	of	the	form

(tag,	length,	value)
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The		tag		is	typically	an	8-bit	field,	although	ASN.1	allows	for	the	definition	of	multibyte	tags.	The		length		field
specifies	how	many	bytes	make	up	the		value	;	we	discuss		length		more	below.	Compound	data	types,	such	as
structures,	can	be	constructed	by	nesting	primitive	types,	as	illustrated	in	Figure	7.

Figure	7.	Compound	types	created	by	means	of	nesting	in	ASN.1	BER.

Figure	8.	ASN.1	BER	representation	for	a	4-byte	integer.

If	the		value		is	127	or	fewer	bytes	long,	then	the		length		is	specified	in	a	single	byte.	Thus,	for	example,	a	32-bit
integer	is	encoded	as	a	1-byte		type	,	a	1-byte		length	,	and	the	4	bytes	that	encode	the	integer,	as	illustrated	in	Figure
8.	The		value		itself,	in	the	case	of	an	integer,	is	represented	in	twos'	complement	notation	and	big-endian	form,	just	as
in	XDR.	Keep	in	mind	that,	even	though	the		value		of	the	integer	is	represented	in	exactly	the	same	way	in	both	XDR
and	ASN.1,	the	XDR	representation	has	neither	the		type		nor	the		length		tags	associated	with	that	integer.	These	two
tags	both	take	up	space	in	the	message	and,	more	importantly,	require	processing	during	marshalling	and
unmarshalling.	This	is	one	reason	why	ASN.1	is	not	as	efficient	as	XDR.	Another	is	that	the	very	fact	that	each	data
value	is	preceded	by	a		length		field	means	that	the	data	value	is	unlikely	to	fall	on	a	natural	byte	boundary	(e.g.,	an
integer	beginning	on	a	word	boundary).	This	complicates	the	encoding/decoding	process.

If	the		value		is	128	or	more	bytes	long,	then	multiple	bytes	are	used	to	specify	its		length	.	At	this	point	you	may	be
asking	why	a	byte	can	specify	a	length	of	up	to	127	bytes	rather	than	256.	The	reason	is	that	1	bit	of	the		length		field
is	used	to	denote	how	long	the		length		field	is.	A	0	in	the	eighth	bit	indicates	a	1-byte		length		field.	To	specify	a	longer
	length	,	the	eighth	bit	is	set	to	1,	and	the	other	7	bits	indicate	how	many	additional	bytes	make	up	the		length	.	Figure
9	illustrates	a	simple	1-byte		length		and	a	multibyte		length	.

Figure	9.	ASN.1	BER	representation	for	length:	(a)	1	byte;	(b)	multibyte.

NDR

Network	Data	Representation	(NDR)	is	the	data-encoding	standard	used	in	the	Distributed	Computing	Environment
(DCE).	Unlike	XDR	and	ASN.1,	NDR	uses	receiver-makes-right.	It	does	this	by	inserting	an	architecture	tag	at	the
front	of	each	message;	individual	data	items	are	untagged.	NDR	uses	a	compiler	to	generate	stubs.	This	compiler
takes	a	description	of	a	program	written	in	the	Interface	Definition	Language	(IDL)	and	generates	the	necessary	stubs.
IDL	looks	pretty	much	like	C,	and	so	essentially	supports	the	C-type	system.

Figure	10.	NDR's	architecture	tag.
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Figure	10	illustrates	the	4-byte	architecture	definition	tag	that	is	included	at	the	front	of	each	NDR-encoded	message.
The	first	byte	contains	two	4-bit	fields.	The	first	field,		IntegrRep	,	defines	the	format	for	all	integers	contained	in	the
message.	A	0	in	this	field	indicates	big-endian	integers,	and	a	1	indicates	little-endian	integers.	The		CharRep		field
indicates	what	character	format	is	used:	0	means	ASCII	(American	Standard	Code	for	Information	Interchange)	and	1
means	EBCDIC	(an	older,	IBM-defined	alternative	to	ASCII).	Next,	the		FloatRep		byte	defines	which	floating-point
representation	is	being	used:	0	means	IEEE	754,	1	means	VAX,	2	means	Cray,	and	3	means	IBM.	The	final	2	bytes
are	reserved	for	future	use.	Note	that,	in	simple	cases	such	as	arrays	of	integers,	NDR	does	the	same	amount	of	work
as	XDR,	and	so	it	is	able	to	achieve	the	same	performance.

ProtoBufs

Protocol	Buffers	(Protobufs,	for	short)	is	a	language-neutral	and	platform-neutral	way	of	serializing	structured	data,
commonly	used	with	gRPC.	It	uses	a	tagged	strategy	with	a	canonical	intermediate	form,	where	the	stub	on	both
sides	is	generated	from	a	shared		.proto		file.	This	specification	uses	a	simple	C-like	syntax,	as	the	following	example
illustrates:

message	Person	{
				required	string	name	=	1;
				required	int32	id	=	2;
				optional	string	email	=	3;

				enum	PhoneType	{
								MOBILE	=	0;
								HOME	=	1;
								WORK	=	2;
				}

				message	PhoneNumber	{
								required	string	number	=	1;
								optional	PhoneType	type	=	2	[default	=	HOME];
				}

				required	PhoneNumber	phone	=	4;
}

where		message		could	roughly	be	interpreted	as	equivalent	to		typedef	struct		in	C.	The	rest	of	the	example	is	fairly
intuitive,	except	that	every	field	is	given	a	numeric	identifier	to	ensure	uniqueness	should	the	specification	change
over	time,	and	each	field	can	be	annotated	as	being	either		required		or		optional	.

The	way	Protobufs	encodes	integers	is	novel.	It	uses	a	technique	called	varints	(variable	length	integers)	in	which
each	8-bit	byte	uses	the	most	significant	bit	to	indicate	whether	there	are	more	bytes	in	the	integer,	and	the	lower
seven	bits	to	encode	the	two's	complement	representation	of	the	next	group	of	seven	bits	in	the	value.	The	least
significant	group	is	first	in	the	serialization.

This	means	a	small	integer	(less	than	128)	can	be	encoded	in	a	single	byte	(e.g.,	the	integer	2	is	encoded	as		0000
0010	),	while	for	an	integer	bigger	than	128,	more	bytes	are	needed.	For	example,	365	would	be	encoded	as

1110	1101	0000	0010

To	see	this,	first	drop	the	most	significant	bit	from	each	byte,	as	it	is	there	to	tell	us	whether	we've	reached	the	end	of
the	integer.	In	this	example,	the		1		in	the	most	significant	bit	of	the	first	byte	indicates	there	is	more	than	one	byte	in
the	varint:

1110	1101	0000	0010
→	110	1101		000	0010
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Since	varints	store	numbers	with	the	least	significant	group	first,	you	next	reverse	the	two	groups	of	seven	bits.	Then
you	concatenate	them	to	get	your	final	value:

000	0010		110	1101
→		000	0010	||	110	1101
→		101101101
→		256	+	64	+	32	+	8	+	4	+	1	=	365

For	the	larger	message	specification,	you	can	think	of	the	serialized	byte	stream	as	a	collection	of	key/value	pairs,
where	the	key	(i.e.,	tag)	has	two	sub-parts:	the	unique	identifier	for	the	field	(i.e.,	those	extra	numbers	in	the	example
	.proto		file)	and	the	wire	type	of	the	value	(e.g.,		Varint		is	the	one	example	wire	type	we	have	seen	so	far).	Other
supported	wire	types	include		32-bit		and		64-bit		(for	fixed-length	integers),	and		length-delimited		(for	strings	and
embedded	messages).	The	latter	tells	you	how	many	bytes	long	the	embedded	message	(structure)	is,	but	it's	another
	message		specification	in	the		.proto		file	that	tells	you	how	to	interpret	those	bytes.

Markup	Languages	(XML)
Although	we	have	been	discussing	the	presentation	formatting	problem	from	the	perspective	of	RPC—that	is,	how
does	one	encode	primitive	data	types	and	compound	data	structures	so	they	can	be	sent	from	a	client	program	to	a
server	program—the	same	basic	problem	occurs	in	other	settings.	For	example,	how	does	a	web	server	describe	a
Web	page	so	that	any	number	of	different	browsers	know	what	to	display	on	the	screen?	In	this	specific	case,	the
answer	is	the	HyperText	Markup	Language	(HTML),	which	indicates	that	certain	character	strings	should	be	displayed
in	bold	or	italics,	what	font	type	and	size	should	be	used,	and	where	images	should	be	positioned.

The	availability	of	all	sorts	of	Web	applications	and	data	have	also	created	a	situation	in	which	different	Web
applications	need	to	communicate	with	each	other	and	understand	each	other's	data.	For	example,	an	e-commerce
website	might	need	to	talk	to	a	shipping	company's	website	to	allow	a	customer	to	track	a	package	without	ever
leaving	the	e-commerce	website.	This	quickly	starts	to	look	a	lot	like	RPC,	and	the	approach	taken	in	the	Web	today
to	enable	such	communication	among	web	servers	is	based	on	the	Extensible	Markup	Language	(XML)—a	way	to
describe	the	data	being	exchanged	between	Web	apps.

Markup	languages,	of	which	HTML	and	XML	are	both	examples,	take	the	tagged	data	approach	to	the	extreme.	Data
is	represented	as	text,	and	text	tags	known	as	markup	are	intermingled	with	the	data	text	to	express	information	about
the	data.	In	the	case	of	HTML,	markup	indicates	how	the	text	should	be	displayed;	other	markup	languages	like	XML
can	express	the	type	and	structure	of	the	data.

XML	is	actually	a	framework	for	defining	different	markup	languages	for	different	kinds	of	data.	For	example,	XML	has
been	used	to	define	a	markup	language	that	is	roughly	equivalent	to	HTML	called	Extensible	HyperText	Markup
Language	(XHTML).	XML	defines	a	basic	syntax	for	mixing	markup	with	data	text,	but	the	designer	of	a	specific
markup	language	has	to	name	and	define	its	markup.	It	is	common	practice	to	refer	to	individual	XML-based
languages	simply	as	XML,	but	we	will	emphasize	the	distinction	in	this	introductory	material.

XML	syntax	looks	much	like	HTML.	For	example,	an	employee	record	in	a	hypothetical	XML-based	language	might
look	like	the	following	XML	document,	which	might	be	stored	in	a	file	named		employee.xml	.	The	first	line	indicates	the
version	of	XML	being	used,	and	the	remaining	lines	represent	four	fields	that	make	up	the	employee	record,	the	last	of
which	(	hiredate	)	contains	three	subfields.	In	other	words,	XML	syntax	provides	for	a	nested	structure	of	tag/value
pairs,	which	is	equivalent	to	a	tree	structure	for	the	represented	data	(with		employee		as	the	root).	This	is	similar	to
XDR,	ASN.1,	and	NDR's	ability	to	represent	compound	types,	but	in	a	format	that	can	be	both	processed	by	programs
and	read	by	humans.	More	importantly,	programs	such	as	parsers	can	be	used	across	different	XML-based
languages,	because	the	definitions	of	those	languages	are	themselves	expressed	as	machine-readable	data	that	can
be	input	to	the	programs.

<?xml	version="1.0"?>
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<employee>
			<name>John	Doe</name>
			<title>Head	Bottle	Washer</title>
			<id>123456789</id>
			<hiredate>
						<day>5</day>
						<month>June</month>
						<year>1986</year>
			</hiredate>
</employee>

Although	the	markup	and	the	data	in	this	document	are	highly	suggestive	to	the	human	reader,	it	is	the	definition	of
the	employee	record	language	that	actually	determines	what	tags	are	legal,	what	they	mean,	and	what	data	types
they	imply.	Without	some	formal	definition	of	the	tags,	a	human	reader	(or	a	computer)	can't	tell	whether		1986		in	the
	year		field,	for	example,	is	a	string,	an	integer,	an	unsigned	integer,	or	a	floating	point	number.

The	definition	of	a	specific	XML-based	language	is	given	by	a	schema,	which	is	a	database	term	for	a	specification	of
how	to	interpret	a	collection	of	data.	Several	schema	languages	have	been	defined	for	XML;	we	will	focus	here	on	the
leading	standard,	known	by	the	none-too-surprising	name	XML	Schema.	An	individual	schema	defined	using	XML
Schema	is	known	as	an	XML	Schema	Document	(XSD).	The	following	is	an	XSD	specification	for	the	example;	in
other	words,	it	defines	the	language	to	which	the	example	document	conforms.	It	might	be	stored	in	a	file	named
	employee.xsd	.

<?xml	version="1.0"?>
<schema	xmlns="http://www.w3.org/2001/XMLSchema">
		<element	name="employee">
				<complexType>
						<sequence>
								<element	name="name"	type="string"/>
								<element	name="title"	type="string"/>
								<element	name="id"	type="string"/>
								<element	name="hiredate">
										<complexType>
												<sequence>
														<element	name="day"	type="integer"/>
														<element	name="month"	type="string"/>
														<element	name="year"	type="integer"/>
												</sequence>
										</complexType>
								</element>
						</sequence>
				</complexType>
		</element>
</schema>

This	XSD	looks	superficially	similar	to	our	example	document		employee.xml	,	and	for	good	reason:	XML	Schema	is
itself	an	XML-based	language.	There	is	an	obvious	relationship	between	this	XSD	and	the	document	defined	above.
For	example,

<element	name="title"	type="string"/>

indicates	that	the	value	bracketed	by	the	markup		title		is	to	be	interpreted	as	a	string.	The	sequence	and	nesting	of
that	line	in	the	XSD	indicate	that	a		title		field	must	be	the	second	item	in	an	employee	record.

Unlike	some	schema	languages,	XML	Schema	provides	datatypes	such	as	string,	integer,	decimal,	and	Boolean.	It
allows	the	datatypes	to	be	combined	in	sequences	or	nested,	as	in		employee.xsd	,	to	create	compound	data	types.	So
an	XSD	defines	more	than	a	syntax;	it	defines	its	own	abstract	data	model.	A	document	that	conforms	to	the	XSD
represents	a	collection	of	data	that	conforms	to	the	data	model.
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The	significance	of	an	XSD	defining	an	abstract	data	model	and	not	just	a	syntax	is	that	there	can	be	other	ways
besides	XML	of	representing	data	that	conforms	to	the	model.	And	XML	does,	after	all,	have	some	shortcomings	as
an	on-the-wire	representation:	it	is	not	as	compact	as	other	data	representations,	and	it	is	relatively	slow	to	parse.	A
number	of	alternative	representations	described	as	binary	are	in	use.	The	International	Standards	Organization	(ISO)
has	published	one	called	Fast	Infoset,	while	the	World	Wide	Web	Consortium	(W3C)	has	produced	the	Efficient	XML
Interchange	(EXI)	proposal.	Binary	representations	sacrifice	human	readability	for	greater	compactness	and	faster
parsing.

XML	Namespaces

XML	has	to	solve	a	common	problem,	that	of	name	clashes.	The	problem	arises	because	schema	languages	such	as
XML	Schema	support	modularity	in	the	sense	that	a	schema	can	be	reused	as	part	of	another	schema.	Suppose	two
XSDs	are	defined	independently,	and	both	happen	to	define	the	markup	name	idNumber.	Perhaps	one	XSD	uses	that
name	to	identify	employees	of	a	company,	and	the	other	XSD	uses	it	to	identify	laptop	computers	owned	by	the
company.	We	might	like	to	reuse	those	two	XSDs	in	a	third	XSD	for	describing	which	assets	are	associated	with
which	employees,	but	to	do	that	we	need	some	mechanism	for	distinguishing	employees'	idNumbers	from	laptop
idNumbers.

XML's	solution	to	this	problem	is	XML	namespaces.	A	namespace	is	a	collection	of	names.	Each	XML	namespace	is
identified	by	a	Uniform	Resource	Identifier	(URI).	URIs	will	be	described	in	some	detail	in	a	later	chapter;	for	now,	all
you	really	need	to	know	is	that	URIs	are	a	form	of	globally	unique	identifier.	(An	HTTP	URL	is	a	particular	type	of	UNI.)
A	simple	markup	name	like	idNumber	can	be	added	to	a	namespace	as	long	as	it	is	unique	within	that	namespace.
Since	the	namespace	is	globally	unique	and	the	simple	name	is	unique	within	the	namespace,	the	combination	of	the
two	is	a	globally	unique	qualified	name	that	cannot	clash.

An	XSD	usually	specifies	a	target	namespace	with	a	line	like	the	following:

targetNamespace="http://www.example.com/employee"

is	a	Uniform	Resource	Identifier,	identifying	a	made-up	namespace.	All	the	new	markup	defined	in	that	XSD	will
belong	to	that	namespace.

Now,	if	an	XSD	wants	to	reference	names	that	have	been	defined	in	other	XSDs,	it	can	do	so	by	qualifying	those
names	with	a	namespace	prefix.	This	prefix	is	a	short	abbreviation	for	the	full	URI	that	actually	identifies	the
namespace.	For	example,	the	following	line	assigns		emp		as	the	namespace	prefix	for	the	employee	namespace:

xmlns:emp="http://www.example.com/employee"

Any	markup	from	that	namespace	would	be	qualified	by	prefixing	it	with		emp:		,	as	is		title		in	the	following	line:

<emp:title>Head	Bottle	Washer</emp:title>

In	other	words,		emp:title		is	a	qualified	name,	which	will	not	clash	with	the	name		title		from	some	other	namespace.

It	is	remarkable	how	widely	XML	is	now	used	in	applications	that	range	from	RPC-style	communication	among	Web-
based	services	to	office	productivity	tools	to	instant	messaging.	It	is	certainly	one	of	the	core	protocols	on	which	the
upper	layers	of	the	Internet	now	depend.
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7.2	Multimedia	Data

Multimedia	data,	comprised	of	audio,	video,	and	still	images,	now	makes	up	the	majority	of	traffic	on	the	Internet.	Part
of	what	has	made	the	widespread	transmission	of	multimedia	across	networks	possible	is	advances	in	compression
technology.	Because	multimedia	data	is	consumed	mostly	by	humans	using	their	senses—vision	and	hearing—and
processed	by	the	human	brain,	there	are	unique	challenges	to	compressing	it.	You	want	to	try	to	keep	the	information
that	is	most	important	to	a	human,	while	getting	rid	of	anything	that	doesn't	improve	the	human's	perception	of	the
visual	or	auditory	experience.	Hence,	both	computer	science	and	the	study	of	human	perception	come	into	play.	In
this	section,	we'll	look	at	some	of	the	major	efforts	in	representing	and	compressing	multimedia	data.

The	uses	of	compression	are	not	limited	to	multimedia	data	of	course—for	example,	you	may	well	have	used	a	utility
like		zip		or		compress		to	compress	files	before	sending	them	over	a	network,	or	to	uncompress	a	data	file	after
downloading.	It	turns	out	that	the	techniques	used	for	compressing	data—which	are	typically	lossless,	because	most
people	don't	like	to	lose	data	from	a	file—also	show	up	as	part	of	the	solution	for	multimedia	compression.	In	contrast,
lossy	compression,	commonly	used	for	multimedia	data,	does	not	promise	that	the	data	received	is	exactly	the	same
as	the	data	sent.	As	noted	above,	this	is	because	multimedia	data	often	contains	information	that	is	of	little	utility	to
the	human	who	receives	it.	Our	senses	and	brains	can	only	perceive	so	much	detail.	They	are	also	very	good	at	filling
in	missing	pieces	and	even	correcting	some	errors	in	what	we	see	or	hear.	And,	lossy	algorithms	typically	achieve
much	better	compression	ratios	than	do	their	lossless	counterparts;	they	can	be	an	order	of	magnitude	better	or	more.

To	get	a	sense	of	how	important	compression	has	been	to	the	spread	of	networked	multimedia,	consider	the	following
example.	A	high-definition	TV	screen	has	something	like	1080	×	1920	pixels,	each	of	which	has	24	bits	of	color
information,	so	each	frame	is

1080 × 1920 × 24 = 50	Mb

so	if	you	want	to	send	24	frames	per	second,	that	would	be	over	1	Gbps.	That's	a	lot	more	than	most	Internet	users
have	access	to,	by	a	good	margin.	By	contrast,	modern	compression	techniques	can	get	a	reasonably	high-quality
HDTV	signal	down	to	the	range	of	10	Mbps,	a	two	order	of	magnitude	reduction	and	well	within	the	reach	of	many
broadband	users.	Similar	compression	gains	apply	to	lower	quality	video	such	as	YouTube	clips—Web	video	could
never	have	reached	its	current	popularity	without	compression	to	make	all	those	entertaining	videos	fit	within	the
bandwidth	of	today's	networks.

Compression	techniques	as	applied	to	multimedia	have	been	an	area	of	great	innovation	in	recent	years,	particularly
lossy	compression.	Lossless	techniques	also	have	an	important	role	to	play,	however.	Indeed,	most	of	the	lossy
techniques	include	some	steps	that	are	lossless,	so	we	begin	our	discussion	with	an	overview	of	lossless
compression.

Lossless	Compression	Techniques

In	many	ways,	compression	is	inseparable	from	data	encoding.	When	thinking	about	how	to	encode	a	piece	of	data	in
a	set	of	bits,	we	might	just	as	well	think	about	how	to	encode	the	data	in	the	smallest	set	of	bits	possible.	For	example,
if	you	have	a	block	of	data	that	is	made	up	of	the	26	symbols	A	through	Z,	and	if	all	of	these	symbols	have	an	equal
chance	of	occurring	in	the	data	block	you	are	encoding,	then	encoding	each	symbol	in	5	bits	is	the	best	you	can	do

(since	2 	=	32	is	the	lowest	power	of	2	above	26).	If,	however,	the	symbol	R	occurs	50%	of	the	time,	then	it	would	be

a	good	idea	to	use	fewer	bits	to	encode	the	R	than	any	of	the	other	symbols.	In	general,	if	you	know	the	relative
probability	that	each	symbol	will	occur	in	the	data,	then	you	can	assign	a	different	number	of	bits	to	each	possible
symbol	in	a	way	that	minimizes	the	number	of	bits	it	takes	to	encode	a	given	block	of	data.	This	is	the	essential	idea	of
Huffman	codes,	one	of	the	important	early	developments	in	data	compression.
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Run	Length	Encoding

Run	length	encoding	(RLE)	is	a	compression	technique	with	a	brute-force	simplicity.	The	idea	is	to	replace
consecutive	occurrences	of	a	given	symbol	with	only	one	copy	of	the	symbol,	plus	a	count	of	how	many	times	that
symbol	occurs—hence,	the	name	run	length.	For	example,	the	string		AAABBCDDDD		would	be	encoded	as		3A2B1C4D	.

RLE	turns	out	to	be	useful	for	compressing	some	classes	of	images.	It	can	be	used	in	this	context	by	comparing
adjacent	pixel	values	and	then	encoding	only	the	changes.	For	images	that	have	large	homogeneous	regions,	this
technique	is	quite	effective.	For	example,	it	is	not	uncommon	that	RLE	can	achieve	compression	ratios	on	the	order	of
8-to-1	for	scanned	text	images.	RLE	works	well	on	such	files	because	they	often	contain	a	large	amount	of	white
space	that	can	be	removed.	For	those	old	enough	to	remember	the	technology,	RLE	was	the	key	compression
algorithm	used	to	transmit	faxes.	However,	for	images	with	even	a	small	degree	of	local	variation,	it	is	not	uncommon
for	compression	to	actually	increase	the	image	byte	size,	since	it	takes	2	bytes	to	represent	a	single	symbol	when	that
symbol	is	not	repeated.

Differential	Pulse	Code	Modulation

Another	simple	lossless	compression	algorithm	is	Differential	Pulse	Code	Modulation	(DPCM).	The	idea	here	is	to	first
output	a	reference	symbol	and	then,	for	each	symbol	in	the	data,	to	output	the	difference	between	that	symbol	and	the
reference	symbol.	For	example,	using	symbol	A	as	the	reference	symbol,	the	string		AAABBCDDDD		would	be	encoded	as
	A0001123333		because	A	is	the	same	as	the	reference	symbol,	B	has	a	difference	of	1	from	the	reference	symbol,	and
so	on.	Note	that	this	simple	example	does	not	illustrate	the	real	benefit	of	DPCM,	which	is	that	when	the	differences
are	small	they	can	be	encoded	with	fewer	bits	than	the	symbol	itself.	In	this	example,	the	range	of	differences,	0-3,
can	be	represented	with	2	bits	each,	rather	than	the	7	or	8	bits	required	by	the	full	character.	As	soon	as	the
difference	becomes	too	large,	a	new	reference	symbol	is	selected.

DPCM	works	better	than	RLE	for	most	digital	imagery,	since	it	takes	advantage	of	the	fact	that	adjacent	pixels	are
usually	similar.	Due	to	this	correlation,	the	dynamic	range	of	the	differences	between	the	adjacent	pixel	values	can	be
significantly	less	than	the	dynamic	range	of	the	original	image,	and	this	range	can	therefore	be	represented	using
fewer	bits.	Using	DPCM,	we	have	measured	compression	ratios	of	1.5-to-1	on	digital	images.	DPCM	also	works	on
audio,	because	adjacent	samples	of	an	audio	waveform	are	likely	to	be	close	in	value.

A	slightly	different	approach,	called	delta	encoding,	simply	encodes	a	symbol	as	the	difference	from	the	previous	one.
Thus,	for	example,		AAABBCDDDD		would	be	represented	as		A001011000	.	Note	that	delta	encoding	is	likely	to	work	well	for
encoding	images	where	adjacent	pixels	are	similar.	It	is	also	possible	to	perform	RLE	after	delta	encoding,	since	we
might	find	long	strings	of	0s	if	there	are	many	similar	symbols	next	to	each	other.

Dictionary-Based	Methods

The	final	lossless	compression	method	we	consider	is	the	dictionary-based	approach,	of	which	the	Lempel-Ziv	(LZ)
compression	algorithm	is	the	best	known.	The	Unix		compress		and		gzip		commands	use	variants	of	the	LZ	algorithm.

The	idea	of	a	dictionary-based	compression	algorithm	is	to	build	a	dictionary	(table)	of	variable-length	strings	(think	of
them	as	common	phrases)	that	you	expect	to	find	in	the	data	and	then	to	replace	each	of	these	strings	when	it
appears	in	the	data	with	the	corresponding	index	to	the	dictionary.	For	example,	instead	of	working	with	individual
characters	in	text	data,	you	could	treat	each	word	as	a	string	and	output	the	index	in	the	dictionary	for	that	word.	To
further	elaborate	on	this	example,	the	word	compression	has	the	index	4978	in	one	particular	dictionary;	it	is	the
4978th	word	in	.	To	compress	a	body	of	text,	each	time	the	string	"compression"	appears,	it	would	be	replaced	by
4978.	Since	this	particular	dictionary	has	just	over	25,000	words	in	it,	it	would	take	15	bits	to	encode	the	index,
meaning	that	the	string	"compression"	could	be	represented	in	15	bits	rather	than	the	77	bits	required	by	7-bit	ASCII.
This	is	a	compression	ratio	of	5-to-1!	At	another	data	point,	we	were	able	to	get	a	2-to-1	compression	ratio	when	we
applied	the		compress		command	to	the	source	code	for	the	protocols	described	in	this	book.
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Of	course,	this	leaves	the	question	of	where	the	dictionary	comes	from.	One	option	is	to	define	a	static	dictionary,
preferably	one	that	is	tailored	for	the	data	being	compressed.	A	more	general	solution,	and	the	one	used	by	LZ
compression,	is	to	adaptively	define	the	dictionary	based	on	the	contents	of	the	data	being	compressed.	In	this	case,
however,	the	dictionary	constructed	during	compression	has	to	be	sent	along	with	the	data	so	that	the	decompression
half	of	the	algorithm	can	do	its	job.	Exactly	how	you	build	an	adaptive	dictionary	has	been	a	subject	of	extensive
research.

Image	Representation	and	Compression	(GIF,	JPEG)

Given	the	ubiquitous	use	of	digital	imagery—this	use	was	spawned	by	the	invention	of	graphical	displays,	not	high-
speed	networks—the	need	for	standard	representation	formats	and	compression	algorithms	for	digital	imagery	data
has	become	essential.	In	response	to	this	need,	the	ISO	defined	a	digital	image	format	known	as	JPEG,	named	after
the	Joint	Photographic	Experts	Group	that	designed	it.	(The	"Joint"	in	JPEG	stands	for	a	joint	ISO/ITU	effort.)	JPEG	is
the	most	widely	used	format	for	still	images	in	use	today.	At	the	heart	of	the	definition	of	the	format	is	a	compression
algorithm,	which	we	describe	below.	Many	techniques	used	in	JPEG	also	appear	in	MPEG,	the	set	of	standards	for
video	compression	and	transmission	created	by	the	Moving	Picture	Experts	Group.

Before	delving	into	the	details	of	JPEG,	we	observe	that	there	are	quite	a	few	steps	to	get	from	a	digital	image	to	a
compressed	representation	of	that	image	that	can	be	transmitted,	decompressed,	and	displayed	correctly	by	a
receiver.	You	probably	know	that	digital	images	are	made	up	of	pixels	(hence,	the	megapixels	quoted	in	smartphone
camera	advertisements).	Each	pixel	represents	one	location	in	the	two-dimensional	grid	that	makes	up	the	image,	and
for	color	images	each	pixel	has	some	numerical	value	representing	a	color.	There	are	lots	of	ways	to	represent	colors,
referred	to	as	color	spaces;	the	one	most	people	are	familiar	with	is	RGB	(red,	green,	blue).	You	can	think	of	color	as
being	a	three	dimensional	quantity—you	can	make	any	color	out	of	red,	green,	and	blue	light	in	different	amounts.	In	a
three-dimensional	space,	there	are	lots	of	different,	valid	ways	to	describe	a	given	point	(consider	Cartesian	and	polar
coordinates,	for	example).	Similarly,	there	are	various	ways	to	describe	a	color	using	three	quantities,	and	the	most
common	alternative	to	RGB	is	YUV.	The	Y	is	luminance,	roughly	the	overall	brightness	of	the	pixel,	and	U	and	V
contain	chrominance,	or	color	information.	Confoundingly,	there	are	a	few	different	variants	of	the	YUV	color	space	as
well.	More	on	this	in	a	moment.

The	significance	of	this	discussion	is	that	the	encoding	and	transmission	of	color	images	(either	still	or	moving)
requires	agreement	between	the	two	ends	on	the	color	space.	Otherwise,	of	course,	you'd	end	up	with	different	colors
being	displayed	by	the	receiver	than	were	captured	by	the	sender.	Hence,	agreeing	on	a	color	space	definition	(and
perhaps	a	way	to	communicate	which	particular	space	is	in	use)	is	part	of	the	definition	of	any	image	or	video	format.

Let's	look	at	the	example	of	the	Graphical	Interchange	Format	(GIF).	GIF	uses	the	RGB	color	space	and	starts	out
with	8	bits	to	represent	each	of	the	three	dimensions	of	color	for	a	total	of	24	bits.	Rather	than	sending	those	24	bits
per	pixel,	however,	GIF	first	reduces	24-bit	color	images	to	8-bit	color	images.	This	is	done	by	identifying	the	colors

used	in	the	picture,	of	which	there	will	typically	be	considerably	fewer	than	2 ,	and	then	picking	the	256	colors	that

most	closely	approximate	the	colors	used	in	the	picture.	There	might	be	more	than	256	colors,	however,	so	the	trick	is
to	try	not	to	distort	the	color	too	much	by	picking	256	colors	such	that	no	pixel	has	its	color	changed	too	much.

The	256	colors	are	stored	in	a	table,	which	can	be	indexed	with	an	8-bit	number,	and	the	value	for	each	pixel	is
replaced	by	the	appropriate	index.	Note	that	this	is	an	example	of	lossy	compression	for	any	picture	with	more	than
256	colors.	GIF	then	runs	an	LZ	variant	over	the	result,	treating	common	sequences	of	pixels	as	the	strings	that	make
up	the	dictionary—a	lossless	operation.	Using	this	approach,	GIF	is	sometimes	able	to	achieve	compression	ratios	on
the	order	of	10:1,	but	only	when	the	image	consists	of	a	relatively	small	number	of	discrete	colors.	Graphical	logos,	for
example,	are	handled	well	by	GIF.	Images	of	natural	scenes,	which	often	include	a	more	continuous	spectrum	of
colors,	cannot	be	compressed	at	this	ratio	using	GIF.	It	is	also	not	too	hard	for	a	human	eye	to	detect	the	distortion
caused	by	the	lossy	color	reduction	of	GIF	in	some	cases.
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The	JPEG	format	is	considerably	more	well	suited	to	photographic	images,	as	you	would	hope	given	the	name	of	the
group	that	created	it.	JPEG	does	not	reduce	the	number	of	colors	like	GIF.	Instead,	JPEG	starts	off	by	transforming
the	RGB	colors	(which	are	what	you	usually	get	out	of	a	digital	camera)	to	the	YUV	space.	The	reason	for	this	has	to
do	with	the	way	the	eye	perceives	images.	There	are	receptors	in	the	eye	for	brightness,	and	separate	receptors	for
color.	Because	we're	very	good	at	perceiving	variations	in	brightness,	it	makes	sense	to	spend	more	bits	on
transmitting	brightness	information.	Since	the	Y	component	of	YUV	is,	roughly,	the	brightness	of	the	pixel,	we	can
compress	that	component	separately,	and	less	aggressively,	from	the	other	two	(chrominance)	components.

As	noted	above,	YUV	and	RGB	are	alternative	ways	to	describe	a	point	in	a	3-dimensional	space,	and	it's	possible	to
convert	from	one	color	space	to	another	using	linear	equations.	For	one	YUV	space	that	is	commonly	used	to
represent	digital	images,	the	equations	are:

Y	=	0.299R	+	0.587G	+	0.114B
U	=	(B-Y)	x	0.565
V	=		(R-Y)	x	0.713

The	exact	values	of	the	constants	here	are	not	important,	as	long	as	the	encoder	and	decoder	agree	on	what	they
are.	(The	decoder	will	have	to	apply	the	inverse	transformations	to	recover	the	RGB	components	needed	to	drive	a
display.)	The	constants	are,	however,	carefully	chosen	based	on	the	human	perception	of	color.	You	can	see	that	Y,
the	luminance,	is	a	sum	of	the	red,	green,	and	blue	components,	while	U	and	V	are	color	difference	components.	U
represents	the	difference	between	the	luminance	and	blue,	and	V	the	difference	between	luminance	and	red.	You
may	notice	that	setting	R,	G,	and	B	to	their	maximum	values	(which	would	be	255	for	8-bit	representations)	will	also
produce	a	value	of	Y=255	while	U	and	V	in	this	case	would	be	zero.	That	is,	a	fully	white	pixel	is	(255,255,255)	in
RGB	space	and	(255,0,0)	in	YUV	space.

Figure	1.	Subsampling	the	U	and	V	components	of	an	image.

Once	the	image	has	been	transformed	into	YUV	space,	we	can	now	think	about	compressing	each	of	the	three
components	separately.	We	want	to	be	more	aggressive	in	compressing	the	U	and	V	components,	to	which	human
eyes	are	less	sensitive.	One	way	to	compress	the	U	and	V	components	is	to	subsample	them.	The	basic	idea	of
subsampling	is	to	take	a	number	of	adjacent	pixels,	calculate	the	average	U	or	V	value	for	that	group	of	pixels,	and
transmit	that,	rather	than	sending	the	value	for	every	pixel.	Figure	1	illustrates	the	point.	The	luminance	(Y)
component	is	not	subsampled,	so	the	Y	value	of	all	the	pixels	will	be	transmitted,	as	indicated	by	the	16	×	16	grid	of
pixels	on	the	left.	In	the	case	of	U	and	V,	we	treat	each	group	of	four	adjacent	pixels	as	a	group,	calculate	the	average
of	the	U	or	V	value	for	that	group,	and	transmit	that.	Hence,	we	end	up	with	an	8	×	8	grid	of	U	and	V	values	to
transmit.	Thus,	in	this	example,	for	every	four	pixels,	we	transmit	six	values	(four	Y	and	one	each	of	U	and	V)	rather
than	the	original	12	values	(four	each	for	all	three	components),	for	a	50%	reduction	in	information.

It's	worth	noting	that	you	could	be	either	more	or	less	aggressive	in	the	subsampling,	with	corresponding	increases	in
compression	and	decreases	in	quality.	The	subsampling	approach	shown	here,	in	which	chrominance	is	subsampled
by	a	factor	of	two	in	both	horizontal	and	vertical	directions	(and	which	goes	by	the	identification	4:2:0),	happens	to
match	the	most	common	approach	used	for	both	JPEG	and	MPEG.

7.2	Multimedia	Data

321



Figure	2.	Block	diagram	of	JPEG	compression.

Once	subsampling	is	done,	we	now	have	three	grids	of	pixels	to	deal	with,	and	each	one	is	dealt	with	separately.
JPEG	compression	of	each	component	takes	place	in	three	phases,	as	illustrated	in	Figure	2.	On	the	compression
side,	the	image	is	fed	through	these	three	phases	one	8	×	8	block	at	a	time.	The	first	phase	applies	the	discrete
cosine	transform	(DCT)	to	the	block.	If	you	think	of	the	image	as	a	signal	in	the	spatial	domain,	then	DCT	transforms
this	signal	into	an	equivalent	signal	in	the	spatial	frequency	domain.	This	is	a	lossless	operation	but	a	necessary
precursor	to	the	next,	lossy	step.	After	the	DCT,	the	second	phase	applies	a	quantization	to	the	resulting	signal	and,	in
so	doing,	loses	the	least	significant	information	contained	in	that	signal.	The	third	phase	encodes	the	final	result,	but	in
so	doing	also	adds	an	element	of	lossless	compression	to	the	lossy	compression	achieved	by	the	first	two	phases.
Decompression	follows	these	same	three	phases,	but	in	reverse	order.

DCT	Phase

DCT	is	a	transformation	closely	related	to	the	fast	Fourier	transform	(FFT).	It	takes	an	8	×	8	matrix	of	pixel	values	as
input	and	outputs	an	8	×	8	matrix	of	frequency	coefficients.	You	can	think	of	the	input	matrix	as	a	64-point	signal	that
is	defined	in	two	spatial	dimensions	(x	and	y);	DCT	breaks	this	signal	into	64	spatial	frequencies.	To	get	an	intuitive
feel	for	spatial	frequency,	imagine	yourself	moving	across	a	picture	in,	say,	the	x	direction.	You	would	see	the	value	of
each	pixel	varying	as	some	function	of	x.	If	this	value	changes	slowly	with	increasing	x,	then	it	has	a	low	spatial
frequency;	if	it	changes	rapidly,	it	has	a	high	spatial	frequency.	So	the	low	frequencies	correspond	to	the	gross
features	of	the	picture,	while	the	high	frequencies	correspond	to	fine	detail.	The	idea	behind	the	DCT	is	to	separate
the	gross	features,	which	are	essential	to	viewing	the	image,	from	the	fine	detail,	which	is	less	essential	and,	in	some
cases,	might	be	barely	perceived	by	the	eye.

DCT,	along	with	its	inverse,	which	recovers	the	original	pixels	and	during	decompression,	are	defined	by	the	following
formulas:

where	C(x) = 1/ 	when	x = 0	and	1	when	x > 0,	and	pixel(x, y)	is	the	grayscale	value	of	the	pixel	at	position	(x, y)
in	the	8	×	8	block	being	compressed;	N	=	8	in	this	case.

The	first	frequency	coefficient,	at	location	(0,0)	in	the	output	matrix,	is	called	the	DC	coefficient.	Intuitively,	we	can	see
that	the	DC	coefficient	is	a	measure	of	the	average	value	of	the	64	input	pixels.	The	other	63	elements	of	the	output
matrix	are	called	the	AC	coefficients.	They	add	the	higher-spatial-frequency	information	to	this	average	value.	Thus,
as	you	go	from	the	first	frequency	coefficient	toward	the	64th	frequency	coefficient,	you	are	moving	from	low-
frequency	information	to	high-frequency	information,	from	the	broad	strokes	of	the	image	to	finer	and	finer	detail.
These	higher-frequency	coefficients	are	increasingly	unimportant	to	the	perceived	quality	of	the	image.	It	is	the
second	phase	of	JPEG	that	decides	which	portion	of	which	coefficients	to	throw	away.

Quantization	Phase

The	second	phase	of	JPEG	is	where	the	compression	becomes	lossy.	DCT	does	not	itself	lose	information;	it	just
transforms	the	image	into	a	form	that	makes	it	easier	to	know	what	information	to	remove.	(Although	not	lossy,	per	se,
there	is	of	course	some	loss	of	precision	during	the	DCT	phase	because	of	the	use	of	fixed-point	arithmetic.)
Quantization	is	easy	to	understand—it's	simply	a	matter	of	dropping	the	insignificant	bits	of	the	frequency	coefficients.

To	see	how	the	quantization	phase	works,	imagine	that	you	want	to	compress	some	whole	numbers	less	than	100,
such	as	45,	98,	23,	66,	and	7.	If	you	decided	that	knowing	these	numbers	truncated	to	the	nearest	multiple	of	10	is
sufficient	for	your	purposes,	then	you	could	divide	each	number	by	the	quantum	10	using	integer	arithmetic,	yielding

DCT (i, j)

pixel(x, y)

=

=

C(i)C(j) pixel(x, y) cos cos
√2N
1

x=0
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∑
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4,	9,	2,	6,	and	0.	These	numbers	can	each	be	encoded	in	4	bits	rather	than	the	7	bits	needed	to	encode	the	original
numbers.

Table	1.	Example	JPEG	Quantization	Table.

Quantum

3 5 7 9 11 13 15 17

5 7 9 11 13 15 17 19

7 9 11 13 15 17 19 21

9 11 13 15 17 19 21 23

11 13 15 17 19 21 23 25

13 15 17 19 21 23 25 27

15 17 19 21 23 25 27 29

17 19 21 23 25 27 29 31

Rather	than	using	the	same	quantum	for	all	64	coefficients,	JPEG	uses	a	quantization	table	that	gives	the	quantum	to
use	for	each	of	the	coefficients,	as	specified	in	the	formula	given	below.	You	can	think	of	this	table	(	Quantum	)	as	a
parameter	that	can	be	set	to	control	how	much	information	is	lost	and,	correspondingly,	how	much	compression	is
achieved.	In	practice,	the	JPEG	standard	specifies	a	set	of	quantization	tables	that	have	proven	effective	in
compressing	digital	images;	an	example	quantization	table	is	given	in	Table	1.	In	tables	like	this	one,	the	low
coefficients	have	a	quantum	close	to	1	(meaning	that	little	low-frequency	information	is	lost)	and	the	high	coefficients
have	larger	values	(meaning	that	more	high-frequency	information	is	lost).	Notice	that	as	a	result	of	such	quantization
tables	many	of	the	high-frequency	coefficients	end	up	being	set	to	0	after	quantization,	making	them	ripe	for	further
compression	in	the	third	phase.

The	basic	quantization	equation	is

QuantizedValue(i,j)	=	IntegerRound(DCT(i,j),	Quantum(i,j))

where

IntegerRound(x)	=
				Floor(x	+	0.5)	if	x	>=	0
				Floor(x	-	0.5)	if	x	<	0

Decompression	is	then	simply	defined	as

DCT(i,j)	=	QuantizedValue(i,j)	x	Quantum(i,j)

For	example,	if	the	DC	coefficient	(i.e.,	DCT(0,0))	for	a	particular	block	was	equal	to	25,	then	the	quantization	of	this
value	using	Table	1	would	result	in

Floor(25/3+0.5)	=	8

During	decompression,	this	coefficient	would	then	be	restored	as	8	×	3	=	24.

Encoding	Phase
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The	final	phase	of	JPEG	encodes	the	quantized	frequency	coefficients	in	a	compact	form.	This	results	in	additional
compression,	but	this	compression	is	lossless.	Starting	with	the	DC	coefficient	in	position	(0,0),	the	coefficients	are
processed	in	the	zigzag	sequence	shown	in	Figure	3.	Along	this	zigzag,	a	form	of	run	length	encoding	is	used—RLE
is	applied	to	only	the	0	coefficients,	which	is	significant	because	many	of	the	later	coefficients	are	0.	The	individual
coefficient	values	are	then	encoded	using	a	Huffman	code.	(The	JPEG	standard	allows	the	implementer	to	use	an
arithmetic	coding	instead	of	the	Huffman	code.)

Figure	3.	Zigzag	traversal	of	quantized	frequency	coefficients.

In	addition,	because	the	DC	coefficient	contains	a	large	percentage	of	the	information	about	the	8	×	8	block	from	the
source	image,	and	images	typically	change	slowly	from	block	to	block,	each	DC	coefficient	is	encoded	as	the
difference	from	the	previous	DC	coefficient.	This	is	the	delta	encoding	approach	described	in	a	later	section.

JPEG	includes	a	number	of	variations	that	control	how	much	compression	you	achieve	versus	the	fidelity	of	the
image.	This	can	be	done,	for	example,	by	using	different	quantization	tables.	These	variations,	plus	the	fact	that
different	images	have	different	characteristics,	make	it	impossible	to	say	with	any	precision	the	compression	ratios
that	can	be	achieved	with	JPEG.	Ratios	of	30:1	are	common,	and	higher	ratios	are	certainly	possible,	but	artifacts
(noticeable	distortion	due	to	compression)	become	more	severe	at	higher	ratios.

Video	Compression	(MPEG)

We	now	turn	our	attention	to	the	MPEG	format,	named	after	the	Moving	Picture	Experts	Group	that	defined	it.	To	a
first	approximation,	a	moving	picture	(i.e.,	video)	is	simply	a	succession	of	still	images—also	called	frames	or	pictures
—displayed	at	some	video	rate.	Each	of	these	frames	can	be	compressed	using	the	same	DCT-based	technique	used
in	JPEG.	Stopping	at	this	point	would	be	a	mistake,	however,	because	it	fails	to	remove	the	interframe	redundancy
present	in	a	video	sequence.	For	example,	two	successive	frames	of	video	will	contain	almost	identical	information	if
there	is	not	much	motion	in	the	scene,	so	it	would	be	unnecessary	to	send	the	same	information	twice.	Even	when
there	is	motion,	there	may	be	plenty	of	redundancy	since	a	moving	object	may	not	change	from	one	frame	to	the	next;
in	some	cases,	only	its	position	changes.	MPEG	takes	this	interframe	redundancy	into	consideration.	MPEG	also
defines	a	mechanism	for	encoding	an	audio	signal	with	the	video,	but	we	consider	only	the	video	aspect	of	MPEG	in
this	section.

Frame	Types
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MPEG	takes	a	sequence	of	video	frames	as	input	and	compresses	them	into	three	types	of	frames,	called	I	frames
(intrapicture),	P	frames	(predicted	picture),	and	B	frames	(bidirectional	predicted	picture).	Each	frame	of	input	is
compressed	into	one	of	these	three	frame	types.	I	frames	can	be	thought	of	as	reference	frames;	they	are	self-
contained,	depending	on	neither	earlier	frames	nor	later	frames.	To	a	first	approximation,	an	I	frame	is	simply	the
JPEG	compressed	version	of	the	corresponding	frame	in	the	video	source.	P	and	B	frames	are	not	self-contained;
they	specify	relative	differences	from	some	reference	frame.	More	specifically,	a	P	frame	specifies	the	differences
from	the	previous	I	frame,	while	a	B	frame	gives	an	interpolation	between	the	previous	and	subsequent	I	or	P	frames.

Figure	4.	Sequence	of	I,	P,	and	B	frames	generated	by	MPEG.

Figure	4	illustrates	a	sequence	of	seven	video	frames	that,	after	being	compressed	by	MPEG,	result	in	a	sequence	of
I,	P,	and	B	frames.	The	two	I	frames	stand	alone;	each	can	be	decompressed	at	the	receiver	independently	of	any
other	frames.	The	P	frame	depends	on	the	preceding	I	frame;	it	can	be	decompressed	at	the	receiver	only	if	the
preceding	I	frame	also	arrives.	Each	of	the	B	frames	depends	on	both	the	preceding	I	or	P	frame	and	the	subsequent	I
or	P	frame.	Both	of	these	reference	frames	must	arrive	at	the	receiver	before	MPEG	can	decompress	the	B	frame	to
reproduce	the	original	video	frame.

Note	that,	because	each	B	frame	depends	on	a	later	frame	in	the	sequence,	the	compressed	frames	are	not
transmitted	in	sequential	order.	Instead,	the	sequence	I	B	B	P	B	B	I	shown	in	Figure	4	is	transmitted	as	I	P	B	B	I	B	B.
Also,	MPEG	does	not	define	the	ratio	of	I	frames	to	P	and	B	frames;	this	ratio	may	vary	depending	on	the	required
compression	and	picture	quality.	For	example,	it	is	permissible	to	transmit	only	I	frames.	This	would	be	similar	to	using
JPEG	to	compress	the	video.

In	contrast	to	the	preceding	discussion	of	JPEG,	the	following	focuses	on	the	decoding	of	an	MPEG	stream.	It	is	a
little	easier	to	describe,	and	it	is	the	operation	that	is	more	often	implemented	in	networking	systems	today,	since
MPEG	coding	is	so	expensive	that	it	is	frequently	done	offline	(i.e.,	not	in	real	time).	For	example,	in	a	video-on-
demand	system,	the	video	would	be	encoded	and	stored	on	disk	ahead	of	time.	When	a	viewer	wanted	to	watch	the
video,	the	MPEG	stream	would	then	be	transmitted	to	the	viewer's	machine,	which	would	decode	and	display	the
stream	in	real	time.

Let's	look	more	closely	at	the	three	frame	types.	As	mentioned	above,	I	frames	are	approximately	equal	to	the	JPEG
compressed	version	of	the	source	frame.	The	main	difference	is	that	MPEG	works	in	units	of	16	×	16	macroblocks.
For	a	color	video	represented	in	YUV,	the	U	and	V	components	in	each	macroblock	are	subsampled	into	an	8	×	8
block,	as	we	discussed	above	in	the	context	of	JPEG.	Each	2	×	2	subblock	in	the	macroblock	is	given	by	one	U	value
and	one	V	value—the	average	of	the	four	pixel	values.	The	subblock	still	has	four	Y	values.	The	relationship	between
a	frame	and	the	corresponding	macroblocks	is	given	in	Figure	5.

7.2	Multimedia	Data

325



Figure	5.	Each	frame	as	a	collection	of	macroblocks.

The	P	and	B	frames	are	also	processed	in	units	of	macroblocks.	Intuitively,	we	can	see	that	the	information	they	carry
for	each	macroblock	captures	the	motion	in	the	video;	that	is,	it	shows	in	what	direction	and	how	far	the	macroblock
moved	relative	to	the	reference	frame(s).	The	following	describes	how	a	B	frame	is	used	to	reconstruct	a	frame	during
decompression;	P	frames	are	handled	in	a	similar	manner,	except	that	they	depend	on	only	one	reference	frame
instead	of	two.

Before	getting	to	the	details	of	how	a	B	frame	is	decompressed,	we	first	note	that	each	macroblock	in	a	B	frame	is	not
necessarily	defined	relative	to	both	an	earlier	and	a	later	frame,	as	suggested	above,	but	may	instead	simply	be
specified	relative	to	just	one	or	the	other.	In	fact,	a	given	macroblock	in	a	B	frame	can	use	the	same	intracoding	as	is
used	in	an	I	frame.	This	flexibility	exists	because	if	the	motion	picture	is	changing	too	rapidly	then	it	sometimes	makes
sense	to	give	the	intrapicture	encoding	rather	than	a	forward-	or	backward-predicted	encoding.	Thus,	each
macroblock	in	a	B	frame	includes	a	type	field	that	indicates	which	encoding	is	used	for	that	macroblock.	In	the
following	discussion,	however,	we	consider	only	the	general	case	in	which	the	macroblock	uses	bidirectional
predictive	encoding.

In	such	a	case,	each	macroblock	in	a	B	frame	is	represented	with	a	4-tuple:	(1)	a	coordinate	for	the	macroblock	in	the
frame,	(2)	a	motion	vector	relative	to	the	previous	reference	frame,	(3)	a	motion	vector	relative	to	the	subsequent
reference	frame,	and	(4)	a	delta	(δ)	for	each	pixel	in	the	macroblock	(i.e.,	how	much	each	pixel	has	changed	relative	to
the	two	reference	pixels).	For	each	pixel	in	the	macroblock,	the	first	task	is	to	find	the	corresponding	reference	pixel	in
the	past	and	future	reference	frames.	This	is	done	using	the	two	motion	vectors	associated	with	the	macroblock.

Then,	the	delta	for	the	pixel	is	added	to	the	average	of	these	two	reference	pixels.	Stated	more	precisely,	if	we	let	F

and	F 	denote	the	past	and	future	reference	frames,	respectively,	and	the	past/future	motion	vectors	are	given	by	

(x , y )	and	(x , y ),	then	the	pixel	at	coordinate	(x, y)	in	the	current	frame	(denoted	F )	is	computed	as

F (x, y) = (F (x+ x , y + y ) + F (x+ x , y + y ))/2 + δ(x, y)

where	δ	is	the	delta	for	the	pixel	as	specified	in	the	B	frame.	These	deltas	are	encoded	in	the	same	way	as	pixels	in	I
frames;	that	is,	they	are	run	through	DCT	and	then	quantized.	Since	the	deltas	are	typically	small,	most	of	the	DCT
coefficients	are	0	after	quantization;	hence,	they	can	be	effectively	compressed.

It	should	be	fairly	clear	from	the	preceding	discussion	how	encoding	would	be	performed,	with	one	exception.	When
generating	a	B	or	P	frame	during	compression,	MPEG	must	decide	where	to	place	the	macroblocks.	Recall	that	each
macroblock	in	a	P	frame,	for	example,	is	defined	relative	to	a	macroblock	in	an	I	frame,	but	that	the	macroblock	in	the
P	frame	need	not	be	in	the	same	part	of	the	frame	as	the	corresponding	macroblock	in	the	I	frame—the	difference	in
position	is	given	by	the	motion	vector.	You	would	like	to	pick	a	motion	vector	that	makes	the	macroblock	in	the	P
frame	as	similar	as	possible	to	the	corresponding	macroblock	in	the	I	frame,	so	that	the	deltas	for	that	macroblock	can
be	as	small	as	possible.	This	means	that	you	need	to	figure	out	where	objects	in	the	picture	moved	from	one	frame	to
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the	next.	This	is	the	problem	of	motion	estimation,	and	several	techniques	(heuristics)	for	solving	this	problem	are
known.	(We	discuss	papers	that	consider	this	problem	at	the	end	of	this	chapter.)	The	difficulty	of	this	problem	is	one
of	the	reasons	why	MPEG	encoding	takes	longer	than	decoding	on	equivalent	hardware.	MPEG	does	not	specify	any
particular	technique;	it	only	defines	the	format	for	encoding	this	information	in	B	and	P	frames	and	the	algorithm	for
reconstructing	the	pixel	during	decompression,	as	given	above.

Effectiveness	and	Performance

MPEG	typically	achieves	a	compression	ratio	of	90:1,	although	ratios	as	high	as	150:1	are	not	unheard	of.	In	terms	of
the	individual	frame	types,	we	can	expect	a	compression	ratio	of	approximately	30:1	for	the	I	frames	(this	is	consistent
with	the	ratios	achieved	using	JPEG	when	24-bit	color	is	first	reduced	to	8-bit	color),	while	P	and	B	frame	compression
ratios	are	typically	three	to	five	times	smaller	than	the	rates	for	the	I	frame.	Without	first	reducing	the	24	bits	of	color	to
8	bits,	the	achievable	compression	with	MPEG	is	typically	between	30:1	and	50:1.

MPEG	involves	an	expensive	computation.	On	the	compression	side,	it	is	typically	done	offline,	which	is	not	a	problem
for	preparing	movies	for	a	video-on-demand	service.	Video	can	be	compressed	in	real	time	using	hardware	today,	but
software	implementations	are	quickly	closing	the	gap.	On	the	decompression	side,	low-cost	MPEG	video	boards	are
available,	but	they	do	little	more	than	YUV	color	lookup,	which	fortunately	is	the	most	expensive	step.	Most	of	the
actual	MPEG	decoding	is	done	in	software.	In	recent	years,	processors	have	become	fast	enough	to	keep	pace	with
30-frames-per-second	video	rates	when	decoding	MPEG	streams	purely	in	software—modern	processors	can	even
decode	MPEG	streams	of	high	definition	video	(HDTV).

Video	Encoding	Standards

We	conclude	by	noting	that	MPEG	is	an	evolving	standard	of	significant	complexity.	This	complexity	comes	from	a
desire	to	give	the	encoding	algorithm	every	possible	degree	of	freedom	in	how	it	encodes	a	given	video	stream,
resulting	in	different	video	transmission	rates.	It	also	comes	from	the	evolution	of	the	standard	over	time,	with	the
Moving	Picture	Experts	Group	working	hard	to	retain	backwards	compatibility	(e.g.,	MPEG-1,	MPEG-2,	MPEG-4).
What	we	describe	in	this	book	is	the	essential	ideas	underlying	MPEG-based	compression,	but	certainly	not	all	the
intricacies	involved	in	an	international	standard.

What's	more,	MPEG	is	not	the	only	standard	available	for	encoding	video.	For	example,	the	ITU-T	has	also	defined
the	H	series	for	encoding	real-time	multimedia	data.	Generally,	the	H	series	includes	standards	for	video,	audio,
control,	and	multiplexing	(e.g.,	mixing	audio,	video,	and	data	onto	a	single	bit	stream).	Within	the	series,	H.261	and
H.263	were	the	first-	and	second-generation	video	encoding	standards.	In	principle,	both	H.261	and	H.263	look	a	lot
like	MPEG:	They	use	DCT,	quantization,	and	interframe	compression.	The	differences	between	H.261/H.263	and
MPEG	are	in	the	details.

Today,	a	partnership	between	the	ITU-T	and	the	MPEG	group	has	lead	to	the	joint	H.264/MPEG-4	standard,	which	is
used	for	both	Blu-ray	Discs	and	by	many	popular	streaming	sources	(e.g.,	YouTube,	Vimeo).

Transmitting	MPEG	over	a	Network

As	we've	noted,	MPEG	and	JPEG	are	not	just	compression	standards	but	also	definitions	of	the	format	of	video	and
images,	respectively.	Focusing	on	MPEG,	the	first	thing	to	keep	in	mind	is	that	it	defines	the	format	of	a	video	stream;
it	does	not	specify	how	this	stream	is	broken	into	network	packets.	Thus,	MPEG	can	be	used	for	videos	stored	on
disk,	as	well	as	videos	transmitted	over	a	stream-oriented	network	connection,	like	that	provided	by	TCP.

What	we	describe	below	is	called	the	main	profile	of	an	MPEG	video	stream	that	is	being	sent	over	a	network.	You
can	think	of	an	MPEG	profile	as	being	analogous	to	a	"version,"	except	the	profile	is	not	explicitly	specified	in	an
MPEG	header;	the	receiver	has	to	deduce	the	profile	from	the	combination	of	header	fields	it	sees.
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Figure	6.	Format	of	an	MPEG-compressed	video	stream.

A	main	profile	MPEG	stream	has	a	nested	structure,	as	illustrated	in	Figure	6.	(Keep	in	mind	that	this	figure	hides	a	lot
of	messy	details.)	At	the	outermost	level,	the	video	contains	a	sequence	of	groups	of	pictures	(GOP)	separated	by	a
	SeqHdr	.	The	sequence	is	terminated	by	a		SeqEndCode		(	0xb7	).	The		SeqHdr		that	precedes	every	GOP	specifies—
among	other	things—the	size	of	each	picture	(frame)	in	the	GOP	(measured	in	both	pixels	and	macroblocks),	the
interpicture	period	(measured	in	μs),	and	two	quantization	matrices	for	the	macroblocks	within	this	GOP:	one	for
intracoded	macroblocks	(I	blocks)	and	one	for	intercoded	macroblocks	(B	and	P	blocks).	Since	this	information	is
given	for	each	GOP—rather	than	once	for	the	entire	video	stream,	as	you	might	expect—it	is	possible	to	change	the
quantization	table	and	frame	rate	at	GOP	boundaries	throughout	the	video.	This	makes	it	possible	to	adapt	the	video
stream	over	time,	as	we	discuss	below.

Each	GOP	is	given	by	a		GOPHdr	,	followed	by	the	set	of	pictures	that	make	up	the	GOP.	The		GOPHdr		specifies	the
number	of	pictures	in	the	GOP,	as	well	as	synchronization	information	for	the	GOP	(i.e.,	when	the	GOP	should	play,
relative	to	the	beginning	of	the	video).	Each	picture,	in	turn,	is	given	by	a		PictureHdr		and	a	set	of	slices	that	make	up
the	picture.	(A	slice	is	a	region	of	the	picture,	such	as	one	horizontal	line.)	The		PictureHdr		identifies	the	type	of	the
picture	(I,	B,	or	P)	and	defines	a	picture-specific	quantization	table.	The		SliceHdr		gives	the	vertical	position	of	the
slice,	plus	another	opportunity	to	change	the	quantization	table—this	time	by	a	constant	scaling	factor	rather	than	by
giving	a	whole	new	table.	Next,	the		SliceHdr		is	followed	by	a	sequence	of	macroblocks.	Finally,	each	macroblock
includes	a	header	that	specifies	the	block	address	within	the	picture,	along	with	data	for	the	six	blocks	within	the
macroblock:	one	for	the	U	component,	one	for	the	V	component,	and	four	for	the	Y	component.	(Recall	that	the	Y
component	is	16	×	16,	while	the	U	and	V	components	are	8	×	8.)

It	should	be	clear	that	one	of	the	powers	of	the	MPEG	format	is	that	it	gives	the	encoder	an	opportunity	to	change	the
encoding	over	time.	It	can	change	the	frame	rate,	the	resolution,	the	mix	of	frame	types	that	define	a	GOP,	the
quantization	table,	and	the	encoding	used	for	individual	macroblocks.	As	a	consequence,	it	is	possible	to	adapt	the
rate	at	which	a	video	is	transmitted	over	a	network	by	trading	picture	quality	for	network	bandwidth.	Exactly	how	a
network	protocol	might	exploit	this	adaptability	is	currently	a	subject	of	research	(see	sidebar).

Another	interesting	aspect	of	sending	an	MPEG	stream	over	the	network	is	exactly	how	the	stream	is	broken	into
packets.	If	sent	over	a	TCP	connection,	packetization	is	not	an	issue;	TCP	decides	when	it	has	enough	bytes	to	send
the	next	IP	datagram.	When	using	video	interactively,	however,	it	is	rare	to	transmit	it	over	TCP,	since	TCP	has
several	features	that	are	ill	suited	to	highly	latency-sensitive	applications	(such	as	abrupt	rate	changes	after	a	packet
loss	and	retransmission	of	lost	packets).	If	we	are	transmitting	video	using	UDP,	say,	then	it	makes	sense	to	break	the
stream	at	carefully	selected	points,	such	as	at	macroblock	boundaries.	This	is	because	we	would	like	to	confine	the
effects	of	a	lost	packet	to	a	single	macroblock,	rather	than	damaging	several	macroblocks	with	a	single	loss.	This	is
an	example	of	Application	Level	Framing,	which	was	discussed	in	an	earlier	chapter.
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Packetizing	the	stream	is	only	the	first	problem	in	sending	MPEG-compressed	video	over	a	network.	The	next
complication	is	dealing	with	packet	loss.	On	the	one	hand,	if	a	B	frame	is	dropped	by	the	network,	then	it	is	possible	to
simply	replay	the	previous	frame	without	seriously	compromising	the	video;	1	frame	out	of	30	is	no	big	deal.	On	the
other	hand,	a	lost	I	frame	has	serious	consequences—none	of	the	subsequent	B	and	P	frames	can	be	processed
without	it.	Thus,	losing	an	I	frame	would	result	in	losing	multiple	frames	of	the	video.	While	you	could	retransmit	the
missing	I	frame,	the	resulting	delay	would	probably	not	be	acceptable	in	a	real-time	videoconference.	One	solution	to
this	problem	would	be	to	use	the	Differentiated	Services	techniques	described	in	the	previous	chapter	to	mark	the
packets	containing	I	frames	with	a	lower	drop	probability	than	other	packets.

One	final	observation	is	that	how	you	choose	to	encode	video	depends	on	more	than	just	the	available	network
bandwidth.	It	also	depends	on	the	application's	latency	constraints.	Once	again,	an	interactive	application	like
videoconferencing	needs	small	latencies.	The	critical	factor	is	the	combination	of	I,	P,	and	B	frames	in	the	GOP.
Consider	the	following	GOP:

I	B	B	B	B	P	B	B	B	B	I

The	problem	this	GOP	causes	a	videoconferencing	application	is	that	the	sender	has	to	delay	the	transmission	of	the
four	B	frames	until	the	P	or	I	that	follows	them	is	available.	This	is	because	each	B	frame	depends	on	the	subsequent
P	or	I	frame.	If	the	video	is	playing	at	15	frames	per	second	(i.e.,	one	frame	every	67	ms),	this	means	the	first	B	frame
is	delayed	4	×	67	ms,	which	is	more	than	a	quarter	of	a	second.	This	delay	is	in	addition	to	any	propagation	delay
imposed	by	the	network.	A	quarter	of	a	second	is	far	greater	than	the	100-ms	threshold	that	humans	are	able	to
perceive.	It	is	for	this	reason	that	many	videoconference	applications	encode	video	using	JPEG,	which	is	often	called
motion-JPEG.	(Motion-JPEG	also	addresses	the	problem	of	dropping	a	reference	frame	since	all	frames	are	able	to
stand	alone.)	Notice,	however,	that	an	interframe	encoding	that	depends	upon	only	prior	frames	rather	than	later
frames	is	not	a	problem.	Thus,	a	GOP	of

I	P	P	P	P	I

would	work	just	fine	for	interactive	videoconferencing.

Adaptive	Streaming

Because	encoding	schemes	like	MPEG	allow	for	a	trade-off	between	the	bandwidth	consumed	and	the	quality	of	the
image,	there	is	an	opportunity	to	adapt	a	video	stream	to	match	the	available	network	bandwidth.	This	is	effectively
what	video	streaming	services	like	Netflix	do	today.

For	starters,	let's	assume	that	we	have	some	way	to	measure	the	amount	of	free	capacity	and	level	of	congestion
along	a	path,	for	example,	by	observing	the	rate	at	which	packets	are	successfully	arriving	at	the	destination.	As	the
available	bandwidth	fluctuates,	we	can	feed	that	information	back	to	the	codec	so	that	it	adjusts	its	coding	parameters
to	back	off	during	congestion	and	to	send	more	aggressively	(with	a	higher	picture	quality)	when	the	network	is	idle.
This	is	analogous	to	the	behavior	of	TCP,	except	in	the	video	case	we	are	actually	modifying	the	total	amount	of	data
sent	rather	than	how	long	we	take	to	send	a	fixed	amount	of	data,	since	we	don't	want	to	introduce	delay	into	a	video
application.

In	the	case	of	video-on-demand	services	like	Netflix,	we	don't	adapt	the	encoding	on	the	fly,	but	instead	we	encode	a
handful	of	video	quality	levels	ahead	of	time,	and	save	them	to	files	named	accordingly.	The	receiver	simply	changes
the	file	name	it	requests	to	match	the	quality	its	measurements	indicate	the	network	will	be	able	to	deliver.	The
receiver	watches	its	playback	queue,	and	asks	for	a	higher	quality	encoding	when	the	queue	becomes	too	full	and	a
lower	quality	encoding	when	the	queue	becomes	too	empty.

How	does	this	approach	know	where	in	the	movie	to	jump	to	should	the	requested	quality	change?	In	effect,	the
receiver	never	asks	the	sender	to	stream	the	whole	movie,	but	instead	it	requests	a	sequence	of	short	movie
segments,	typically	a	few	seconds	long	(and	always	on	GOP	boundary).	Each	segment	is	an	opportunity	to	change
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the	quality	level	to	match	what	the	network	is	able	to	deliver.	(It	turns	out	that	requesting	movie	chunks	also	makes	it
easier	to	implement	trick	play,	jumping	around	from	one	place	to	another	in	the	movie.)	In	other	words,	a	movie	is
typically	stored	as	a	set	of	N	×	M	chunks	(files):	N	quality	levels	for	each	of	M	segments.

There's	one	last	detail.	Since	the	receiver	is	effectively	requesting	a	sequence	of	discrete	video	chunks	by	name,	the
most	common	approach	for	issuing	these	requests	is	to	use	HTTP.	Each	chuck	is	a	separate	HTTP	GET	request	with
the	URL	identifying	the	specific	chunk	the	receiver	wants	next.	When	you	start	downloading	a	movie,	your	video
player	first	downloads	a	manifest	file	that	contains	nothing	more	than	the	URLs	for	the	N	×	M	chunks	in	the	movie,
and	then	it	issues	a	sequence	of	HTTP	requests	using	the	appropriate	URL	for	the	situation.	This	general	approach	is
called	HTTP	adaptive	streaming,	although	it	has	been	standardized	in	slightly	different	ways	by	various	organizations,
most	notably	MPEG's	DASH	(Dynamic	Adaptive	Streaming	over	HTTP)	and	Apple's	HLS	(HTTP	Live	Streaming).

Audio	Compression	(MP3)

Not	only	does	MPEG	define	how	video	is	compressed,	but	it	also	defines	a	standard	for	compressing	audio.	This
standard	can	be	used	to	compress	the	audio	portion	of	a	movie	(in	which	case	the	MPEG	standard	defines	how	the
compressed	audio	is	interleaved	with	the	compressed	video	in	a	single	MPEG	stream)	or	it	can	be	used	to	compress
stand-alone	audio	(for	example,	an	audio	CD).

To	understand	audio	compression,	we	need	to	begin	with	the	data.	CD-quality	audio,	which	is	the	de	facto	digital
representation	for	high-quality	audio,	is	sampled	at	a	rate	of	44.1	KHz	(i.e.,	a	sample	is	collected	approximately	once
every	23	μs).	Each	sample	is	16	bits,	which	means	that	a	stereo	(2-channel)	audio	stream	results	in	a	bit	rate	of

2 × 44.1 × 1000 × 16 = 1.41	Mbps

By	comparison,	telephone-quality	voice	is	sampled	at	a	rate	of	8	KHz,	with	8-bit	samples,	resulting	in	a	bit	rate	of	64
kbps.

Clearly,	some	amount	of	compression	is	going	to	be	required	to	transmit	CD-quality	audio	over,	say,	the	128-kbps
capacity	of	an	ISDN	data/voice	line	pair.	To	make	matters	worse,	synchronization	and	error	correction	overhead
require	that	49	bits	be	used	to	encode	each	16-bit	sample,	resulting	in	an	actual	bit	rate	of

49/16 × 1.41	Mbps = 4.32	Mbps

MPEG	addresses	this	need	by	defining	three	levels	of	compression,	as	enumerated	in	Table	2.	Of	these,	Layer	III,
which	is	more	widely	known	as	MP3,	is	the	most	commonly	used.

Table	2.	MP3	Compression	Rates.

Coding Bit	Rates Compression	Factor

Layer	I 384	kbps 14

Layer	II 192	kbps 18

Layer	III 128	kbps 12

To	achieve	these	compression	ratios,	MP3	uses	techniques	that	are	similar	to	those	used	by	MPEG	to	compress
video.	First,	it	splits	the	audio	stream	into	some	number	of	frequency	subbands,	loosely	analogous	to	the	way	MPEG
processes	the	Y,	U,	and	V	components	of	a	video	stream	separately.	Second,	each	subband	is	broken	into	a
sequence	of	blocks,	which	are	similar	to	MPEG's	macroblocks	except	they	can	vary	in	length	from	64	to	1024
samples.	(The	encoding	algorithm	can	vary	the	block	size	depending	on	certain	distortion	effects	that	are	beyond	our
discussion.)	Finally,	each	block	is	transformed	using	a	modified	DCT	algorithm,	quantized,	and	Huffman	encoded,	just
as	for	MPEG	video.
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The	trick	to	MP3	is	how	many	subbands	it	elects	to	use	and	how	many	bits	it	allocates	to	each	subband,	keeping	in
mind	that	it	is	trying	to	produce	the	highest-quality	audio	possible	for	the	target	bit	rate.	Exactly	how	this	allocation	is
made	is	governed	by	psychoacoustic	models	that	are	beyond	the	scope	of	this	book,	but	to	illustrate	the	idea	consider
that	it	makes	sense	to	allocate	more	bits	to	low-frequency	subbands	when	compressing	a	male	voice	and	more	bits	to
high-frequency	subbands	when	compressing	a	female	voice.	Operationally,	MP3	dynamically	changes	the
quantization	tables	used	for	each	subband	to	achieve	the	desired	effect.

Once	compressed,	the	subbands	are	packaged	into	fixed-size	frames,	and	a	header	is	attached.	This	header	includes
synchronization	information,	as	well	as	the	bit	allocation	information	needed	by	the	decoder	to	determine	how	many
bits	are	used	to	encode	each	subband.	As	mentioned	above,	these	audio	frames	can	then	be	interleaved	with	video
frames	to	form	a	complete	MPEG	stream.	One	interesting	side	note	is	that,	while	it	might	work	to	drop	B	frames	in	the
network	should	congestion	occur,	experience	teaches	us	that	it	is	not	a	good	idea	to	drop	audio	frames	since	users
are	better	able	to	tolerate	bad	video	than	bad	audio.
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7.3	Broader	Perspective

Big	Data	and	Analytics

This	chapter	is	about	data,	and	since	no	topic	in	Computer	Science	is	receiving	more	attention	than	big	data	(or
alternatively,	data	analytics),	a	natural	question	is	what	relationship	there	might	be	between	big	data	and	computer
networks.	Although	the	term	is	often	used	informally	by	the	popular	press,	a	working	definition	is	quite	simple:	sensor
data	is	collected	by	monitoring	some	physical	or	man-made	system	and	then	analyzed	for	insights	using	the	statistical
methods	of	Machine	Learning.	Because	the	amount	of	raw	data	that’s	collected	is	often	voluminous,	the	“big”	qualifier
is	applied.	So	are	there	any	implications	to	networking?

At	first	blush,	networks	are	purposely	designed	to	be	data-agnostic.	If	you	collect	it	and	want	to	ship	to	somewhere	for
analysis,	the	network	is	happy	to	do	that	for	you.	You	might	compress	the	data	to	reduce	the	bandwidth	required	to
transmit	it,	but	otherwise	big	data	is	no	different	than	plain	old	regular	data.	But	this	ignores	two	important	factors.

The	first	is	that	while	the	network	doesn’t	care	about	the	meaning	of	the	data	(i.e.,	what	the	bits	represent),	it	does
concern	itself	with	the	volume	of	data.	This	impacts	the	access	network	in	particular,	which	has	been	engineered	to
favor	download	speeds	over	upload	speeds.	That	bias	makes	sense	when	the	dominant	use	case	is	video	that	flows
out	to	end-users,	but	in	a	world	where	your	car,	every	appliance	in	your	house,	and	the	drones	flying	over	your	city	are
all	reporting	data	back	into	the	network	(uploaded	into	the	cloud),	the	situation	is	reversed.	In	fact,	the	amount	of	data
being	generated	by	Autonomous	Vehicles	and	the	Internet-of-Things	(IoT)	is	potentially	overwhelming.

While	one	could	imagine	dealing	with	this	problem	by	using	one	of	the	compression	algorithms	described	in	Section
7.2,	people	are	instead	thinking	outside	the	box,	and	pursuing	new	applications	that	reside	at	the	edge	of	the	network.
These	edge-native	applications	both	provide	better	sub-millisecond	response	time	and	they	dramatically	reduce	the
volume	of	data	that	ultimately	needs	to	be	uploaded	into	the	cloud.	You	can	think	of	this	data	reduction	as	application-
specific	compression,	but	it’s	more	accurate	to	say	that	the	edge	application	needs	only	write	summaries	of	the	data,
not	the	raw	data,	back	to	the	cloud.

We	introduced	the	access-edge	cloud	technology	needed	to	support	edge-native	applications	at	the	end	of	Chapter	2,
but	what	is	perhaps	more	interesting	is	to	look	at	some	examples	of	edge-native	applications.	One	such	example	is
enterprises	in	the	automotive,	factory,	and	warehouse	space	increasingly	want	to	deploy	private	5G	networks	for	a
variety	of	physical	automation	use	cases.	These	include	a	garage	where	a	remote	valet	parks	your	car	or	a	factory
floor	making	use	of	automation	robots.	The	common	theme	is	high	bandwidth,	low	latency	connectivity	from	the	robot
to	intelligence	sitting	nearby	in	an	edge	cloud.	This	drives	lower	robot	costs	(you	don’t	need	to	place	heavy	compute
on	each	one)	and	enables	robot	swarms	and	coordination	more	scalably.

Another	illustrative	example	is	Wearable	Cognitive	Assistance.	The	idea	is	to	generalize	what	navigation	software
does	for	us:	it	uses	one	sensor	(GPS),	gives	us	step-by-step	guidance	on	a	complex	task	(getting	around	an	unknown
city),	catches	our	errors	promptly,	and	helps	us	recover.	Can	we	generalize	this	metaphor?	Could	a	person	wearing	a
device	(e.g.,	Google	Glass,	Microsoft	Hololens)	be	guided	step-by-step	on	a	complex	task,	perhaps	for	the	first	time?
The	system	would	effectively	act	as	“an	angel	on	your	shoulder.”	All	the	sensors	on	the	device	(e.g.,	video,	audio,
accelerometer,	gyroscope)	are	streamed	over	wireless	(possibly	after	some	device	preprocessing)	to	a	nearby	edge-
cloud	that	performs	the	heavy	lifting.	This	is	a	human-in-the-loop	metaphor,	with	the	“look	and	feel	of	augmented
reality”	but	implemented	by	AI	algorithms	(e.g.,	computer	vision,	natural	language	recognition.)

The	second	factor	is	that	because	a	network	is	like	many	other	man-made	systems,	it	is	possible	to	collect	data	about
its	behavior	(e.g.,	performance,	failures,	traffic	patterns),	apply	analytics	programs	to	that	data,	and	use	the	insights
gained	to	improve	the	network.	It	should	not	come	as	a	surprise	that	this	is	an	active	area	of	research,	with	the	goal	of
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building	a	closed	control	loop.	Setting	aside	the	analytics	itself,	which	are	well	outside	the	scope	of	this	book,	the
interesting	questions	are	(1)	what	useful	data	can	we	collect,	and	(2)	what	aspects	of	the	network	are	most	promising
to	control?	Let’s	look	at	two	promising	answers.

One	is	5G	cellular	networks,	which	are	inherently	complex.	They	include	multiple	layers	of	virtual	functions,	virtual	and
physical	RAN	assets,	spectrum	usage,	and	as	we	have	just	discussed,	edge	computing	nodes.	It	is	widely	expected
that	network	analytics	will	be	essential	to	building	a	flexible	5G	network.	This	will	include	network	planning,	which	will
need	to	decide	where	to	scale	specific	network	functions	and	application	services	based	on	machine	learning
algorithms	that	analyze	network	utilization	and	traffic	data	patterns.

A	second	is	In-band	Network	Telemetry	(INT),	a	framework	to	collect	and	report	network	state,	directly	in	the	data
plane.	This	is	in	contrast	to	the	conventional	reporting	done	by	the	network	control	plane,	as	typified	by	the	example
systems	described	in	Section	9.3.	In	the	INT	architecture,	packets	contain	header	fields	that	are	interpreted	as
“telemetry	instructions”	by	network	devices.	These	instructions	tell	an	INT-capable	device	what	state	to	collect	and
write	into	the	packet	as	it	transits	the	network.	INT	traffic	sources	(e.g.,	applications,	end-host	networking	stacks,	VM
hypervisors)	can	embed	the	instructions	either	in	normal	data	packets	or	in	special	probe	packets.	Similarly,	INT	traffic
sinks	retrieve	(and	optionally	report)	the	collected	results	of	these	instructions,	allowing	the	traffic	sinks	to	monitor	the
exact	data	plane	state	that	the	packets	“observed”	while	being	forwarded.	INT	is	still	early-stage,	and	takes	advantage
of	the	programmable	pipelines	described	in	Section	3.4,	but	it	has	the	potential	to	provide	a	qualitatively	deeper
insights	into	traffic	patterns	and	the	root	causes	of	network	failures.

Broader	Perspective

To	continue	reading	about	the	cloudification	of	the	Internet,	see	Blockchain	and	a	Decentralized	Internet.

To	learn	more	about	promising	edge-native	applications,	we	recommend:

Open	Edge	Computing	Initiative,	2019.

To	learn	more	about	In-band	Network	Telemetry,	we	recommend:

In-band	Network	Telemetry	via	Programmable	Dataplanes,	August	2015.
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Chapter	8:	Network	Security

It	is	true	greatness	to	have	in	one	the	frailty	of	a	man	and	the	security	of	a	god.	—Seneca

Problem:	Security	Attacks

Computer	networks	are	typically	a	shared	resource	used	by	many	applications	representing	different	interests.	The
Internet	is	particularly	widely	shared,	being	used	by	competing	businesses,	mutually	antagonistic	governments,	and
opportunistic	criminals.	Unless	security	measures	are	taken,	a	network	conversation	or	a	distributed	application	may
be	compromised	by	an	adversary.

Consider,	for	example,	some	threats	to	secure	use	of	the	web.	Suppose	you	are	a	customer	using	a	credit	card	to
order	an	item	from	a	website.	An	obvious	threat	is	that	an	adversary	would	eavesdrop	on	your	network
communication,	reading	your	messages	to	obtain	your	credit	card	information.	How	might	that	eavesdropping	be
accomplished?	It	is	trivial	on	a	broadcast	network	such	as	an	Ethernet	or	Wi-Fi,	where	any	node	can	be	configured	to
receive	all	the	message	traffic	on	that	network.	More	elaborate	approaches	include	wiretapping	and	planting	spy
software	on	any	of	the	chain	of	nodes	involved.	Only	in	the	most	extreme	cases	(e.g.,national	security)	are	serious
measures	taken	to	prevent	such	monitoring,	and	the	Internet	is	not	one	of	those	cases.	It	is	possible	and	practical,
however,	to	encrypt	messages	so	as	to	prevent	an	adversary	from	understanding	the	message	contents.	A	protocol
that	does	so	is	said	to	provide	confidentiality.	Taking	the	concept	a	step	farther,	concealing	the	quantity	or	destination
of	communication	is	called	traffic	confidentiality—because	merely	knowing	how	much	communication	is	going	where
can	be	useful	to	an	adversary	in	some	situations.

Even	with	confidentiality	there	still	remains	threats	for	the	website	customer.	An	adversary	who	can't	read	the	contents
of	your	encrypted	message	might	still	be	able	to	change	a	few	bits	in	it,	resulting	in	a	valid	order	for,	say,	a	completely
different	item	or	perhaps	1000	units	of	the	item.	There	are	techniques	to	detect,	if	not	prevent,	such	tampering.	A
protocol	that	detects	such	message	tampering	is	said	to	provide	integrity.

Another	threat	to	the	customer	is	unknowingly	being	directed	to	a	false	website.	This	can	result	from	a	Domain	Name
System	(DNS)	attack,	in	which	false	information	is	entered	in	a	DNS	server	or	the	name	service	cache	of	the
customer's	computer.	This	leads	to	translating	a	correct	URL	into	an	incorrect	IP	address—the	address	of	a	false
website.	A	protocol	that	ensures	that	you	really	are	talking	to	whom	you	think	you're	talking	is	said	to	provide
authentication.	Authentication	entails	integrity,	since	it	is	meaningless	to	say	that	a	message	came	from	a	certain
participant	if	it	is	no	longer	the	same	message.

The	owner	of	the	website	can	be	attacked	as	well.	Some	websites	have	been	defaced;	the	files	that	make	up	the
website	content	have	been	remotely	accessed	and	modified	without	authorization.	That	is	an	issue	of	access	control:
enforcing	the	rules	regarding	who	is	allowed	to	do	what.	Websites	have	also	been	subject	to	denial	of	service	(DoS)
attacks,	during	which	would-be	customers	are	unable	to	access	the	website	because	it	is	being	overwhelmed	by
bogus	requests.	Ensuring	a	degree	of	access	is	called	availability.

In	addition	to	these	issues,	the	Internet	has	notably	been	used	as	a	means	for	deploying	malicious	code,	generally
called	malware,	that	exploits	vulnerabilities	in	end	systems.	Worms,	pieces	of	self-replicating	code	that	spread	over
networks,	have	been	known	for	several	decades	and	continue	to	cause	problems,	as	do	their	relatives,	viruses,	which
are	spread	by	the	transmission	of	infected	files.	Infected	machines	can	then	be	arranged	into	botnets,	which	can	be
used	to	inflict	further	harm,	such	as	launching	DoS	attacks.
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8.1	Trust	and	Threats

Before	we	address	the	how's	and	why's	of	building	secure	networks,	it	is	important	to	establish	one	simple	truth:	We
will	inevitably	fail.	This	is	because	security	is	ultimately	an	exercise	in	making	assumptions	about	trust,	evaluating
threats,	and	mitigating	risk.	There	is	no	such	thing	as	perfect	security.

Trust	and	threats	are	two	sides	of	the	same	coin.	A	threat	is	a	potential	failure	scenario	that	you	design	your	system	to
avoid,	and	trust	is	an	assumption	you	make	about	how	external	actors	and	internal	components	you	build	upon	will
behave.	For	example,	if	you	are	transmitting	a	message	over	WiFi	on	an	open	campus,	you	would	likely	identify	an
eavesdropper	that	can	intercept	the	message	as	a	threat	(and	adopt	some	of	the	methods	discussed	in	this	chapter
as	a	countermeasure),	but	if	you	are	transmitting	a	message	over	a	fiber	link	between	two	machines	in	a	locked
datacenter,	you	might	trust	that	channel	is	secure,	and	so	take	no	additional	steps.

You	could	argue	that	since	you	already	have	a	way	to	protect	WiFi-based	communication	you	just	as	well	use	it
protect	the	fiber-based	channel,	but	that	presumes	the	outcome	of	a	cost/benefit	analysis.	Suppose	protecting	any
message,	whether	sent	over	WiFi	or	fiber,	slows	the	communication	down	by	10%	due	to	the	overhead	of	encryption.
If	you	need	to	squeeze	every	last	ounce	of	performance	out	of	a	scientific	computation	(e.g.,	you	are	trying	to	model	a
hurricane)	and	the	odds	of	someone	breaking	into	the	datacenter	is	one	in	a	million	(and	even	if	they	did,	the	data
being	transmitted	has	virtually	no	value),	then	you	would	be	well-justified	in	not	securing	the	fiber	communication
channel.

These	sorts	of	calculations	happen	all	the	time,	although	they	are	often	implicit	and	unstated.	For	example,	you	may
run	the	world's	most	secure	encryption	algorithm	on	a	message	before	transmitting	it,	but	you've	implicitly	trusted	that
the	server	you're	running	on	is	both	faithfully	executing	that	algorithm	and	not	leaking	a	copy	of	your	unencrypted
message	to	an	adversary.	Do	you	treat	this	as	a	threat	or	do	you	trust	that	the	server	does	not	misbehave?	At	the	end
of	the	day,	the	best	you	can	do	is	mitigate	risk:	identify	those	threats	that	you	can	eliminate	in	a	cost	effective	way,
and	be	explicit	about	what	trust	assumptions	you	are	making	so	you	aren't	caught	off-guard	by	changing
circumstances,	such	as	an	ever	more	determined	or	sophisticated	adversary.

In	this	particular	example,	the	threat	of	an	adversary	compromising	a	server	has	become	quite	real	as	more	of	our
computations	move	from	local	servers	into	the	cloud,	and	so	research	is	now	going	into	building	a	Trusted	Computing
Base	(TCB),	an	interesting	topic,	but	one	that	is	in	the	realm	of	computer	architecture	rather	than	computer	networks.
For	the	purpose	of	this	chapter,	our	recommendation	is	to	pay	attention	to	the	words	trust	and	threat	(or	adversary),
as	they	are	key	to	understanding	the	context	in	which	security	claims	are	made.

There	is	one	final	historical	note	that	helps	set	the	table	for	this	chapter.	The	Internet	(and	the	ARPANET	before	it)
where	funded	by	the	U.S.	Department	of	Defense,	an	organization	that	certainly	understands	threat	analysis.	The
original	assessment	was	dominated	by	concerns	about	the	network	surviving	in	the	face	of	routers	and	networks
failing	(or	being	destroyed),	which	explains	why	the	routing	algorithms	are	decentralized,	with	no	central	point	of
failure.	On	the	other	hand,	the	original	design	assumed	all	actors	inside	the	network	were	trusted,	and	so	little	or	no
attention	was	paid	what	today	we	would	call	cybersecurity	(attacks	from	bad	actors	that	are	able	to	connect	to	the
network).	What	this	means	is	that	many	of	the	tools	described	in	this	chapter	could	be	considered	patches.	They	are
strongly-grounded	in	cryptography,	but	"add-ons"	nonetheless.	If	a	comprehensive	redesign	of	the	Internet	were	to
take	place,	integrating	security	would	likely	be	the	foremost	driving	factor.
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8.2	Cryptographic	Building	Blocks

We	introduce	the	concepts	of	cryptography-based	security	step	by	step.	The	first	step	is	the	cryptographic	algorithms
—ciphers	and	cryptographic	hashes—that	are	introduced	in	this	section.	They	are	not	a	solution	in	themselves,	but
rather	building	blocks	from	which	a	solution	can	be	built.	Cryptographic	algorithms	are	parameterized	by	keys,	and	a
later	section	then	addresses	the	problem	of	distributing	the	keys.	In	the	next	step,	we	describe	how	to	incorporate	the
cryptographic	building	blocks	into	protocols	that	provide	secure	communication	between	participants	who	possess	the
correct	keys.	A	final	section	then	examines	several	complete	security	protocols	and	systems	in	current	use.

Principles	of	Ciphers

Encryption	transforms	a	message	in	such	a	way	that	it	becomes	unintelligible	to	any	party	that	does	not	have	the
secret	of	how	to	reverse	the	transformation.	The	sender	applies	an	encryption	function	to	the	original	plaintext
message,	resulting	in	a	ciphertext	message	that	is	sent	over	the	network,	as	shown	in	Figure	1.	The	receiver	applies	a
secret	decryption	function—the	inverse	of	the	encryption	function—to	recover	the	original	plaintext.	The	ciphertext
transmitted	across	the	network	is	unintelligible	to	any	eavesdropper,	assuming	the	eavesdropper	doesn't	know	the
decryption	function.	The	transformation	represented	by	an	encryption	function	and	its	corresponding	decryption
function	is	called	a	cipher.

Figure	1.	Symmetric-key	encryption	and	decryption.

Cryptographers	have	been	led	to	the	principle,	first	stated	in	1883,	that	encryption	and	decryption	functions	should	be
parameterized	by	a	key,	and	furthermore	that	the	functions	should	be	considered	public	knowledge—only	the	key
need	be	secret.	Thus,	the	ciphertext	produced	for	a	given	plaintext	message	depends	on	both	the	encryption	function
and	the	key.	One	reason	for	this	principle	is	that	if	you	depend	on	the	cipher	being	kept	secret,	then	you	have	to	retire
the	cipher	(not	just	the	keys)	when	you	believe	it	is	no	longer	secret.	This	means	potentially	frequent	changes	of
cipher,	which	is	problematic	since	it	takes	a	lot	of	work	to	develop	a	new	cipher.	Also,	one	of	the	best	ways	to	know
that	a	cipher	is	secure	is	to	use	it	for	a	long	time—if	no	one	breaks	it,	it's	probably	secure.	(Fortunately,	there	are
plenty	of	people	who	will	try	to	break	ciphers	and	who	will	let	it	be	widely	known	when	they	have	succeeded,	so	no
news	is	generally	good	news.)	Thus,	there	is	considerable	cost	and	risk	in	deploying	a	new	cipher.	Finally,
parameterizing	a	cipher	with	keys	provides	us	with	what	is	in	effect	a	very	large	family	of	ciphers;	by	switching	keys,
we	essentially	switch	ciphers,	thereby	limiting	the	amount	of	data	that	a	cryptanalyst	(code-breaker)	can	use	to	try	to
break	our	key/cipher	and	the	amount	she	can	read	if	she	succeeds.
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The	basic	requirement	for	an	encryption	algorithm	is	that	it	turn	plaintext	into	ciphertext	in	such	a	way	that	only	the
intended	recipient—the	holder	of	the	decryption	key—can	recover	the	plaintext.	What	this	means	is	that	encrypted
messages	cannot	be	read	by	people	who	do	not	hold	the	key.

It	is	important	to	realize	that	when	a	potential	attacker	receives	a	piece	of	ciphertext,	he	may	have	more	information	at
his	disposal	than	just	the	ciphertext	itself.	For	example,	he	may	know	that	the	plaintext	was	written	in	English,	which
means	that	the	letter	e	occurs	more	often	in	the	plaintext	that	any	other	letter;	the	frequency	of	many	other	letters	and
common	letter	combinations	can	also	be	predicted.	This	information	can	greatly	simplify	the	task	of	finding	the	key.
Similarly,	he	may	know	something	about	the	likely	contents	of	the	message;	for	example,	the	word	"login"	is	likely	to
occur	at	the	start	of	a	remote	login	session.	This	may	enable	a	known	plaintext	attack,	which	has	a	much	higher
chance	of	success	than	a	ciphertext	only	attack.	Even	better	is	a	chosen	plaintext	attack,	which	may	be	enabled	by
feeding	some	information	to	the	sender	that	you	know	the	sender	is	likely	to	transmit—such	things	have	happened	in
wartime,	for	example.

The	best	cryptographic	algorithms,	therefore,	can	prevent	the	attacker	from	deducing	the	key	even	when	the	individual
knows	both	the	plaintext	and	the	ciphertext.	This	leaves	the	attacker	with	no	choice	but	to	try	all	the	possible	keys—

exhaustive,	"brute	force"	search.	If	keys	have	n	bits,	then	there	are	2 	possible	values	for	a	key	(each	of	the	n	bits

could	be	either	a	zero	or	a	one).	An	attacker	could	be	so	lucky	as	to	try	the	correct	value	immediately,	or	so	unlucky

as	to	try	every	incorrect	value	before	finally	trying	the	correct	value	of	the	key,	having	tried	all	2 	possible	values;	the

average	number	of	guesses	to	discover	the	correct	value	is	halfway	between	those	extremes,	2 /2.	This	can	be	made

computationally	impractical	by	choosing	a	sufficiently	large	key	space	and	by	making	the	operation	of	checking	a	key
reasonably	costly.	What	makes	this	difficult	is	that	computing	speeds	keep	increasing,	making	formerly	infeasible
computations	feasible.	Furthermore,	although	we	are	concentrating	on	the	security	of	data	as	it	moves	through	the
network—that	is,	the	data	is	sometimes	vulnerable	for	only	a	short	period	of	time—in	general,	security	people	have	to
consider	the	vulnerability	of	data	that	needs	to	be	stored	in	archives	for	tens	of	years.	This	argues	for	a	generously
large	key	size.	On	the	other	hand,	larger	keys	make	encryption	and	decryption	slower.

Most	ciphers	are	block	ciphers;	they	are	defined	to	take	as	input	a	plaintext	block	of	a	certain	fixed	size,	typically	64	to
128	bits.	Using	a	block	cipher	to	encrypt	each	block	independently—known	as	electronic	codebook	(ECB)	mode
encryption—has	the	weakness	that	a	given	plaintext	block	value	will	always	result	in	the	same	ciphertext	block.
Hence,	recurring	block	values	in	the	plaintext	are	recognizable	as	such	in	the	ciphertext,	making	it	much	easier	for	a
cryptanalyst	to	break	the	cipher.

To	prevent	this,	block	ciphers	are	always	augmented	to	make	the	ciphertext	for	a	block	vary	depending	on	context.
Ways	in	which	a	block	cipher	may	be	augmented	are	called	modes	of	operation.	A	common	mode	of	operation	is
cipher	block	chaining	(CBC),	in	which	each	plaintext	block	is	XORed	with	the	previous	block's	ciphertext	before	being
encrypted.	The	result	is	that	each	block's	ciphertext	depends	in	part	on	the	preceding	blocks	(i.e.,	on	its	context).
Since	the	first	plaintext	block	has	no	preceding	block,	it	is	XORed	with	a	random	number.	That	random	number,	called
an	initialization	vector	(IV),	is	included	with	the	series	of	ciphertext	blocks	so	that	the	first	ciphertext	block	can	be
decrypted.	This	mode	is	illustrated	in	Figure	2.	Another	mode	of	operation	is	counter	mode,	in	which	successive
values	of	a	counter	(e.g.,	1,	2,	3,	…)	are	incorporated	into	the	encryption	of	successive	blocks	of	plaintext.
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Figure	2.	Cipher	Block	Chaining.

Symmetric-Key	Ciphers

In	a	symmetric-key	cipher,	both	participants	in	a	communication	share	the	same	key.	In	other	words,	if	a	message	is
encrypted	using	a	particular	key,	the	same	key	is	required	for	decrypting	the	message.	If	the	cipher	illustrated	in
Figure	1	were	a	symmetric-key	cipher,	then	the	encryption	and	decryption	keys	would	be	identical.	Symmetric-key
ciphers	are	also	known	as	secret-key	ciphers	since	the	shared	key	must	be	known	only	to	the	participants.	(We'll	take
a	look	at	the	alternative,	public-key	ciphers,	shortly.)

We	use	the	term	participant	for	the	parties	involved	in	a	secure	communication	since	that	is	the	term	we	have
been	using	throughout	the	book	to	identify	the	two	endpoints	of	a	channel.	In	the	security	world,	they	are
typically	called	principals.

The	U.S.	National	Institute	of	Standards	and	Technology	(NIST)	has	issued	standards	for	a	series	of	symmetric-key
ciphers.	Data	Encryption	Standard	(DES)	was	the	first,	and	it	has	stood	the	test	of	time	in	that	no	cryptanalytic	attack
better	than	brute	force	search	has	been	discovered.	Brute	force	search,	however,	has	gotten	faster.	DES's	keys	(56
independent	bits)	are	now	too	small	given	current	processor	speeds.	DES	keys	have	56	independent	bits	(although
they	have	64	bits	in	total;	the	last	bit	of	every	byte	is	a	parity	bit).	As	noted	above,	you	would,	on	average,	have	to

search	half	of	the	space	of	2 	possible	keys	to	find	the	right	one,	giving	2 	=	3.6	×	10 	keys.	That	may	sound	like	a

lot,	but	such	a	search	is	highly	parallelizable,	so	it's	possible	to	throw	as	many	computers	at	the	task	as	you	can	get
your	hands	on—and	these	days	it's	easy	to	lay	your	hands	on	thousands	of	computers.	(Amazon	will	rent	them	to	you
for	a	few	cents	an	hour.)	By	the	late	1990s,	it	was	already	possible	to	recover	a	DES	key	after	a	few	hours.
Consequently,	NIST	updated	the	DES	standard	in	1999	to	indicate	that	DES	should	only	be	used	for	legacy	systems.

NIST	also	standardized	the	cipher	Triple	DES	(3DES),	which	leverages	the	cryptanalysis	resistance	of	DES	while	in
effect	increasing	the	key	size.	A	3DES	key	has	168	(=	3	×	56)	independent	bits,	and	is	used	as	three	DES	keys;	let's
call	them	DES-key1,	DES-key2,	and	DES-key3.	3DES	encryption	of	a	block	is	performed	by	first	DES	encrypting	the
block	using	DES-key1,	then	DES	decrypting	the	result	using	DES-key2,	and	finally	DES	encrypting	that	result	using
DES-key3.	Decryption	involves	decrypting	using	DES-key3,	then	encrypting	using	DES-key2,	then	decrypting	using
DES-key1.

56 55 16
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The	reason	3DES	encryption	uses	DES	decryption	with	DES-key2	is	to	interoperate	with	legacy	DES	systems.	If	a
legacy	DES	system	uses	a	single	key,	then	a	3DES	system	can	perform	the	same	encryption	function	by	using	that
key	for	each	of	DES-key1,	DES-key2,	and	DES-key3;	in	the	first	two	steps,	we	encrypt	and	then	decrypt	with	the
same	key,	producing	the	original	plaintext,	which	we	then	encrypt	again.

Although	3DES	solves	DES's	key-length	problem,	it	inherits	some	other	shortcomings.	Software	implementations	of
DES/3DES	are	slow	because	it	was	originally	designed	by	IBM	for	implementation	in	hardware.	Also,	DES/3DES	uses
a	64-bit	block	size;	a	larger	block	size	is	more	efficient	and	more	secure.

3DES	is	now	being	superseded	by	the	Advanced	Encryption	Standard	(AES)	standard	issued	by	NIST.	The	cipher
underlying	AES	(with	a	few	minor	modifications)	was	originally	named	Rijndael	(pronounced	roughly	like	"Rhine	dahl")
based	on	the	names	of	its	inventors,	Daemen	and	Rijmen.	AES	supports	key	lengths	of	128,	192,	or	256	bits,	and	the
block	length	is	128	bits.	AES	permits	fast	implementations	in	both	software	and	hardware.	It	doesn't	require	much
memory,	which	makes	it	suitable	for	small	mobile	devices.	AES	has	some	mathematically	proven	security	properties
and,	as	of	the	time	of	writing,	has	not	suffered	from	any	significant	successful	attacks.

Since	anything	that	can	recover	the	plaintext	with	less	computational	effort	than	sheer	brute	force	is	technically
classified	as	an	attack,	there	are	some	forms	of	attack	on	AES	that	have	been	published.	While	they	do
somewhat	better	than	brute	force,	they	remain	computationally	very	expensive.

Public-Key	Ciphers

An	alternative	to	symmetric-key	ciphers	is	asymmetric,	or	public-key,	ciphers.	Instead	of	a	single	key	shared	by	two
participants,	a	public-key	cipher	uses	a	pair	of	related	keys,	one	for	encryption	and	a	different	one	for	decryption.	The
pair	of	keys	is	"owned"	by	just	one	participant.	The	owner	keeps	the	decryption	key	secret	so	that	only	the	owner	can
decrypt	messages;	that	key	is	called	the	private	key.	The	owner	makes	the	encryption	key	public,	so	that	anyone	can
encrypt	messages	for	the	owner;	that	key	is	called	the	public	key.	Obviously,	for	such	a	scheme	to	work,	it	must	not
be	possible	to	deduce	the	private	key	from	the	public	key.	Consequently,	any	participant	can	get	the	public	key	and
send	an	encrypted	message	to	the	owner	of	the	keys,	and	only	the	owner	has	the	private	key	necessary	to	decrypt	it.
This	scenario	is	depicted	in	Figure	3.

Figure	3.	Public-key	encryption.

Because	it	is	somewhat	unintuitive,	we	emphasize	that	the	public	encryption	key	is	useless	for	decrypting	a	message
—you	couldn't	even	decrypt	a	message	that	you	yourself	had	just	encrypted	unless	you	had	the	private	decryption
key.	If	we	think	of	keys	as	defining	a	communication	channel	between	participants,	then	another	difference	between
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public-key	and	symmetric-key	ciphers	is	the	topology	of	the	channels.	A	key	for	a	symmetric-key	cipher	provides	a
channel	that	is	two-way	between	two	participants—each	participant	holds	the	same	(symmetric)	key	that	either	one
can	use	to	encrypt	or	decrypt	messages	in	either	direction.	A	public/private	key	pair,	in	contrast,	provides	a	channel
that	is	one	way	and	many-to-one:	from	everyone	who	has	the	public	key	to	the	unique	owner	of	the	private	key,	as
illustrated	in	Figure	3.

An	important	additional	property	of	public-key	ciphers	is	that	the	private	"decryption"	key	can	be	used	with	the
encryption	algorithm	to	encrypt	messages	so	that	they	can	only	be	decrypted	using	the	public	"encryption"	key.	This
property	clearly	wouldn't	be	useful	for	confidentiality	since	anyone	with	the	public	key	could	decrypt	such	a	message.
(Indeed,	for	two-way	confidentiality	between	two	participants,	each	participant	needs	its	own	pair	of	keys,	and	each
encrypts	messages	using	the	other's	public	key.)	This	property	is,	however,	useful	for	authentication	since	it	tells	the
receiver	of	such	a	message	that	it	could	only	have	been	created	by	the	owner	of	the	keys	(subject	to	certain
assumptions	that	we	will	get	into	later).	This	is	illustrated	in	Figure	4.	It	should	be	clear	from	the	figure	that	anyone
with	the	public	key	can	decrypt	the	encrypted	message,	and,	assuming	that	the	result	of	the	decryption	matches	the
expected	result,	it	can	be	concluded	that	the	private	key	must	have	been	used	to	perform	the	encryption.	Exactly	how
this	operation	is	used	to	provide	authentication	is	the	topic	of	a	later	section.	As	we	will	see,	public-key	ciphers	are
used	primarily	for	authentication	and	to	confidentially	distribute	symmetric	keys,	leaving	the	rest	of	confidentiality	to
symmetric-key	ciphers.

Figure	4.	Authentication	using	public	keys.

A	bit	of	interesting	history:	The	concept	of	public-key	ciphers	was	first	published	in	1976	by	Diffie	and	Hellman.
Subsequently,	however,	documents	have	come	to	light	proving	that	Britain's	Communications-Electronics	Security
Group	had	discovered	public-key	ciphers	by	1970,	and	the	U.S.	National	Security	Agency	(NSA)	claims	to	have
discovered	them	in	the	mid-1960s.

The	best-known	public-key	cipher	is	RSA,	named	after	its	inventors:	Rivest,	Shamir,	and	Adleman.	RSA	relies	on	the
high	computational	cost	of	factoring	large	numbers.	The	problem	of	finding	an	efficient	way	to	factor	numbers	is	one
that	mathematicians	have	worked	on	unsuccessfully	since	long	before	RSA	appeared	in	1978,	and	RSA's	subsequent
resistance	to	cryptanalysis	has	further	bolstered	confidence	in	its	security.	Unfortunately,	RSA	needs	relatively	large
keys,	at	least	1024	bits,	to	be	secure.	This	is	larger	than	keys	for	symmetric-key	ciphers	because	it	is	faster	to	break
an	RSA	private	key	by	factoring	the	large	number	on	which	the	pair	of	keys	is	based	than	by	exhaustively	searching
the	key	space.

Another	public-key	cipher	is	ElGamal.	Like	RSA,	it	relies	on	a	mathematical	problem,	the	discrete	logarithm	problem,
for	which	no	efficient	solution	has	been	found,	and	requires	keys	of	at	least	1024	bits.	There	is	a	variation	of	the
discrete	logarithm	problem,	arising	when	the	input	is	an	elliptic	curve,	that	is	thought	to	be	even	more	difficult	to
compute;	cryptographic	schemes	based	on	this	problem	are	referred	to	as	elliptic	curve	cryptography.

Public-key	ciphers	are,	unfortunately,	several	orders	of	magnitude	slower	than	symmetric-key	ciphers.	Consequently,
symmetric-key	ciphers	are	used	for	the	vast	majority	of	encryption,	while	public-key	ciphers	are	reserved	for	use	in
authentication	and	session	key	establishment.

Authenticators
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Encryption	alone	does	not	provide	data	integrity.	For	example,	just	randomly	modifying	a	ciphertext	message	could
turn	it	into	something	that	decrypts	into	valid-looking	plaintext,	in	which	case	the	tampering	would	be	undetectable	by
the	receiver.	Nor	does	encryption	alone	provide	authentication.	It	is	not	much	use	to	say	that	a	message	came	from	a
certain	participant	if	the	contents	of	the	message	have	been	modified	after	that	participant	created	it.	In	a	sense,
integrity	and	authentication	are	fundamentally	inseparable.

An	authenticator	is	a	value,	to	be	included	in	a	transmitted	message,	that	can	be	used	to	verify	simultaneously	the
authenticity	and	the	data	integrity	of	a	message.	We	will	see	how	authenticators	can	be	used	in	protocols.	For	now,
we	focus	on	the	algorithms	that	produce	authenticators.

You	may	recall	that	checksums	and	cyclic	redundancy	checks	(CRCs)	are	pieces	of	information	added	to	a	message
so	the	receiver	detect	when	the	message	has	been	inadvertently	modified	by	bit	errors.	A	similar	concept	applies	to
authenticators,	with	the	added	challenge	that	the	corruption	of	the	message	is	likely	to	be	deliberately	performed	by
someone	who	wants	the	corruption	to	go	undetected.	To	support	authentication,	an	authenticator	includes	some	proof
that	whoever	created	the	authenticator	knows	a	secret	that	is	known	only	to	the	alleged	sender	of	the	message;	for
example,	the	secret	could	be	a	key,	and	the	proof	could	be	some	value	encrypted	using	the	key.	There	is	a	mutual
dependency	between	the	form	of	the	redundant	information	and	the	form	of	the	proof	of	secret	knowledge.	We
discuss	several	workable	combinations.

We	initially	assume	that	the	original	message	need	not	be	confidential—that	a	transmitted	message	will	consist	of	the
plaintext	of	the	original	message	plus	an	authenticator.	Later	we	will	consider	the	case	where	confidentiality	is	desired.

One	kind	of	authenticator	combines	encryption	and	a	cryptographic	hash	function.	Cryptographic	hash	algorithms	are
treated	as	public	knowledge,	as	with	cipher	algorithms.	A	cryptographic	hash	function	(also	known	as	a	cryptographic
checksum)	is	a	function	that	outputs	sufficient	redundant	information	about	a	message	to	expose	any	tampering.	Just
as	a	checksum	or	CRC	exposes	bit	errors	introduced	by	noisy	links,	a	cryptographic	checksum	is	designed	to	expose
deliberate	corruption	of	messages	by	an	adversary.	The	value	it	outputs	is	called	a	message	digest	and,	like	an
ordinary	checksum,	is	appended	to	the	message.	All	the	message	digests	produced	by	a	given	hash	have	the	same
number	of	bits	regardless	of	the	length	of	the	original	message.	Since	the	space	of	possible	input	messages	is	larger
than	the	space	of	possible	message	digests,	there	will	be	different	input	messages	that	produce	the	same	message
digest,	like	collisions	in	a	hash	table.

An	authenticator	can	be	created	by	encrypting	the	message	digest.	The	receiver	computes	a	digest	of	the	plaintext
part	of	the	message	and	compares	that	to	the	decrypted	message	digest.	If	they	are	equal,	then	the	receiver	would
conclude	that	the	message	is	indeed	from	its	alleged	sender	(since	it	would	have	to	have	been	encrypted	with	the
right	key)	and	has	not	been	tampered	with.	No	adversary	could	get	away	with	sending	a	bogus	message	with	a
matching	bogus	digest	because	she	would	not	have	the	key	to	encrypt	the	bogus	digest	correctly.	An	adversary	could,
however,	obtain	the	plaintext	original	message	and	its	encrypted	digest	by	eavesdropping.	The	adversary	could	then
(since	the	hash	function	is	public	knowledge)	compute	the	digest	of	the	original	message	and	generate	alternative
messages	looking	for	one	with	the	same	message	digest.	If	she	finds	one,	she	could	undetectably	send	the	new
message	with	the	old	authenticator.	Therefore,	security	requires	that	the	hash	function	have	the	one-way	property:	It
must	be	computationally	infeasible	for	an	adversary	to	find	any	plaintext	message	that	has	the	same	digest	as	the
original.

For	a	hash	function	to	meet	this	requirement,	its	outputs	must	be	fairly	randomly	distributed.	For	example,	if	digests

are	128	bits	long	and	randomly	distributed,	then	you	would	need	to	try	2 	messages,	on	average,	before	finding	a

second	message	whose	digest	matches	that	of	a	given	message.	If	the	outputs	are	not	randomly	distributed—that	is,
if	some	outputs	are	much	more	likely	than	others—then	for	some	messages	you	could	find	another	message	with	the
same	digest	much	more	easily	than	this,	which	would	reduce	the	security	of	the	algorithm.	If	you	were	instead	just
trying	to	find	any	collision—any	two	messages	that	produce	the	same	digest—then	you	would	need	to	compute	the

digests	of	only	2 	messages,	on	average.	This	surprising	fact	is	the	basis	of	the	"birthday	attack"—see	the	exercises

for	more	details.
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There	are	several	common	cryptographic	hash	algorithms,	including	Message	Digest	5	(MD5)	and	Secure	Hash
Algorithm	1	(SHA-1).	MD5	outputs	a	128-bit	digest,	and	SHA-1	outputs	a	160-bit	digest.	Weaknesses	of	MD5	have
been	known	for	some	time,	which	led	to	recommendations	to	shift	from	MD5	to	SHA-1.	More	recently,	researchers
have	discovered	techniques	that	find	SHA-1	collisions	somewhat	more	efficiently	than	brute	force,	but	they	are	not	yet
computationally	feasible.	Although	collision	attacks	(attacks	based	on	finding	any	collision)	are	not	as	great	a	risk	as
preimage	attacks	(attacks	based	on	finding	a	second	message	that	collides	with	a	given	first	message),	these	are
nonetheless	serious	weaknesses.	NIST	recommended	phasing	out	SHA-1	by	2010,	in	favor	of	four	variants	of	SHA
that	are	collectively	known	as	SHA-2.	There	is	an	ongoing	competition	to	devise	a	new	hash	known	as	SHA-3.

When	generating	an	encrypted	message	digest,	the	digest	encryption	could	use	either	a	symmetric-key	cipher	or	a
public-key	cipher.	If	a	public-key	cipher	is	used,	the	digest	would	be	encrypted	using	the	sender's	private	key	(the	one
we	normally	think	of	as	being	used	for	decryption),	and	the	receiver—or	anyone	else—could	decrypt	the	digest	using
the	sender's	public	key.

A	digest	encrypted	with	a	public	key	algorithm	but	using	the	private	key	is	called	a	digital	signature	because	it
provides	nonrepudiation	like	a	written	signature.	The	receiver	of	a	message	with	a	digital	signature	can	prove	to	any
third	party	that	the	sender	really	sent	that	message,	because	the	third	party	can	use	the	sender's	public	key	to	check
for	herself.	(Symmetric-key	encryption	of	a	digest	does	not	have	this	property	because	only	the	two	participants	know
the	key;	furthermore,	since	both	participants	know	the	key,	the	alleged	receiver	could	have	created	the	message
herself.)	Any	public-key	cipher	can	be	used	for	digital	signatures.	Digital	Signature	Standard	(DSS)	is	a	digital
signature	format	that	has	been	standardized	by	NIST.	DSS	signatures	may	use	any	one	of	three	public-key	ciphers,
one	based	on	RSA,	another	on	ElGamal,	and	a	third	called	the	Elliptic	Curve	Digital	Signature	Algorithm.

Another	kind	of	authenticator	is	similar,	but	instead	of	encrypting	a	hash	it	uses	a	hash-like	function	that	takes	a	secret
value	(known	only	to	the	sender	and	the	receiver)	as	a	parameter,	as	illustrated	in	Figure	5.	Such	a	function	outputs
an	authenticator	called	a	message	authentication	code	(MAC).	The	sender	appends	the	MAC	to	her	plaintext
message.	The	receiver	recomputes	the	MAC	using	the	plaintext	and	the	secret	value	and	compares	that	recomputed
MAC	to	the	received	MAC.

Figure	5.	Computing	a	MAC	(a)	versus	computing	an	HMAC	(b).

A	common	variation	on	MACs	is	to	apply	a	cryptographic	hash	(such	as	MD5	or	SHA-1)	to	the	concatenation	of	the
plaintext	message	and	the	secret	value,	as	illustrated	in	Figure	5.	The	resulting	digest	is	called	a	hashed	message
authentication	code	(HMAC)	since	it	is	essentially	a	MAC.	The	HMAC,	but	not	the	secret	value,	is	appended	to	the
plaintext	Only	a	receiver	who	knows	the	secret	value	can	compute	the	correct	HMAC	to	compare	with	the	received
HMAC.	If	it	weren't	for	the	one-way	property	of	the	hash,	an	adversary	might	be	able	to	find	the	input	that	generated
the	HMAC	and	compare	it	to	the	plaintext	message	to	determine	the	secret	value.

Up	to	this	point,	we	have	been	assuming	that	the	message	wasn't	confidential,	so	the	original	message	could	be
transmitted	as	plaintext.	To	add	confidentiality	to	a	message	with	an	authenticator,	it	suffices	to	encrypt	the
concatenation	of	the	entire	message	including	its	authenticator—the	MAC,	HMAC,	or	encrypted	digest.	Remember
that,	in	practice,	confidentiality	is	implemented	using	symmetric-key	ciphers	because	they	are	so	much	faster	than
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public-key	ciphers.	Furthermore,	it	costs	little	to	include	the	authenticator	in	the	encryption,	and	it	increases	security.	A
common	simplification	is	to	encrypt	the	message	with	its	(raw)	digest,	such	that	the	digest	is	only	encrypted	once;	in
this	case,	the	entire	ciphertext	message	is	considered	to	be	an	authenticator.

Although	authenticators	may	seem	to	solve	the	authentication	problem,	we	will	see	in	a	later	section	that	they	are	only
the	foundation	of	a	solution.	First,	however,	we	address	the	issue	of	how	participants	obtain	keys	in	the	first	place.
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8.3	Key	Predistribution

To	use	ciphers	and	authenticators,	the	communicating	participants	need	to	know	what	keys	to	use.	In	the	case	of	a
symmetric-key	cipher,	how	does	a	pair	of	participants	obtain	the	key	they	share?	In	the	case	of	a	public-key	cipher,
how	do	participants	know	what	public	key	belongs	to	a	certain	participant?	The	answer	differs	depending	on	whether
the	keys	are	short-lived	session	keys	or	longer-lived	predistributed	keys.

A	session	key	is	a	key	used	to	secure	a	single,	relatively	short	episode	of	communication:	a	session.	Each	distinct
session	between	a	pair	of	participants	uses	a	new	session	key,	which	is	always	a	symmetric	key	for	speed.	The
participants	determine	what	session	key	to	use	by	means	of	a	protocol—a	session	key	establishment	protocol.	A
session	key	establishment	protocol	needs	its	own	security	(so	that,	for	example,	an	adversary	cannot	learn	the	new
session	key);	that	security	is	based	on	the	longer-lived	predistributed	keys.

There	are	several	motivations	for	this	division	of	labor	between	session	keys	and	predistributed	keys:

Limiting	the	amount	of	time	a	key	is	used	results	in	less	time	for	computationally	intensive	attacks,	less	ciphertext
for	cryptanalysis,	and	less	information	exposed	should	the	key	be	broken.

Predistribution	of	symmetric	keys	is	problematic.

Public	key	ciphers	are	generally	superior	for	authentication	and	session	key	establishment	but	too	slow	to	use	for
encrypting	entire	messages	for	confidentiality.

This	section	explains	how	predistributed	keys	are	distributed,	and	the	next	section	will	explain	how	session	keys	are
then	established.	We	henceforth	use	"Alice"	and	"Bob"	to	designate	participants,	as	is	common	in	the	cryptography
literature.	Bear	in	mind	that	although	we	tend	to	refer	to	participants	in	anthropomorphic	terms,	we	are	more	frequently
concerned	with	the	communication	between	software	or	hardware	entities	such	as	clients	and	servers	that	often	have
no	direct	relationship	with	any	particular	person.

Predistribution	of	Public	Keys

The	algorithms	to	generate	a	matched	pair	of	public	and	private	keys	are	publicly	known,	and	software	that	does	it	is
widely	available.	So,	if	Alice	wanted	to	use	a	public-key	cipher,	she	could	generate	her	own	pair	of	public	and	private
keys,	keep	the	private	key	hidden,	and	publicize	the	public	key.	But,	how	can	she	publicize	her	public	key—assert	that
it	belongs	to	her—in	such	a	way	that	other	participants	can	be	sure	it	really	belongs	to	her?	Not	via	email	or	Web,
because	an	adversary	could	forge	an	equally	plausible	claim	that	key	x	belongs	to	Alice	when	x	really	belongs	to	the
adversary.

A	complete	scheme	for	certifying	bindings	between	public	keys	and	identities—what	key	belongs	to	whom—is	called	a
Public	Key	Infrastructure	(PKI).	A	PKI	starts	with	the	ability	to	verify	identities	and	bind	them	to	keys	out	of	band.	By
"out	of	band,"	we	mean	something	outside	the	network	and	the	computers	that	comprise	it,	such	as	in	the	following	If
Alice	and	Bob	are	individuals	who	know	each	other,	then	they	could	get	together	in	the	same	room	and	Alice	could
give	her	public	key	to	Bob	directly,	perhaps	on	a	business	card.	If	Bob	is	an	organization,	Alice	the	individual	could
present	conventional	identification,	perhaps	involving	a	photograph	or	fingerprints.	If	Alice	and	Bob	are	computers
owned	by	the	same	company,	then	a	system	administrator	could	configure	Bob	with	Alice's	public	key.

Establishing	keys	out	of	band	doesn't	sound	like	it	would	scale	well,	but	it	suffices	to	bootstrap	a	PKI.	Bob's
knowledge	that	Alice's	key	is	x	can	be	widely,	scalably	disseminated	using	a	combination	of	digital	signatures	and	a
concept	of	trust.	For	example,	suppose	that	you	have	received	Bob's	public	key	out	of	band	and	that	you	know
enough	about	Bob	to	trust	him	on	matters	of	keys	and	identities.	Then	Bob	could	send	you	a	message	asserting	that
Alice's	key	is	x	and—since	you	already	know	Bob's	public	key—you	could	authenticate	the	message	as	having	come
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from	Bob.	(Remember	that	to	digitally	sign	the	statement	Bob	would	append	a	cryptographic	hash	of	it	that	has	been
encrypted	using	his	private	key.)	Since	you	trust	Bob	to	tell	the	truth,	you	would	now	know	that	Alice's	key	is	x,	even
though	you	had	never	met	her	or	exchanged	a	single	message	with	her.	Using	digital	signatures,	Bob	wouldn't	even
have	to	send	you	a	message;	he	could	simply	create	and	publish	a	digitally	signed	statement	that	Alice's	key	is	x.
Such	a	digitally	signed	statement	of	a	public	key	binding	is	called	a	public	key	certificate,	or	simply	a	certificate.	Bob
could	send	Alice	a	copy	of	the	certificate,	or	post	it	on	a	website.	If	and	when	someone	needs	to	verify	Alice's	public
key,	they	could	do	so	by	getting	a	copy	of	the	certificate,	perhaps	directly	from	Alice—as	long	as	they	trust	Bob	and
know	his	public	key.	You	can	see	how	starting	from	a	very	small	number	of	keys	(in	this	case,	just	Bob's)	you	could
build	up	a	large	set	of	trusted	keys	over	time.	Bob	in	this	case	is	playing	the	role	often	referred	to	as	a	certification
authority	(CA),	and	much	of	today's	Internet	security	depends	on	CAs.	VeriSign	is	one	well-known	commercial	CA.
We	return	to	this	topic	below.

One	of	the	major	standards	for	certificates	is	known	as	X.509.	This	standard	leaves	a	lot	of	details	open,	but	specifies
a	basic	structure.	A	certificate	clearly	must	include:

The	identity	of	the	entity	being	certified

The	public	key	of	the	entity	being	certified

The	identity	of	the	signer

The	digital	signature

A	digital	signature	algorithm	identifier	(which	cryptographic	hash	and	which	cipher)

An	optional	component	is	an	expiration	time	for	the	certificate.	We	will	see	a	particular	use	of	this	feature	below.

Since	a	certificate	creates	a	binding	between	an	identity	and	a	public	key,	we	should	look	more	closely	at	what	we
mean	by	"identity."	For	example,	a	certificate	that	says,	"This	public	key	belongs	to	John	Smith,"	may	not	be	terribly
useful	if	you	can't	tell	which	of	the	thousands	of	John	Smiths	is	being	identified.	Thus,	certificates	must	use	a	well-
defined	name	space	for	the	identities	being	certified;	for	example,	certificates	are	often	issued	for	email	addresses
and	DNS	domains.

There	are	different	ways	a	PKI	could	formalize	the	notion	of	trust.	We	discuss	the	two	main	approaches.

Certification	Authorities

In	this	model	of	trust,	trust	is	binary;	you	either	trust	someone	completely	or	not	at	all.	Together	with	certificates,	this
allows	the	building	of	chains	of	trust.	If	X	certifies	that	a	certain	public	key	belongs	to	Y,	and	then	Y	goes	on	to	certify
that	another	public	key	belongs	to	Z,	then	there	exists	a	chain	of	certificates	from	X	to	Z,	even	though	X	and	Z	may
have	never	met.	If	you	know	X's	key—and	you	trust	X	and	Y—then	you	can	believe	the	certificate	that	gives	Z's	key.
In	other	words,	all	you	need	is	a	chain	of	certificates,	all	signed	by	entities	you	trust,	as	long	as	it	leads	back	to	an
entity	whose	key	you	already	know.

A	certification	authority	or	certificate	authority	(CA)	is	an	entity	claimed	(by	someone)	to	be	trustworthy	for	verifying
identities	and	issuing	public	key	certificates.	There	are	commercial	CAs,	governmental	CAs,	and	even	free	CAs.	To
use	a	CA,	you	must	know	its	own	key.	You	can	learn	that	CA's	key,	however,	if	you	can	obtain	a	chain	of	CA-signed
certificates	that	starts	with	a	CA	whose	key	you	already	know.	Then	you	can	believe	any	certificate	signed	by	that	new
CA.

A	common	way	to	build	such	chains	is	to	arrange	them	in	a	tree-structured	hierarchy,	as	shown	in	Figure	1.	If
everyone	has	the	public	key	of	the	root	CA,	then	any	participant	can	provide	a	chain	of	certificates	to	another
participant	and	know	that	it	will	be	sufficient	to	build	a	chain	of	trust	for	that	participant.
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Figure	1.	Tree-structured	certification	authority	hierarchy.

There	are	some	significant	issues	with	building	chains	of	trust.	Most	importantly,	even	if	you	are	certain	that	you	have
the	public	key	of	the	root	CA,	you	need	to	be	sure	that	every	CA	from	the	root	on	down	is	doing	its	job	properly.	If	just
one	CA	in	the	chain	is	willing	to	issue	certificates	to	entities	without	verifying	their	identities,	then	what	looks	like	a
valid	chain	of	certificates	becomes	meaningless.	For	example,	a	root	CA	might	issue	a	certificate	to	a	second-tier	CA
and	thoroughly	verify	that	the	name	on	the	certificate	matches	the	business	name	of	the	CA,	but	that	second-tier	CA
might	be	willing	to	sell	certificates	to	anyone	who	asks,	without	verifying	their	identity.	This	problem	gets	worse	the
longer	the	chain	of	trust.	X.509	certificates	provide	the	option	of	restricting	the	set	of	entities	that	the	subject	of	a
certificate	is,	in	turn,	trusted	to	certify.

There	can	be	more	than	one	root	to	a	certification	tree,	and	this	is	common	in	securing	Web	transactions	today,	for
example.	Web	browsers	such	as	Firefox	and	Internet	Explorer	come	pre-equipped	with	certificates	for	a	set	of	CAs;	in
effect,	the	browser's	producer	has	decided	these	CAs	and	their	keys	can	be	trusted.	A	user	can	also	add	CAs	to	those
that	their	browser	recognizes	as	trusted.	These	certificates	are	accepted	by	Secure	Socket	Layer	(SSL)/Transport
Layer	Security	(TLS),	the	protocol	most	often	used	to	secure	Web	transactions,	which	we	discuss	in	a	later	section.	(If
you	are	curious,	you	can	poke	around	in	the	preferences	settings	for	your	browser	and	find	the	"view	certificates"
option	to	see	how	many	CAs	your	browser	is	configured	to	trust.)

Web	of	Trust

An	alternative	model	of	trust	is	the	web	of	trust	exemplified	by	Pretty	Good	Privacy	(PGP),	which	is	further	discussed
in	a	later	section.	PGP	is	a	security	system	for	email,	so	email	addresses	are	the	identities	to	which	keys	are	bound
and	by	which	certificates	are	signed.	In	keeping	with	PGP's	roots	as	protection	against	government	intrusion,	there
are	no	CAs.	Instead,	every	individual	decides	whom	they	trust	and	how	much	they	trust	them—in	this	model,	trust	is	a
matter	of	degree.	In	addition,	a	public	key	certificate	can	include	a	confidence	level	indicating	how	confident	the	signer
is	of	the	key	binding	claimed	in	the	certificate,	so	a	given	user	may	have	to	have	several	certificates	attesting	to	the
same	key	binding	before	he	is	willing	to	trust	it.

For	example,	suppose	you	have	a	certificate	for	Bob	provided	by	Alice;	you	can	assign	a	moderate	level	of	trust	to
that	certificate.	However,	if	you	have	additional	certificates	for	Bob	that	were	provided	by	C	and	D,	each	of	whom	is
also	moderately	trustworthy,	that	might	considerably	increase	your	level	of	confidence	that	the	public	key	you	have	for
Bob	is	valid.	In	short,	PGP	recognizes	that	the	problem	of	establishing	trust	is	quite	a	personal	matter	and	gives	users
the	raw	material	to	make	their	own	decisions,	rather	than	assuming	that	they	are	all	willing	to	trust	in	a	single
hierarchical	structure	of	CAs.	To	quote	Phil	Zimmerman,	the	developer	of	PGP,	"PGP	is	for	people	who	prefer	to	pack
their	own	parachutes."

PGP	has	become	quite	popular	in	the	networking	community,	and	PGP	key-signing	parties	are	a	regular	feature	of
various	networking	events,	such	as	IETF	meetings.	At	these	gatherings,	an	individual	can

Collect	public	keys	from	others	whose	identity	he	knows.

Provide	his	public	key	to	others.
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Get	his	public	key	signed	by	others,	thus	collecting	certificates	that	will	be	persuasive	to	an	increasingly	large	set
of	people.

Sign	the	public	key	of	other	individuals,	thus	helping	them	build	up	their	set	of	certificates	that	they	can	use	to
distribute	their	public	keys.

Collect	certificates	from	other	individuals	whom	he	trusts	enough	to	sign	keys.

Thus,	over	time,	a	user	will	collect	a	set	of	certificates	with	varying	degrees	of	trust.

Certificate	Revocation

One	issue	that	arises	with	certificates	is	how	to	revoke,	or	undo,	a	certificate.	Why	is	this	important?	Suppose	that	you
suspect	that	someone	has	discovered	your	private	key.	There	may	be	any	number	of	certificates	in	the	universe	that
assert	that	you	are	the	owner	of	the	public	key	corresponding	to	that	private	key.	The	person	who	discovered	your
private	key	thus	has	everything	he	needs	to	impersonate	you:	valid	certificates	and	your	private	key.	To	solve	this
problem,	it	would	be	nice	to	be	able	to	revoke	the	certificates	that	bind	your	old,	compromised	key	to	your	identity,	so
that	the	impersonator	will	no	longer	be	able	to	persuade	other	people	that	he	is	you.

The	basic	solution	to	the	problem	is	simple	enough.	Each	CA	can	issue	a	certificate	revocation	list	(CRL),	which	is	a
digitally	signed	list	of	certificates	that	have	been	revoked.	The	CRL	is	periodically	updated	and	made	publicly
available.	Because	it	is	digitally	signed,	it	can	just	be	posted	on	a	website.	Now,	when	Alice	receives	a	certificate	for
Bob	that	she	wants	to	verify,	she	will	first	consult	the	latest	CRL	issued	by	the	CA.	As	long	as	the	certificate	has	not
been	revoked,	it	is	valid.	Note	that,	if	all	certificates	have	unlimited	life	spans,	the	CRL	would	always	be	getting	longer,
since	you	could	never	take	a	certificate	off	the	CRL	for	fear	that	some	copy	of	the	revoked	certificate	might	be	used.
For	this	reason,	it	is	common	to	attach	an	expiration	date	to	a	certificate	when	it	is	issued.	Thus,	we	can	limit	the
length	of	time	that	a	revoked	certificate	needs	to	stay	on	a	CRL.	As	soon	as	its	original	expiration	date	is	passed,	it
can	be	removed	from	the	CRL.

Predistribution	of	Symmetric	Keys
If	Alice	wants	to	use	a	secret-key	cipher	to	communicate	with	Bob,	she	can't	just	pick	a	key	and	send	it	to	him
because,	without	already	having	a	key,	they	can't	encrypt	this	key	to	keep	it	confidential	and	they	can't	authenticate
each	other.	As	with	public	keys,	some	predistribution	scheme	is	needed.	Predistribution	is	harder	for	symmetric	keys
than	for	public	keys	for	two	obvious	reasons:

While	only	one	public	key	per	entity	is	sufficient	for	authentication	and	confidentiality,	there	must	be	a	symmetric
key	for	each	pair	of	entities	who	wish	to	communicate.	If	there	are	N	entities,	that	means	N(N-1)/2	keys.

Unlike	public	keys,	secret	keys	must	be	kept	secret.

In	summary,	there	are	a	lot	more	keys	to	distribute,	and	you	can't	use	certificates	that	everyone	can	read.

The	most	common	solution	is	to	use	a	Key	Distribution	Center	(KDC).	A	KDC	is	a	trusted	entity	that	shares	a	secret
key	with	each	other	entity.	This	brings	the	number	of	keys	down	to	a	more	manageable	N-1,	few	enough	to	establish
out	of	band	for	some	applications.	When	Alice	wishes	to	communicate	with	Bob,	that	communication	does	not	travel
via	the	KDC.	Rather,	the	KDC	participates	in	a	protocol	that	authenticates	Alice	and	Bob—using	the	keys	that	the
KDC	already	shares	with	each	of	them—and	generates	a	new	session	key	for	them	to	use.	Then	Alice	and	Bob
communicate	directly	using	their	session	key.	Kerberos	is	a	widely	used	system	based	on	this	approach.
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8.4	Authentication	Protocols

So	far	we	described	how	to	encrypt	messages,	build	authenticators,	predistribute	the	necessary	keys.	It	might	seem
as	if	all	we	have	to	do	to	make	a	protocol	secure	is	append	an	authenticator	to	every	message	and,	if	we	want
confidentiality,	encrypt	the	message.

There	are	two	main	reasons	why	it's	not	that	simple.	First,	there	is	the	problem	of	a	replay	attack:	an	adversary
retransmitting	a	copy	of	a	message	that	was	previously	sent.	If	the	message	was	an	order	you	had	placed	on	a
website,	for	example,	then	the	replayed	message	would	appear	to	the	website	as	though	you	had	ordered	more	of	the
same.	Even	though	it	wasn't	the	original	incarnation	of	the	message,	its	authenticator	would	still	be	valid;	after	all,	the
message	was	created	by	you,	and	it	wasn't	modified.	Clearly,	we	need	a	solution	that	ensures	originality.

In	a	variation	of	this	attack	called	a	suppress-replay	attack,	an	adversary	might	merely	delay	your	message	(by
intercepting	and	later	replaying	it),	so	that	it	is	received	at	a	time	when	it	is	no	longer	appropriate.	For	example,	an
adversary	could	delay	your	order	to	buy	stock	from	an	auspicious	time	to	a	time	when	you	would	not	have	wanted	to
buy.	Although	this	message	would	in	a	sense	be	the	original,	it	wouldn't	be	timely.	So	we	also	need	to	ensure
timeliness.	Originality	and	timeliness	may	be	considered	aspects	of	integrity.	Ensuring	them	will	in	most	cases	require
a	nontrivial,	back-and-forth	protocol.

The	second	problem	we	have	not	yet	solved	is	how	to	establish	a	session	key.	A	session	key	is	a	symmetric-key
cipher	key	generated	on	the	fly	and	used	for	just	one	session.	This	too	involves	a	nontrivial	protocol.

What	these	two	issues	have	in	common	is	authentication.	If	a	message	is	not	original	and	timely,	then	from	a	practical
standpoint	we	want	to	consider	it	as	not	being	authentic,	not	being	from	whom	it	claims	to	be.	And,	obviously,	when
you	are	arranging	to	share	a	new	session	key	with	someone,	you	want	to	know	you	are	sharing	it	with	the	right
person.	Usually,	authentication	protocols	establish	a	session	key	at	the	same	time,	so	that	at	the	end	of	the	protocol
Alice	and	Bob	have	authenticated	each	other	and	they	have	a	new	symmetric	key	to	use.	Without	a	new	session	key,
the	protocol	would	just	authenticate	Alice	and	Bob	at	one	point	in	time;	a	session	key	allows	them	to	efficiently
authenticate	subsequent	messages.	Generally,	session	key	establishment	protocols	perform	authentication	(a	notable
exception	is	Diffie-Hellman,	as	described	below,	so	the	terms	authentication	protocol	and	session	key	establishment
protocol	are	almost	synonymous.

There	is	a	core	set	of	techniques	used	to	ensure	originality	and	timeliness	in	authentication	protocols.	We	describe
those	techniques	before	moving	on	to	particular	protocols.

Originality	and	Timeliness	Techniques

We	have	seen	that	authenticators	alone	do	not	enable	us	to	detect	messages	that	are	not	original	or	timely.	One
approach	is	to	include	a	timestamp	in	the	message.	Obviously	the	timestamp	itself	must	be	tamperproof,	so	it	must	be
covered	by	the	authenticator.	The	primary	drawback	to	timestamps	is	that	they	require	distributed	clock
synchronization.	Since	our	system	would	then	depend	on	synchronization,	the	clock	synchronization	itself	would	need
to	be	defended	against	security	threats,	in	addition	to	the	usual	challenges	of	clock	synchronization.	Another	issue	is
that	distributed	clocks	are	synchronized	to	only	a	certain	degree—a	certain	margin	of	error.	Thus,	the	timing	integrity
provided	by	timestamps	is	only	as	good	as	the	degree	of	synchronization.

Another	approach	is	to	include	a	nonce—a	random	number	used	only	once—in	the	message.	Participants	can	then
detect	replay	attacks	by	checking	whether	a	nonce	has	been	used	previously.	Unfortunately,	this	requires	keeping
track	of	past	nonces,	of	which	a	great	many	could	accumulate.	One	solution	is	to	combine	the	use	of	timestamps	and
nonces,	so	that	nonces	are	required	to	be	unique	only	within	a	certain	span	of	time.	That	makes	ensuring	uniqueness
of	nonces	manageable	while	requiring	only	loose	synchronization	of	clocks.
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Another	solution	to	the	shortcomings	of	timestamps	and	nonces	is	to	use	one	or	both	of	them	in	a	challenge-response
protocol.	Suppose	we	use	a	timestamp.	In	a	challenge-response	protocol,	Alice	sends	Bob	a	timestamp,	challenging
Bob	to	encrypt	it	in	a	response	message	(if	they	share	a	symmetric	key)	or	digitally	sign	it	in	a	response	message	(if
Bob	has	a	public	key,	as	in	Figure	1).	The	encrypted	timestamp	is	like	an	authenticator	that	additionally	proves
timeliness.	Alice	can	easily	check	the	timeliness	of	the	timestamp	in	a	response	from	Bob	since	that	timestamp	comes
from	Alice's	own	clock—no	distributed	clock	synchronization	needed.	Suppose	instead	that	the	protocol	uses	nonces.
Then	Alice	need	only	keep	track	of	those	nonces	for	which	responses	are	currently	outstanding	and	haven't	been
outstanding	too	long;	any	purported	response	with	an	unrecognized	nonce	must	be	bogus.

Figure	1.	A	challenge-response	protocol.

The	beauty	of	challenge-response,	which	might	otherwise	seem	excessively	complex,	is	that	it	combines	timeliness
and	authentication;	after	all,	only	Bob	(and	possibly	Alice,	if	it's	a	symmetric-key	cipher)	knows	the	key	necessary	to
encrypt	the	never	before	seen	timestamp	or	nonce.	Timestamps	or	nonces	are	used	in	most	of	the	authentication
protocols	that	follow.

Public-Key	Authentication	Protocols
In	the	following	discussion,	we	assume	that	Alice	and	Bob's	public	keys	have	been	predistributed	to	each	other	via
some	means	such	as	a	PKI.	We	mean	this	to	include	the	case	where	Alice	includes	her	certificate	in	her	first	message
to	Bob,	and	the	case	where	Bob	searches	for	a	certificate	about	Alice	when	he	receives	her	first	message.

Figure	2.	A	public-key	authentication	protocol	that	depends	on
synchronization.

8.4	Authentication	Protocols

351



This	first	protocol	(Figure	2)	relies	on	Alice	and	Bob's	clocks	being	synchronized.	Alice	sends	Bob	a	message	with	a
timestamp	and	her	identity	in	plaintext	plus	her	digital	signature.	Bob	uses	the	digital	signature	to	authenticate	the
message	and	the	timestamp	to	verify	its	freshness.	Bob	sends	back	a	message	with	a	timestamp	and	his	identity	in
plaintext,	as	well	as	a	new	session	key	encrypted	(for	confidentiality)	using	Alice's	public	key,	all	digitally	signed.	Alice
can	verify	the	authenticity	and	freshness	of	the	message,	so	she	knows	she	can	trust	the	new	session	key.	To	deal
with	imperfect	clock	synchronization,	the	timestamps	could	be	augmented	with	nonces.

The	second	protocol	(Figure	3)	is	similar	but	does	not	rely	on	clock	synchronization.	In	this	protocol,	Alice	again	sends
Bob	a	digitally	signed	message	with	a	timestamp	and	her	identity.	Because	their	clocks	aren't	synchronized,	Bob
cannot	be	sure	that	the	message	is	fresh.	Bob	sends	back	a	digitally	signed	message	with	Alice's	original	timestamp,
his	own	new	timestamp,	and	his	identity.	Alice	can	verify	the	freshness	of	Bob's	reply	by	comparing	her	current	time
against	the	timestamp	that	originated	with	her.	She	then	sends	Bob	a	digitally	signed	message	with	his	original
timestamp	and	a	new	session	key	encrypted	using	Bob's	public	key.	Bob	can	verify	the	freshness	of	the	message
because	the	timestamp	came	from	his	clock,	so	he	knows	he	can	trust	the	new	session	key.	The	timestamps
essentially	serve	as	convenient	nonces,	and	indeed	this	protocol	could	use	nonces	instead.

Figure	3.	A	public-key	authentication	protocol	that	does	not	depend	on
synchronization.	Alice	checks	her	own	timestamp	against	her	own	clock,

and	likewise	for	Bob.

Symmetric-Key	Authentication	Protocols

Only	in	fairly	small	systems	is	it	practical	to	predistribute	symmetric	keys	to	every	pair	of	entities.	We	focus	here	on
larger	systems,	where	each	entity	would	have	its	own	master	key	shared	only	with	a	Key	Distribution	Center	(KDC).	In
this	case,	symmetric-key-based	authentication	protocols	involve	three	parties:	Alice,	Bob,	and	a	KDC.	The	end
product	of	the	authentication	protocol	is	a	session	key	shared	between	Alice	and	Bob	that	they	will	use	to
communicate	directly,	without	involving	the	KDC.

8.4	Authentication	Protocols

352



Figure	4.	The	Needham-Schroeder	authentication	protocol.

The	Needham-Schroeder	authentication	protocol	is	illustrated	in	Figure	4.	Note	that	the	KDC	doesn't	actually
authenticate	Alice's	initial	message	and	doesn't	communicate	with	Bob	at	all.	Instead,	the	KDC	uses	its	knowledge	of
Alice's	and	Bob's	master	keys	to	construct	a	reply	that	would	be	useless	to	anyone	other	than	Alice	(because	only
Alice	can	decrypt	it)	and	contains	the	necessary	ingredients	for	Alice	and	Bob	to	perform	the	rest	of	the	authentication
protocol	themselves.

The	nonce	in	the	first	two	messages	is	to	assure	Alice	that	the	KDC's	reply	is	fresh.	The	second	and	third	messages
include	the	new	session	key	and	Alice's	identifier,	encrypted	together	using	Bob's	master	key.	It	is	a	sort	of	symmetric-
key	version	of	a	public-key	certificate;	it	is	in	effect	a	signed	statement	by	the	KDC	(because	the	KDC	is	the	only	entity
besides	Bob	who	knows	Bob's	master	key)	that	the	enclosed	session	key	is	owned	by	Alice	and	Bob.	Although	the
nonce	in	the	last	two	messages	is	intended	to	assure	Bob	that	the	third	message	was	fresh,	there	is	a	flaw	in	this
reasoning.

Kerberos

Kerberos	is	an	authentication	system	based	on	the	Needham-Schroeder	protocol	and	specialized	for	client/server
environments.	Originally	developed	at	MIT,	it	has	been	standardized	by	the	IETF	and	is	available	as	both	open	source
and	commercial	products.	We	will	focus	here	on	some	of	Kerberos's	interesting	innovations.

Kerberos	clients	are	generally	human	users,	and	users	authenticate	themselves	using	passwords.	Alice's	master	key,
shared	with	the	KDC,	is	derived	from	her	password—if	you	know	the	password,	you	can	compute	the	key.	Kerberos
assumes	anyone	can	physically	access	any	client	machine;	therefore,	it	is	important	to	minimize	the	exposure	of
Alice's	password	or	master	key	not	just	in	the	network	but	also	on	any	machine	where	she	logs	in.	Kerberos	takes
advantage	of	Needham-Schroeder	to	accomplish	this.	In	Needham-Schroeder,	the	only	time	Alice	needs	to	use	her
password	is	when	decrypting	the	reply	from	the	KDC.	Kerberos	client-side	software	waits	until	the	KDC's	reply	arrives,
prompts	Alice	to	enter	her	password,	computes	the	master	key	and	decrypts	the	KDC's	reply,	and	then	erases	all
information	about	the	password	and	master	key	to	minimize	its	exposure.	Also	note	that	the	only	sign	a	user	sees	of
Kerberos	is	when	the	user	is	prompted	for	a	password.
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In	Needham-Schroeder,	the	KDC's	reply	to	Alice	plays	two	roles:	It	gives	her	the	means	to	prove	her	identity	(only
Alice	can	decrypt	the	reply),	and	it	gives	her	a	sort	of	symmetric-key	certificate	or	"ticket"	to	present	to	Bob—the
session	key	and	Alice's	identifier,	encrypted	with	Bob's	master	key.	In	Kerberos,	those	two	functions—and	the	KDC
itself,	in	effect—are	split	up	(Figure	5).	A	trusted	server	called	an	Authentication	Server	(AS)	plays	the	first	KDC	role	of
providing	Alice	with	something	she	can	use	to	prove	her	identity—not	to	Bob	this	time,	but	to	a	second	trusted	server
called	a	Ticket	Granting	Server	(TGS).	The	TGS	plays	the	second	KDC	role,	replying	to	Alice	with	a	ticket	she	can
present	to	Bob.	The	attraction	of	this	scheme	is	that	if	Alice	needs	to	communicate	with	several	servers,	not	just	Bob,
then	she	can	get	tickets	for	each	of	them	from	the	TGS	without	going	back	to	the	AS.

Figure	5.	Kerberos	authentication.

In	the	client/server	application	domain	for	which	Kerberos	is	intended,	it	is	reasonable	to	assume	a	degree	of	clock
synchronization.	This	allows	Kerberos	to	use	timestamps	and	lifespans	instead	of	Needham-Shroeder's	nonces,	and
thereby	eliminate	the	Needham-Schroeder	security	weakness	explored	in	Exercise	4.	Kerberos	supports	a	choice	of
cryptographic	algorithms	including	the	hashes	SHA-1	and	MD5	and	the	symmetric-key	ciphers	AES,	3DES,	and	DES.

Diffie-Hellman	Key	Agreement
The	Diffie-Hellman	key	agreement	protocol	establishes	a	session	key	without	using	any	predistributed	keys.	The
messages	exchanged	between	Alice	and	Bob	can	be	read	by	anyone	able	to	eavesdrop,	and	yet	the	eavesdropper
won't	know	the	session	key	that	Alice	and	Bob	end	up	with.	On	the	other	hand,	Diffie-Hellman	doesn't	authenticate	the
participants.	Since	it	is	rarely	useful	to	communicate	securely	without	being	sure	whom	you're	communicating	with,
Diffie-Hellman	is	usually	augmented	in	some	way	to	provide	authentication.	One	of	the	main	uses	of	Diffie-Hellman	is
in	the	Internet	Key	Exchange	(IKE)	protocol,	a	central	part	of	the	IP	Security	(IPsec)	architecture.
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The	Diffie-Hellman	protocol	has	two	parameters,	p	and	g,	both	of	which	are	public	and	may	be	used	by	all	the	users	in
a	particular	system.	Parameter	p	must	be	a	prime	number.	The	integers	 mod p	(short	for	modulo	p)	are	0	through	
p− 1,	since	x mod p	is	the	remainder	after	x	is	divided	by	p,	and	form	what	mathematicians	call	a	group	under
multiplication.	Parameter	g	(usually	called	a	generator)	must	be	a	primitive	root	of	p:	For	every	number	n	from	1

through	p− 1	there	must	be	some	value	k	such	that	n = g mod p.	For	example,	if	p	were	the	prime	number	5	(a	real

system	would	use	a	much	larger	number),	then	we	might	choose	2	to	be	the	generator	g	since:

1 = 2 mod p

2 = 2 mod p

3 = 2 mod p

4 = 2 mod p

Suppose	Alice	and	Bob	want	to	agree	on	a	shared	symmetric	key.	Alice	and	Bob,	and	everyone	else,	already	know
the	values	of	p	and	g.	Alice	generates	a	random	private	value	a	and	Bob	generates	a	random	private	value	b.	Both	a
and	b	are	drawn	from	the	set	of	integers	{1,	...,	p− 1}.	Alice	and	Bob	derive	their	corresponding	public	values—the
values	they	will	send	to	each	other	unencrypted—as	follows.	Alice's	public	value	is

g mod p

and	Bob's	public	value	is

g mod p

They	then	exchange	their	public	values.	Finally,	Alice	computes

g mod p = (g mod p) mod p

and	Bob	computes

g mod p = (g mod p) mod p.

Alice	and	Bob	now	have	g mod p	(which	is	equal	to	g mod p)	as	their	shared	symmetric	key.

Any	eavesdropper	would	know	p, g,	and	the	two	public	values	g mod p	and	g mod p.	If	only	the	eavesdropper	could

determine	a	or	b,	she	could	easily	compute	the	resulting	key.	Determining	a	or	b	from	that	information	is,	however,
computationally	infeasible	for	suitably	large	p, a,	and	b;	it	is	known	as	the	discrete	logarithm	problem.

On	the	other	hand,	there	is	the	problem	of	Diffie-Hellman's	lack	of	authentication.	One	attack	that	can	take	advantage
of	this	is	the	man-in-the-middle	attack.	Suppose	Mallory	is	an	adversary	with	the	ability	to	intercept	messages.	Mallory
already	knows	p	and	g	since	they	are	public,	and	she	generates	random	private	values	c	and	d	to	use	with	Alice	and
Bob,	respectively.	When	Alice	and	Bob	send	their	public	values	to	each	other,	Mallory	intercepts	them	and	sends	her
own	public	values,	as	in	Figure	6.	The	result	is	that	Alice	and	Bob	each	end	up	unknowingly	sharing	a	key	with	Mallory
instead	of	each	other.

k

0

1

3

2

a

b

ab b a

ba a b

ab ba

a b
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Figure	6.	A	man-in-the-middle	attack.

A	variant	of	Diffie-Hellman	sometimes	called	fixed	Diffie-Hellman	supports	authentication	of	one	or	both	participants.	It
relies	on	certificates	that	are	similar	to	public	key	certificates	but	instead	certify	the	Diffie-Hellman	public	parameters	of

an	entity.	For	example,	such	a	certificate	would	state	that	Alice's	Diffie-Hellman	parameters	are	p, g,	and	g mod p

(note	that	the	value	of	a	would	still	be	known	only	to	Alice).	Such	a	certificate	would	assure	Bob	that	the	other
participant	in	Diffie-Hellman	is	Alice—or	else	the	other	participant	won't	be	able	to	compute	the	secret	key,	because
she	won't	know	a.	If	both	participants	have	certificates	for	their	Diffie-Hellman	parameters,	they	can	authenticate	each
other.	If	just	one	has	a	certificate,	then	just	that	one	can	be	authenticated.	This	is	useful	in	some	situations;	for
example,	when	one	participant	is	a	web	server	and	the	other	is	an	arbitrary	client,	the	client	can	authenticate	the	web
server	and	establish	a	session	key	for	confidentiality	before	sending	a	credit	card	number	to	the	web	server.

a
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8.5	Example	Systems

We	have	now	seen	many	of	the	components	required	to	provide	one	or	two	aspects	of	security.	These	components
include	cryptographic	algorithms,	key	predistribution	mechanisms,	and	authentication	protocols.	In	this	section,	we
examine	some	complete	systems	that	use	these	components.

These	systems	can	be	roughly	categorized	by	the	protocol	layer	at	which	they	operate.	Systems	that	operate	at	the
application	layer	include	Pretty	Good	Privacy	(PGP),	which	provides	electronic	mail	security,	and	Secure	Shell	(SSH),
a	secure	remote	login	facility.	At	the	transport	layer,	there	is	the	IETF's	Transport	Layer	Security	(TLS)	standard	and
the	older	protocol	from	which	it	derives,	Secure	Socket	Layer	(SSL).	The	IPsec	(IP	Security)	protocols,	as	their	name
implies,	operate	at	the	IP	(network)	layer.	802.11i	provides	security	at	the	link	layer	of	wireless	networks.	This	section
describes	the	salient	features	of	each	of	these	approaches.

You	might	reasonably	wonder	why	security	has	to	be	provided	at	so	many	different	layers.	One	reason	is	that	different
threats	require	different	defensive	measures,	and	this	often	translates	into	securing	a	different	protocol	layer.	For
example,	if	your	main	concern	is	with	a	person	in	the	building	next	door	snooping	on	your	traffic	as	it	flows	between
your	laptop	and	your	802.11	access	point,	then	you	probably	want	security	at	the	link	layer.	However,	if	you	want	to	be
really	sure	you	are	connected	to	your	bank's	website	and	preventing	all	the	data	that	you	send	to	the	bank	from	being
read	by	curious	employees	of	some	Internet	service	provider,	then	something	that	extends	all	the	way	from	your
machine	to	the	bank's	server—like	the	transport	layer—may	be	the	right	place	to	secure	the	traffic.	As	is	often	the
case,	there	is	no	one-size-fits-all	solution.

The	security	systems	described	below	have	the	ability	to	vary	which	cryptographic	algorithms	they	use.	The	idea	of
making	a	security	system	algorithm	independent	is	a	very	good	one,	because	you	never	know	when	your	favorite
cryptographic	algorithm	might	be	proved	to	be	insufficiently	strong	for	your	purposes.	It	would	be	nice	if	you	could
quickly	change	to	a	new	algorithm	without	having	to	change	the	protocol	specification	or	implementation.	Note	the
analogy	to	being	able	to	change	keys	without	changing	the	algorithm;	if	one	of	your	cryptographic	algorithms	turns	out
to	be	flawed,	it	would	be	great	if	your	entire	security	architecture	didn't	need	an	immediate	redesign.

Pretty	Good	Privacy	(PGP)

Pretty	Good	Privacy	(PGP)	is	a	widely	used	approach	to	providing	security	for	electronic	mail.	It	provides
authentication,	confidentiality,	data	integrity,	and	nonrepudiation.	Originally	devised	by	Phil	Zimmerman,	it	has	evolved
into	an	IETF	standard	known	as	OpenPGP.	As	we	saw	in	a	previous	section,	PGP	is	notable	for	using	a	"web	of	trust"
model	for	distribution	of	keys	rather	than	a	tree-like	hierarchy.

PGP's	confidentiality	and	receiver	authentication	depend	on	the	receiver	of	an	email	message	having	a	public	key	that
is	known	to	the	sender.	To	provide	sender	authentication	and	nonrepudiation,	the	sender	must	have	a	public	key	that
is	known	by	the	receiver.	These	public	keys	are	predistributed	using	certificates	and	a	web-of-trust	PKI.	PGP	supports
RSA	and	DSS	for	public	key	certificates.	These	certificates	may	additionally	specify	which	cryptographic	algorithms
are	supported	or	preferred	by	the	key's	owner.	The	certificates	provide	bindings	between	email	addresses	and	public
keys.
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Figure	1.	PGP's	steps	to	prepare	a	message	for	emailing	from	Alice	to	Bob.

Consider	the	following	example	of	PGP	being	used	to	provide	both	sender	authentication	and	confidentiality.	Suppose
Alice	has	a	message	to	email	to	Bob.	Alice's	PGP	application	goes	through	the	steps	illustrated	in	Figure	1.	First,	the
message	is	digitally	signed	by	Alice;	MD5,	SHA-1,	and	the	SHA-2	family	are	among	the	hashes	that	may	be	used	in
the	digital	signature.	Her	PGP	application	then	generates	a	new	session	key	for	just	this	one	message;	AES	and
3DES	are	among	the	supported	symmetric-key	ciphers.	The	digitally	signed	message	is	encrypted	using	the	session
key,	then	the	session	key	itself	is	encrypted	using	Bob's	public	key	and	appended	to	the	message.	Alice's	PGP
application	reminds	her	of	the	level	of	trust	she	had	previously	assigned	to	Bob's	public	key,	based	on	the	number	of
certificates	she	has	for	Bob	and	the	trustworthiness	of	the	individuals	who	signed	the	certificates.	Finally,	not	for
security	but	because	email	messages	have	to	be	sent	in	ASCII,	a	base64	encoding	is	applied	to	the	message	to
convert	it	to	an	ASCII-compatible	representation.	Upon	receiving	the	PGP	message	in	an	email,	Bob's	PGP
application	reverses	this	process	step-by-step	to	obtain	the	original	plaintext	message	and	confirm	Alice's	digital
signature—and	reminds	Bob	of	the	level	of	trust	he	has	in	Alice's	public	key.

Email	has	particular	characteristics	that	allow	PGP	to	embed	an	adequate	authentication	protocol	in	this	one-message
data	transmission	protocol,	avoiding	the	need	for	any	prior	message	exchange	(and	sidestepping	some	of	the
complexities	described	in	the	previous	section).	Alice's	digital	signature	suffices	to	authenticate	her.	Although	there	is
no	proof	that	the	message	is	timely,	legitimate	email	isn't	guaranteed	to	be	timely	either.	There	is	also	no	proof	that
the	message	is	original,	but	Bob	is	an	email	user	and	probably	a	fault-tolerant	human	who	can	recover	from	duplicate
emails	(which,	again,	are	not	out	of	the	question	under	normal	operation	anyway).	Alice	can	be	sure	that	only	Bob
could	read	the	message	because	the	session	key	was	encrypted	with	his	public	key.	Although	this	protocol	doesn't
prove	to	Alice	that	Bob	is	actually	there	and	received	the	email,	an	authenticated	email	from	Bob	back	to	Alice	could
do	this.
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The	preceding	discussion	gives	a	good	example	of	why	application-layer	security	mechanisms	can	be	helpful.	Only
with	a	full	knowledge	of	how	the	application	works	can	you	make	the	right	choices	about	which	attacks	to	defend
against	(like	forged	email)	versus	which	to	ignore	(like	delayed	or	replayed	email).

Secure	Shell	(SSH)

The	Secure	Shell	(SSH)	protocol	is	used	to	provide	a	remote	login	service,	replacing	the	less	secure	Telnet	used	in
the	early	days	of	the	Internet.	(SSH	can	also	be	used	to	remotely	execute	commands	and	transfer	files,	but	we	will
focus	first	on	how	SSH	supports	remote	login.)	SSH	is	most	often	used	to	provide	strong	client/server
authentication/message	integrity—where	the	SSH	client	runs	on	the	user's	desktop	machine	and	the	SSH	server	runs
on	some	remote	machine	that	the	user	wants	to	log	into—but	it	also	supports	confidentiality.	Telnet	provides	none	of
these	capabilities.	Note	that	"SSH"	is	often	used	to	refer	to	both	the	SSH	protocol	and	applications	that	use	it;	you
need	to	figure	out	which	from	the	context.

To	better	appreciate	the	importance	of	SSH	on	today's	Internet,	consider	a	couple	of	the	scenarios	where	it	is	used.
Telecommuters,	for	example,	often	subscribe	to	ISPs	that	offer	high-speed	fiber-to-the-home,	and	they	use	these
ISPs	(plus	some	chain	of	other	ISPs)	to	reach	machines	operated	by	their	employer.	This	means	that	when	a
telecommuter	logs	into	a	machine	inside	his	employer's	data	center,	both	the	passwords	and	all	the	data	sent	or
received	potentially	passes	through	any	number	of	untrusted	networks.	SSH	provides	a	way	to	encrypt	the	data	sent
over	these	connections	and	to	improve	the	strength	of	the	authentication	mechanism	used	to	log	in.	(A	similar
situation	occurs	when	said	employee	connects	to	work	using	the	public	Wi-Fi	at	Starbucks.)	Another	usage	of	SSH	is
remote	login	to	a	router,	perhaps	to	change	its	configuration	or	read	its	log	files;	clearly,	a	network	administrator	wants
to	be	sure	that	he	can	log	into	a	router	securely	and	that	unauthorized	parties	can	neither	log	in	nor	intercept	the
commands	sent	to	the	router	or	output	sent	back	to	the	administrator.

The	latest	version	of	SSH,	version	2,	consists	of	three	protocols:

SSH-TRANS,	a	transport	layer	protocol

SSH-AUTH,	an	authentication	protocol

SSH-CONN,	a	connection	protocol

We	focus	on	the	first	two,	which	are	involved	in	remote	login.	We	briefly	discuss	the	purpose	of	SSH-CONN	at	the	end
of	the	section.

SSH-TRANS	provides	an	encrypted	channel	between	the	client	and	server	machines.	It	runs	on	top	of	a	TCP
connection.	Any	time	a	user	uses	an	SSH	application	to	log	into	a	remote	machine,	the	first	step	is	to	set	up	an	SSH-
TRANS	channel	between	those	two	machines.	The	two	machines	establish	this	secure	channel	by	first	having	the
client	authenticate	the	server	using	RSA.	Once	authenticated,	the	client	and	server	establish	a	session	key	that	they
will	use	to	encrypt	any	data	sent	over	the	channel.	This	high-level	description	skims	over	several	details,	including	the
fact	that	the	SSH-TRANS	protocol	includes	a	negotiation	of	the	encryption	algorithm	the	two	sides	are	going	to	use.
For	example,	AES	is	commonly	selected.	Also,	SSH-TRANS	includes	a	message	integrity	check	of	all	data
exchanged	over	the	channel.

The	one	issue	we	can't	skim	over	is	how	the	client	came	to	possess	the	server's	public	key	that	it	needs	to
authenticate	the	server.	Strange	as	it	may	sound,	the	server	tells	the	client	its	public	key	at	connection	time.	The	first
time	a	client	connects	to	a	particular	server,	the	SSH	application	warns	the	user	that	it	has	never	talked	to	this
machine	before	and	asks	if	the	user	wants	to	continue.	Although	it	is	a	risky	thing	to	do,	because	SSH	is	effectively
not	able	to	authenticate	the	server,	users	often	say	"yes"	to	this	question.	The	SSH	application	then	remembers	the
server's	public	key,	and	the	next	time	the	user	connects	to	that	same	machine	it	compares	this	saved	key	with	the	one
the	server	responds	with.	If	they	are	the	same,	SSH	authenticates	the	server.	If	they	are	different,	however,	the	SSH
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application	again	warns	the	user	that	something	is	amiss,	and	the	user	is	then	given	an	opportunity	to	abort	the
connection.	Alternatively,	the	prudent	user	can	learn	the	server's	public	key	through	some	out-of-band	mechanism,
save	it	on	the	client	machine,	and	thus	never	take	the	"first	time"	risk.

Once	the	SSH-TRANS	channel	exists,	the	next	step	is	for	the	user	to	actually	log	into	the	machine,	or	more
specifically,	authenticate	himself	or	herself	to	the	server.	SSH	allows	three	different	mechanisms	for	doing	this.	First,
since	the	two	machines	are	communicating	over	a	secure	channel,	it	is	OK	for	the	user	to	simply	send	his	or	her
password	to	the	server.	This	is	not	a	safe	thing	to	do	when	using	Telnet	since	the	password	would	be	sent	in	the
clear,	but	in	the	case	of	SSH	the	password	is	encrypted	in	the	SSH-TRANS	channel.	The	second	mechanism	uses
public-key	encryption.	This	requires	that	the	user	has	already	placed	his	or	her	public	key	on	the	server.	The	third
mechanism,	called	host-based	authentication,	basically	says	that	any	user	claiming	to	be	so-and-so	from	a	certain	set
of	trusted	hosts	is	automatically	believed	to	be	that	same	user	on	the	server.	Host-based	authentication	requires	that
the	client	host	authenticate	itself	to	the	server	when	they	first	connect;	standard	SSH-TRANS	only	authenticates	the
server	by	default.

The	main	thing	you	should	take	away	from	this	discussion	is	that	SSH	is	a	fairly	straightforward	application	of	the
protocols	and	algorithms	we	have	seen	throughout	this	chapter.	However,	what	sometimes	makes	SSH	a	challenge	to
understand	is	all	the	keys	a	user	has	to	create	and	manage,	where	the	exact	interface	is	operating	system	dependent.
For	example,	the	OpenSSH	package	that	runs	on	most	Unix	machines	supports	a	command	that	can	be	used	to
create	public/private	key	pairs.	These	keys	are	then	stored	in	various	files	in	directory	in	the	user's	home	directory.	For
example,	file		~/.ssh/known_hosts		records	the	keys	for	all	the	hosts	the	user	has	logged	into,	file		~/.ssh/authorized_keys	
contains	the	public	keys	needed	to	authenticate	the	user	when	he	or	she	logs	into	this	machine	(i.e.,	they	are	used	on
the	server	side),	and	file	contains	the	private	keys	needed	to	authenticate	the	user	on	remote	machines	(i.e.,	they	are
used	on	the	client	side).

Figure	2.	Using	SSH	port	forwarding	to	secure	other	TCP-based
applications.

Finally,	SSH	has	proven	so	useful	as	a	system	for	securing	remote	login,	it	has	been	extended	to	also	support	other
applications,	such	as	sending	and	receiving	email.	The	idea	is	to	run	these	applications	over	a	secure	"SSH	tunnel."
This	capability	is	called	port	forwarding,	and	it	uses	the	SSH-CONN	protocol.	The	idea	is	illustrated	in	Figure	2,	where
we	see	a	client	on	host	A	indirectly	communicating	with	a	server	on	host	B	by	forwarding	its	traffic	through	an	SSH
connection.	The	mechanism	is	called	port	forwarding	because	when	messages	arrive	at	the	well-known	SSH	port	on
the	server,	SSH	first	decrypts	the	contents	and	then	"forwards"	the	data	to	the	actual	port	at	which	the	server	is
listening.	This	is	just	another	sort	of	tunnel,	which	in	this	case	happens	to	provide	confidentiality	and	authentication.
It's	possible	to	provide	a	form	of	virtual	private	network	(VPN)	using	SSH	tunnels	in	this	way.

Transport	Layer	Security	(TLS,	SSL,	HTTPS)
To	understand	the	design	goals	and	requirements	for	the	Transport	Layer	Security	(TLS)	standard	and	the	Secure
Socket	Layer	(SSL)	on	which	TLS	is	based,	it	is	helpful	to	consider	one	of	the	main	problems	that	they	are	intended	to
solve.	As	the	World	Wide	Web	became	popular	and	commercial	enterprises	began	to	take	an	interest	in	it,	it	became
clear	that	some	level	of	security	would	be	necessary	for	transactions	on	the	Web.	The	canonical	example	of	this	is
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making	purchases	by	credit	card.	There	are	several	issues	of	concern	when	sending	your	credit	card	information	to	a
computer	on	the	Web.	First,	you	might	worry	that	the	information	would	be	intercepted	in	transit	and	subsequently
used	to	make	unauthorized	purchases.	You	might	also	worry	about	the	details	of	a	transaction	being	modified,	such
as	changing	the	purchase	amount.	And	you	would	certainly	like	to	know	that	the	computer	to	which	you	are	sending
your	credit	card	information	is	in	fact	one	belonging	to	the	vendor	in	question	and	not	some	other	party.	Thus,	we
immediately	see	a	need	for	confidentiality,	integrity,	and	authentication	in	Web	transactions.	The	first	widely	used
solution	to	this	problem	was	SSL,	originally	developed	by	Netscape	and	subsequently	the	basis	for	the	IETF's	TLS
standard.

The	designers	of	SSL	and	TLS	recognized	that	these	problems	were	not	specific	to	Web	transactions	(i.e.,	those
using	HTTP)	and	instead	built	a	general-purpose	protocol	that	sits	between	an	application	protocol	such	as	HTTP	and
a	transport	protocol	such	as	TCP.	The	reason	for	calling	this	"transport	layer	security"	is	that,	from	the	application's
perspective,	this	protocol	layer	looks	just	like	a	normal	transport	protocol	except	for	the	fact	that	it	is	secure.	That	is,
the	sender	can	open	connections	and	deliver	bytes	for	transmission,	and	the	secure	transport	layer	will	get	them	to
the	receiver	with	the	necessary	confidentiality,	integrity,	and	authentication.	By	running	the	secure	transport	layer	on
top	of	TCP,	all	of	the	normal	features	of	TCP	(reliability,	flow	control,	congestion	control,	etc.)	are	also	provided	to	the
application.	This	arrangement	of	protocol	layers	is	depicted	in	Figure	3.

Figure	3.	Secure	transport	layer	inserted	between	application	and	TCP
layers.

When	HTTP	is	used	in	this	way,	it	is	known	as	HTTPS	(Secure	HTTP).	In	fact,	HTTP	itself	is	unchanged.	It	simply
delivers	data	to	and	accepts	data	from	the	SSL/TLS	layer	rather	than	TCP.	For	convenience,	a	default	TCP	port	has
been	assigned	to	HTTPS	(443).	That	is,	if	you	try	to	connect	to	a	server	on	TCP	port	443,	you	will	likely	find	yourself
talking	to	the	SSL/TLS	protocol,	which	will	pass	your	data	through	to	HTTP	provided	all	goes	well	with	authentication
and	decryption.	Although	standalone	implementations	of	SSL/TLS	are	available,	it	is	more	common	for	an
implementation	to	be	bundled	with	applications	that	need	it,	primarily	web	browsers.

In	the	remainder	of	our	discussion	of	transport	layer	security,	we	focus	on	TLS.	Although	SSL	and	TLS	are
unfortunately	not	interoperable,	they	differ	in	only	minor	ways,	so	nearly	all	of	this	description	of	TLS	applies	to	SSL.

The	Handshake	Protocol

A	pair	of	TLS	participants	negotiate	at	runtime	which	cryptography	to	use.	The	participants	negotiate	a	choice	of:

Data	integrity	hash	(MD5,	SHA-1,	etc.),	used	to	implement	HMACs

Symmetric-key	cipher	for	confidentiality	(among	the	possibilities	are	DES,	3DES,	and	AES)

Session	key	establishment	approach	(among	the	possibilities	are	Diffie-Hellman,	fixed	Diffie-Hellman,	and	public-
key	authentication	protocols	using	RSA	or	DSS)

Interestingly,	the	participants	may	also	negotiate	the	use	of	a	compression	algorithm,	not	because	this	offers	any
security	benefits,	but	because	it's	easy	to	do	when	you're	negotiating	all	this	other	stuff	and	you've	already	decided	to
do	some	expensive	per-byte	operations	on	the	data.
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In	TLS,	the	confidentiality	cipher	uses	two	keys,	one	for	each	direction,	and	similarly	two	initialization	vectors.	The
HMACs	are	likewise	keyed	with	different	keys	for	the	two	participants.	Thus,	regardless	of	the	choice	of	cipher	and
hash,	a	TLS	session	requires	effectively	six	keys.	TLS	derives	all	of	them	from	a	single	shared	master	secret.	The
master	secret	is	a	384-bit	(48-byte)	value	that	in	turn	is	derived	in	part	from	the	"session	key"	that	results	from	TLS's
session	key	establishment	protocol.

The	part	of	TLS	that	negotiates	the	choices	and	establishes	the	shared	master	secret	is	called	the	handshake
protocol.	(Actual	data	transfer	is	performed	by	TLS's	record	protocol.)	The	handshake	protocol	is	at	heart	a	session
key	establishment	protocol,	with	a	master	secret	instead	of	a	session	key.	Since	TLS	supports	a	choice	of	approaches
to	session	key	establishment,	these	call	for	correspondingly	different	protocol	variants.	Furthermore,	the	handshake
protocol	supports	a	choice	between	mutual	authentication	of	both	participants,	authentication	of	just	one	participant
(this	is	the	most	common	case,	such	as	authenticating	a	website	but	not	a	user),	or	no	authentication	at	all
(anonymous	Diffie-Hellman).	Thus,	the	handshake	protocol	knits	together	several	session	key	establishment	protocols
into	a	single	protocol.

Figure	4	shows	the	handshake	protocol	at	a	high	level.	The	client	initially	sends	a	list	of	the	combinations	of
cryptographic	algorithms	that	it	supports,	in	decreasing	order	of	preference.	The	server	responds,	giving	the	single
combination	of	cryptographic	algorithms	it	selected	from	those	listed	by	the	client.	These	messages	also	contain	a
client	nonce	and	a	server	nonce,	respectively,	that	will	be	incorporated	in	generating	the	master	secret	later.

8.5	Example	Systems

362



Figure	4.	Handshake	protocol	to	establish	TLS	session.

At	this	point,	the	negotiation	phase	is	complete.	The	server	now	sends	additional	messages	based	on	the	negotiated
session	key	establishment	protocol.	That	could	involve	sending	a	public-key	certificate	or	a	set	of	Diffie-Hellman
parameters.	If	the	server	requires	authentication	of	the	client,	it	sends	a	separate	message	indicating	that.	The	client
then	responds	with	its	part	of	the	negotiated	key	exchange	protocol.

Now	the	client	and	server	each	have	the	information	necessary	to	generate	the	master	secret.	The	"session	key"	that
they	exchanged	is	not	in	fact	a	key,	but	instead	what	TLS	calls	a	pre-master	secret.	The	master	secret	is	computed
(using	a	published	algorithm)	from	this	pre-master	secret,	the	client	nonce,	and	the	server	nonce.	Using	the	keys
derived	from	the	master	secret,	the	client	then	sends	a	message	that	includes	a	hash	of	all	the	preceding	handshake
messages,	to	which	the	server	responds	with	a	similar	message.	This	enables	them	to	detect	any	discrepancies
between	the	handshake	messages	they	sent	and	received,	such	as	would	result,	for	example,	if	a	man	in	the	middle
modified	the	initial	unencrypted	client	message	to	weaken	its	choices	of	cryptographic	algorithms.

The	Record	Protocol
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Within	a	session	established	by	the	handshake	protocol,	TLS's	record	protocol	adds	confidentiality	and	integrity	to	the
underlying	transport	service.	Messages	handed	down	from	the	application	layer	are:

1.	 Fragmented	or	coalesced	into	blocks	of	a	convenient	size	for	the	following	steps

2.	 Optionally	compressed

3.	 Integrity-protected	using	an	HMAC

4.	 Encrypted	using	a	symmetric-key	cipher

5.	 Passed	to	the	transport	layer	(normally	TCP)	for	transmission

The	record	protocol	uses	an	HMAC	as	an	authenticator.	The	HMAC	uses	whichever	hash	algorithm	(MD5,	SHA-1,
etc.)	was	negotiated	by	the	participants.	The	client	and	server	have	different	keys	to	use	when	computing	HMACs,
making	them	even	harder	to	break.	Furthermore,	each	record	protocol	message	is	assigned	a	sequence	number,
which	is	included	when	the	HMAC	is	computed—even	though	the	sequence	number	is	never	explicit	in	the	message.
This	implicit	sequence	number	prevents	replays	or	reorderings	of	messages.	This	is	needed	because,	although	TCP
can	deliver	sequential,	unduplicated	messages	to	the	layer	above	it	under	normal	assumptions,	those	assumptions	do
not	include	an	adversary	that	can	intercept	TCP	messages,	modify	messages,	or	send	bogus	ones.	On	the	other
hand,	it	is	TCP's	delivery	guarantees	that	make	it	possible	for	TLS	to	rely	on	a	legitimate	TLS	message	having	the
next	implicit	sequence	number	in	order.

Another	interesting	feature	of	the	TLS	protocol,	which	is	quite	a	useful	feature	for	Web	transactions,	is	the	ability	to
resume	a	session.	To	understand	the	motivation	for	this,	it	is	helpful	to	understand	how	HTTP	makes	use	of	TCP
connections.	(The	details	of	HTTP	are	presented	in	the	next	chapter.)	Each	HTTP	operation,	such	as	getting	a	page
of	text	or	an	image	from	a	server,	requires	a	new	TCP	connection	to	be	opened.	Retrieving	a	single	page	with	a
number	of	embedded	graphical	objects	might	take	many	TCP	connections.	Opening	a	TCP	connection	requires	a
three-way	handshake	before	data	transmission	can	start.	Once	the	TCP	connection	is	ready	to	accept	data,	the	client
would	then	need	to	start	the	TLS	handshake	protocol,	taking	at	least	another	two	round-trip	times	(and	consuming
some	amount	of	processing	resources	and	network	bandwidth)	before	actual	application	data	could	be	sent.	The
resumption	capability	of	TLS	alleviates	this	problem.

Session	resumption	is	an	optimization	of	the	handshake	that	can	be	used	in	those	cases	where	the	client	and	the
server	have	already	established	some	shared	state	in	the	past.	The	client	simply	includes	the	session	ID	from	a
previously	established	session	in	its	initial	handshake	message.	If	the	server	finds	that	it	still	has	state	for	that	session,
and	the	resumption	option	was	negotiated	when	that	session	was	originally	created,	then	the	server	can	reply	to	the
client	with	an	indication	of	success,	and	data	transmission	can	begin	using	the	algorithms	and	parameters	previously
negotiated.	If	the	session	ID	does	not	match	any	session	state	cached	at	the	server,	or	if	resumption	was	not	allowed
for	the	session,	then	the	server	will	fall	back	to	the	normal	handshake	process.

IP	Security	(IPsec)

Probably	the	most	ambitious	of	all	the	efforts	to	integrate	security	into	the	Internet	happens	at	the	IP	layer.	Support	for
IPsec,	as	the	architecture	is	called,	is	optional	in	IPv4	but	mandatory	in	IPv6.

IPsec	is	really	a	framework	(as	opposed	to	a	single	protocol	or	system)	for	providing	all	the	security	services
discussed	throughout	this	chapter.	IPsec	provides	three	degrees	of	freedom.	First,	it	is	highly	modular,	allowing	users
(or	more	likely,	system	administrators)	to	select	from	a	variety	of	cryptographic	algorithms	and	specialized	security
protocols.	Second,	IPsec	allows	users	to	select	from	a	large	menu	of	security	properties,	including	access	control,
integrity,	authentication,	originality,	and	confidentiality.	Third,	IPsec	can	be	used	to	protect	narrow	streams	(e.g.,
packets	belonging	to	a	particular	TCP	connection	being	sent	between	a	pair	of	hosts)	or	wide	streams	(e.g.,	all
packets	flowing	between	a	pair	of	routers).
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When	viewed	from	a	high	level,	IPsec	consists	of	two	parts.	The	first	part	is	a	pair	of	protocols	that	implement	the
available	security	services.	They	are	the	Authentication	Header	(AH),	which	provides	access	control,	connectionless
message	integrity,	authentication,	and	antireplay	protection,	and	the	Encapsulating	Security	Payload	(ESP),	which
supports	these	same	services,	plus	confidentiality.	AH	is	rarely	used	so	we	focus	on	ESP	here.	The	second	part	is
support	for	key	management,	which	fits	under	an	umbrella	protocol	known	as	the	Internet	Security	Association	and
Key	Management	Protocol	(ISAKMP).

The	abstraction	that	binds	these	two	pieces	together	is	the	security	association	(SA).	An	SA	is	a	simplex	(one-way)
connection	with	one	or	more	of	the	available	security	properties.	Securing	a	bidirectional	communication	between	a
pair	of	hosts—corresponding	to	a	TCP	connection,	for	example—requires	two	SAs,	one	in	each	direction.	Although	IP
is	a	connectionless	protocol,	security	depends	on	connection	state	information	such	as	keys	and	sequence	numbers.
When	created,	an	SA	is	assigned	an	ID	number	called	a	security	parameters	index	(SPI)	by	the	receiving	machine.	A
combination	of	this	SPI	and	the	destination	IP	addresses	uniquely	identifies	an	SA.	An	ESP	header	includes	the	SPI
so	the	receiving	host	can	determine	which	SA	an	incoming	packet	belongs	to	and,	hence,	what	algorithms	and	keys	to
apply	to	the	packet.

SAs	are	established,	negotiated,	modified,	and	deleted	using	ISAKMP.	It	defines	packet	formats	for	exchanging	key
generation	and	authentication	data.	These	formats	aren't	terribly	interesting	because	they	provide	a	framework	only—
the	exact	form	of	the	keys	and	authentication	data	depends	on	the	key	generation	technique,	the	cipher,	and	the
authentication	mechanism	that	is	used.	Moreover,	ISAKMP	does	not	specify	a	particular	key	exchange	protocol,
although	it	does	suggest	the	Internet	Key	Exchange	(IKE)	as	one	possibility,	and	IKE	is	what	is	used	in	practice.

ESP	is	the	protocol	used	to	securely	transport	data	over	an	established	SA.	In	IPv4,	the	ESP	header	follows	the	IP
header;	in	IPv6,	it	is	an	extension	header.	Its	format	uses	both	a	header	and	a	trailer,	as	shown	in	Figure	5.	The		SPI	
field	lets	the	receiving	host	identify	the	security	association	to	which	the	packet	belongs.	The		SeqNum		field	protects
against	replay	attacks.	The	packet's		PayloadData		contains	the	data	described	by	the		NextHdr		field.	If	confidentiality	is
selected,	then	the	data	is	encrypted	using	whatever	cipher	was	associated	with	the	SA.	The		PadLength		field	records
how	much	padding	was	added	to	the	data;	padding	is	sometimes	necessary	because,	for	example,	the	cipher	requires
the	plaintext	to	be	a	multiple	of	a	certain	number	of	bytes	or	to	ensure	that	the	resulting	ciphertext	terminates	on	a	4-
byte	boundary.	Finally,	the		AuthenticationData		carries	the	authenticator.

Figure	5.	IPSec's	ESP	format.

IPsec	supports	a	tunnel	mode	as	well	as	the	more	straightforward	transport	mode.	Each	SA	operates	in	one	or	the
other	mode.	In	a	transport	mode	SA,	ESP's	payload	data	is	simply	a	message	for	a	higher	layer	such	as	UDP	or	TCP.
In	this	mode,	IPsec	acts	as	an	intermediate	protocol	layer,	much	like	SSL/TLS	does	between	TCP	and	a	higher	layer.
When	an	ESP	message	is	received,	its	payload	is	passed	to	the	higher	level	protocol.

In	a	tunnel	mode	SA,	however,	ESP's	payload	data	is	itself	an	IP	packet,	as	in	Figure	6.	The	source	and	destination	of
this	inner	IP	packet	may	be	different	from	those	of	the	outer	IP	packet.	When	an	ESP	message	is	received,	its
payload	is	forwarded	on	as	a	normal	IP	packet.	The	most	common	way	to	use	the	ESP	is	to	build	an	"IPsec	tunnel"
between	two	routers,	typically	firewalls.	For	example,	a	corporation	wanting	to	link	two	sites	using	the	Internet	could

8.5	Example	Systems

365



open	a	pair	of	tunnel-mode	SAs	between	a	router	at	one	site	and	a	router	at	the	other	site.	An	IP	packet	outgoing	from
one	site	would,	at	the	outgoing	router,	become	the	payload	of	an	ESP	message	sent	to	the	other	site's	router.	The
receiving	router	would	unwrap	the	payload	IP	packet	and	forward	it	on	to	its	true	destination.

Figure	6.	An	IP	packet	with	a	nested	IP	packet	encapsulated	using	ESP	in
tunnel	mode.	Note	that	the	inner	and	outer	packets	have	different

addresses.

These	tunnels	may	also	be	configured	to	use	ESP	with	confidentiality	and	authentication,	thus	preventing
unauthorized	access	to	the	data	that	traverses	this	virtual	link	and	ensuring	that	no	spurious	data	is	received	at	the	far
end	of	the	tunnel.	Furthermore,	tunnels	can	provide	traffic	confidentiality,	since	multiplexing	multiple	flows	through	a
single	tunnel	obscures	information	about	how	much	traffic	is	flowing	between	particular	endpoints.	A	network	of	such
tunnels	can	be	used	to	implement	an	entire	virtual	private	network.	Hosts	communicating	over	a	VPN	need	not	even
be	aware	that	it	exists.

Wireless	Security	(802.11i)
Wireless	links	are	particularly	exposed	to	security	threats	due	to	the	lack	of	any	physical	security	on	the	medium.
While	the	convenience	of	802.11	has	prompted	widespread	acceptance	of	the	technology,	lack	of	security	has	been	a
recurring	problem.	For	example,	it	is	all	too	easy	for	an	employee	of	a	corporation	to	connect	an	802.11	access	point
to	the	corporate	network.	Since	radio	waves	pass	through	most	walls,	if	the	access	point	lacks	the	correct	security
measures,	an	attacker	can	now	gain	access	to	the	corporate	network	from	outside	the	building.	Similarly,	a	computer
with	a	wireless	network	adaptor	inside	the	building	could	connect	to	an	access	point	outside	the	building,	potentially
exposing	it	to	attack,	not	to	mention	the	rest	of	the	corporate	network	if	that	same	computer	has,	say,	an	Ethernet
connection	as	well.

Consequently,	there	has	been	considerable	work	on	securing	Wi-Fi	links.	Somewhat	surprisingly,	one	of	the	early
security	techniques	developed	for	802.11,	known	as	Wired	Equivalent	Privacy	(WEP),	turned	out	to	be	seriously
flawed	and	quite	easily	breakable.

The	IEEE	802.11i	standard	provides	authentication,	message	integrity,	and	confidentiality	to	802.11	(Wi-Fi)	at	the	link
layer.	WPA2	(Wi-Fi	Protected	Access	2)	is	often	used	as	a	synonym	for	802.11i,	although	it	is	technically	a	trademark
of	the	Wi-Fi	Alliance	that	certifies	product	compliance	with	802.11i.

For	backward	compatibility,	802.11i	includes	definitions	of	first-generation	security	algorithms—including	WEP—that
are	now	known	to	have	major	security	flaws.	We	will	focus	here	on	802.11i's	newer,	stronger	algorithms.

802.11i	authentication	supports	two	modes.	In	either	mode,	the	end	result	of	successful	authentication	is	a	shared
Pairwise	Master	Key.	Personal	mode,	also	known	as	Pre-Shared	Key	(PSK)	mode,	provides	weaker	security	but	is
more	convenient	and	economical	for	situations	like	a	home	802.11	network.	The	wireless	device	and	the	Access	Point
(AP)	are	preconfigured	with	a	shared	passphrase—essentially	a	very	long	password—from	which	the	Pairwise	Master
Key	is	cryptographically	derived.

802.11i's	stronger	authentication	mode	is	based	on	the	IEEE	802.1X	framework	for	controlling	access	to	a	LAN,	which
uses	an	Authentication	Server	(AS)	as	in	Figure	7.	The	AS	and	AP	must	be	connected	by	a	secure	channel	and	could
even	be	implemented	as	a	single	box,	but	they	are	logically	separate.	The	AP	forwards	authentication	messages
between	the	wireless	device	and	the	AS.	The	protocol	used	for	authentication	is	called	the	Extensible	Authentication
Protocol	(EAP).	EAP	is	designed	to	support	multiple	authentication	methods—smart	cards,	Kerberos,	one-time
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passwords,	public	key	authentication,	and	so	on—as	well	as	both	one-sided	and	mutual	authentication.	So	EAP	is
better	thought	of	as	an	authentication	framework	than	a	protocol.	Specific	EAP-compliant	protocols,	of	which	there	are
many,	are	called	EAP	methods.	For	example,	EAP-TLS	is	an	EAP	method	based	on	TLS	authentication.

Figure	7.	Use	of	an	Authentication	Server	in	802.11i.

802.11i	does	not	place	any	restrictions	on	what	the	EAP	method	can	use	as	a	basis	for	authentication.	It	does,
however,	require	an	EAP	method	that	performs	mutual	authentication,	because	not	only	do	we	want	to	prevent	an
adversary	from	accessing	the	network	via	our	AP,	we	also	want	to	prevent	an	adversary	from	fooling	our	wireless
devices	with	a	bogus,	malicious	AP.	The	end	result	of	a	successful	authentication	is	a	Pairwise	Master	Key	shared
between	the	wireless	device	and	the	AS,	which	the	AS	then	conveys	to	the	AP.

One	of	the	main	differences	between	the	stronger	AS-based	mode	and	the	weaker	personal	mode	is	that	the	former
readily	supports	a	unique	key	per	client.	This	in	turn	makes	it	easier	to	change	the	set	of	clients	that	can	authenticate
themselves	(e.g.,	to	revoke	access	to	one	client)	without	needing	to	change	the	secret	stored	in	every	client.

With	a	Pairwise	Master	Key	in	hand,	the	wireless	device	and	the	AP	execute	a	session	key	establishment	protocol
called	the	4-way	handshake	to	establish	a	Pairwise	Transient	Key.	This	Pairwise	Transient	Key	is	really	a	collection	of
keys	that	includes	a	session	key	called	a	Temporal	Key.	This	session	key	is	used	by	the	protocol,	called	CCMP,	that
provides	802.11i's	data	confidentiality	and	integrity.

CCMP	stands	for	CTR	(Counter	Mode)	with	CBC-MAC	(Cipher-Block	Chaining	with	Message	Authentication	Code)
Protocol.	CCMP	uses	AES	in	counter	mode	to	encrypt	for	confidentiality.	Recall	that	in	counter	mode	encryption
successive	values	of	a	counter	are	incorporated	into	the	encryption	of	successive	blocks	of	plaintext.

CCMP	uses	a	Message	Authentication	Code	(MAC)	as	an	authenticator.	The	MAC	algorithm	is	based	on	CBC,	even
though	CCMP	doesn't	use	CBC	in	the	confidentiality	encryption.	In	effect,	CBC	is	performed	without	transmitting	any
of	the	CBC-encrypted	blocks,	solely	so	that	the	last	CBC-encrypted	block	can	be	used	as	a	MAC	(only	its	first	8	bytes
are	actually	used).	The	role	of	initialization	vector	is	played	by	a	specially	constructed	first	block	that	includes	a	48-bit
packet	number—a	sequence	number.	(The	packet	number	is	also	incorporated	in	the	confidentiality	encryption	and
serves	to	expose	replay	attacks.)	The	MAC	is	subsequently	encrypted	along	with	the	plaintext	in	order	to	prevent
birthday	attacks,	which	depend	on	finding	different	messages	with	the	same	authenticator.

Firewalls
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Whereas	much	of	this	chapter	has	focused	on	the	uses	of	cryptography	to	provide	such	security	features	as
authentication	and	confidentiality,	there	is	a	whole	set	of	security	issues	that	are	not	readily	addressed	by
cryptographic	means.	For	example,	worms	and	viruses	spread	by	exploiting	bugs	in	operating	systems	and
application	programs	(and	sometimes	human	gullibility	as	well),	and	no	amount	of	cryptography	can	help	you	if	your
machine	has	unpatched	vulnerabilities.	So	other	approaches	are	often	used	to	keep	out	various	forms	of	potentially
harmful	traffic.	Firewalls	are	one	of	the	most	common	ways	to	do	this.

A	firewall	is	a	system	that	typically	sits	at	some	point	of	connectivity	between	a	site	it	protects	and	the	rest	of	the
network,	as	illustrated	in	Figure	8.	It	is	usually	implemented	as	an	"appliance"	or	part	of	a	router,	although	a	"personal
firewall"	may	be	implemented	on	an	end-user	machine.	Firewall-based	security	depends	on	the	firewall	being	the	only
connectivity	to	the	site	from	outside;	there	should	be	no	way	to	bypass	the	firewall	via	other	gateways,	wireless
connections,	or	dial-up	connections.	The	wall	metaphor	is	somewhat	misleading	in	the	context	of	networks	since	a
great	deal	of	traffic	passes	through	a	firewall.	One	way	to	think	of	a	firewall	is	that	by	default	it	blocks	traffic	unless	that
traffic	is	specifically	allowed	to	pass	through.	For	example,	it	might	filter	out	all	incoming	messages	except	those
addresses	to	a	particular	set	of	IP	addresses	or	to	particular	TCP	port	numbers.

Figure	8.	A	firewall	filters	packets	flowing	between	a	site	and	the	rest	of	the
Internet.

In	effect,	a	firewall	divides	a	network	into	a	more-trusted	zone	internal	to	the	firewall	and	a	less-trusted	zone	external
to	the	firewall.	This	is	useful	if	you	do	not	want	external	users	to	access	a	particular	host	or	service	within	your	site.
Much	of	the	complexity	comes	from	the	fact	that	you	want	to	allow	different	kinds	of	access	to	different	external	users,
ranging	from	the	general	public,	to	business	partners,	to	remotely	located	members	of	your	organization.	A	firewall
may	also	impose	restrictions	on	outgoing	traffic	to	prevent	certain	attacks	and	to	limit	losses	if	an	adversary	succeeds
in	getting	access	inside	the	firewall.

The	location	of	a	firewall	also	often	happens	to	be	the	dividing	line	between	globally	addressable	regions	and
those	that	use	local	addresses.	Hence,	Network	Address	Translation	(NAT)	functionality	and	firewall
functionality	often	are	found	in	the	same	device,	even	though	they	are	logically	separate.

Firewalls	may	be	used	to	create	multiple	zones	of	trust,	such	as	a	hierarchy	of	increasingly	trusted	zones.	A	common
arrangement	involves	three	zones	of	trust:	the	internal	network,	the	DMZ	("demilitarized	zone");	and	the	rest	of	the
Internet.	The	DMZ	is	used	to	hold	services	such	as	DNS	and	email	servers	that	need	to	be	accessible	to	the	outside.
Both	the	internal	network	and	the	outside	world	can	access	the	DMZ,	but	hosts	in	the	DMZ	cannot	access	the	internal
network;	therefore,	an	adversary	who	succeeds	in	compromising	a	host	in	the	exposed	DMZ	still	cannot	access	the
internal	network.	The	DMZ	can	be	periodically	restored	to	a	clean	state.

Firewalls	filter	based	on	IP,	TCP,	and	UDP	information,	among	other	things.	They	are	configured	with	a	table	of
addresses	that	characterize	the	packets	they	will,	and	will	not,	forward.	By	addresses,	we	mean	more	than	just	the
destination's	IP	address,	although	that	is	one	possibility.	Generally,	each	entry	in	the	table	is	a	4-tuple:	It	gives	the	IP
address	and	TCP	(or	UDP)	port	number	for	both	the	source	and	destination.

For	example,	a	firewall	might	be	configured	to	filter	out	(not	forward)	all	packets	that	match	the	following	description:

(192.12.13.14,	1234,	128.7.6.5,	80)
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This	pattern	says	to	discard	all	packets	from	port	1234	on	host	192.12.13.14	addressed	to	port	80	on	host	128.7.6.5.
(Port	80	is	the	well-known	TCP	port	for	HTTP.)	Of	course,	it's	often	not	practical	to	name	every	source	host	whose
packets	you	want	to	filter,	so	the	patterns	can	include	wildcards.	For	example,

(*,		*,	128.7.6.5,	80)

says	to	filter	out	all	packets	addressed	to	port	80	on	128.7.6.5,	regardless	of	what	source	host	or	port	sent	the	packet.
Notice	that	address	patterns	like	these	require	the	firewall	to	make	forwarding/filtering	decisions	based	on	level	4	port
numbers,	in	addition	to	level	3	host	addresses.	It	is	for	this	reason	that	network	layer	firewalls	are	sometimes	called
level	4	switches.

In	the	preceding	discussion,	the	firewall	forwards	everything	except	where	specifically	instructed	to	filter	out	certain
kinds	of	packets.	A	firewall	could	also	filter	out	everything	unless	explicitly	instructed	to	forward	it,	or	use	a	mix	of	the
two	strategies.	For	example,	instead	of	blocking	access	to	port	80	on	host	128.7.6.5,	the	firewall	might	be	instructed	to
only	allow	access	to	port	25	(the	SMTP	mail	port)	on	a	particular	mail	server,	such	as

(*,		*,	128.19.20.21,	25)

but	to	block	all	other	traffic.	Experience	has	shown	that	firewalls	are	very	frequently	configured	incorrectly,	allowing
unsafe	access.	Part	of	the	problem	is	that	filtering	rules	can	overlap	in	complex	ways,	making	it	hard	for	a	system
administrator	to	correctly	express	the	intended	filtering.	A	design	principle	that	maximizes	security	is	to	configure	a
firewall	to	discard	all	packets	other	than	those	that	are	explicitly	allowed.	Of	course,	this	means	that	some	valid
applications	might	be	accidentally	disabled;	presumably	users	of	those	applications	eventually	notice	and	ask	the
system	administrator	to	make	the	appropriate	change.

Many	client/server	applications	dynamically	assign	a	port	to	the	client.	If	a	client	inside	a	firewall	initiates	access	to	an
external	server,	the	server's	response	would	be	addressed	to	the	dynamically	assigned	port.	This	poses	a	problem:
How	can	a	firewall	be	configured	to	allow	an	arbitrary	server's	response	packet	but	disallow	a	similar	packet	for	which
there	was	no	client	request?	This	is	not	possible	with	a	stateless	firewall,	which	evaluates	each	packet	in	isolation.	It
requires	a	stateful	firewall,	which	keeps	track	of	the	state	of	each	connection.	An	incoming	packet	addressed	to	a
dynamically	assigned	port	would	then	be	allowed	only	if	it	is	a	valid	response	in	the	current	state	of	a	connection	on
that	port.

Modern	firewalls	also	understand	and	filter	based	on	many	specific	application-level	protocols	such	as	HTTP,	Telnet,
or	FTP.	They	use	information	specific	to	that	protocol,	such	as	URLs	in	the	case	of	HTTP,	to	decide	whether	to
discard	a	message.

Strengths	and	Weaknesses	of	Firewalls

At	best,	a	firewall	protects	a	network	from	undesired	access	from	the	rest	of	the	Internet;	it	cannot	provide	security	to
legitimate	communication	between	the	inside	and	the	outside	of	the	firewall.	In	contrast,	the	cryptography-based
security	mechanisms	described	in	this	chapter	are	capable	of	providing	secure	communication	between	any
participants	anywhere.	This	being	the	case,	why	are	firewalls	so	common?	One	reason	is	that	firewalls	can	be
deployed	unilaterally,	using	mature	commercial	products,	while	cryptography-based	security	requires	support	at	both
endpoints	of	the	communication.	A	more	fundamental	reason	for	the	dominance	of	firewalls	is	that	they	encapsulate
security	in	a	centralized	place,	in	effect	factoring	security	out	of	the	rest	of	the	network.	A	system	administrator	can
manage	the	firewall	to	provide	security,	freeing	the	users	and	applications	inside	the	firewall	from	security	concerns—
at	least	some	kinds	of	security	concerns.

Unfortunately,	firewalls	have	serious	limitations.	Since	a	firewall	does	not	restrict	communication	between	hosts	that
are	inside	the	firewall,	the	adversary	who	does	manage	to	run	code	internal	to	a	site	can	access	all	local	hosts.	How
might	an	adversary	get	inside	the	firewall?	The	adversary	could	be	a	disgruntled	employee	with	legitimate	access,	or
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the	adversary's	software	could	be	hidden	in	some	software	installed	from	a	CD	or	downloaded	from	the	Web.	It	might
be	possible	to	bypass	the	firewall	by	using	wireless	communication	or	dial-up	connections.

Another	problem	is	that	any	parties	granted	access	through	your	firewall,	such	as	business	partners	or	externally
located	employees,	become	a	security	vulnerability.	If	their	security	is	not	as	good	as	yours,	then	an	adversary	could
penetrate	your	security	by	penetrating	their	security.

On	of	the	most	serious	problems	for	firewalls	is	their	vulnerability	to	the	exploitation	of	bugs	in	machines	inside	the
firewall.	Such	bugs	are	discovered	regularly,	so	a	system	administrator	has	to	constantly	monitor	announcements	of
them.	Administrators	frequently	fail	to	do	so,	since	firewall	security	breaches	routinely	exploit	security	flaws	that	have
been	known	for	some	time	and	have	straightforward	solutions.

Malware	(for	"malicious	software")	is	the	term	for	software	that	is	designed	to	act	on	a	computer	in	ways	concealed
from	and	unwanted	by	the	computer's	user.	Viruses,	worms,	and	spyware	are	common	types	of	malware.	(Virus	is
sometimes	used	synonymously	with	malware,	but	we	will	use	it	in	the	narrower	sense	in	which	it	refers	to	only	a
particular	kind	of	malware.)	Malware	code	need	not	be	natively	executable	object	code;	it	could	as	well	be	interpreted
code	such	as	a	script	or	an	executable	macro	such	as	those	used	by	Microsoft	Word.

Viruses	and	worms	are	characterized	by	the	ability	to	make	and	spread	copies	of	themselves;	the	difference	between
them	is	that	a	worm	is	a	complete	program	that	replicates	itself,	while	a	virus	is	a	bit	of	code	that	is	inserted	(and
inserts	copies	of	itself)	into	another	piece	of	software	or	a	file,	so	that	it	is	executed	as	part	of	the	execution	of	that
piece	of	software	or	as	a	result	of	opening	the	file.	Viruses	and	worms	typically	cause	problems	such	as	consuming
network	bandwidth	as	mere	side	effects	of	attempting	to	spread	copies	of	themselves.	Even	worse,	they	can	also
deliberately	damage	a	system	or	undermine	its	security	in	various	ways.	They	could,	for	example,	install	a	backdoor—
software	that	allows	remote	access	to	the	system	without	the	normal	authentication.	This	could	lead	to	a	firewall
exposing	a	service	that	should	be	providing	its	own	authentication	procedures	but	has	been	undermined	by	a
backdoor.

Spyware	is	software	that,	without	authorization,	collects	and	transmits	private	information	about	a	computer	system	or
its	users.	Usually	spyware	is	secretly	embedded	in	an	otherwise	useful	program	and	is	spread	by	users	deliberately
installing	copies.	The	problem	for	firewalls	is	that	the	transmission	of	the	private	information	looks	like	legitimate
communication.

A	natural	question	to	ask	is	whether	firewalls	(or	cryptographic	security)	could	keep	malware	out	of	a	system	in	the
first	place.	Most	malware	is	indeed	transmitted	via	networks,	although	it	may	also	be	transmitted	via	portable	storage
devices	such	as	CDs	and	memory	sticks.	Certainly	this	is	one	argument	in	favor	of	the	"block	everything	not	explicitly
allowed"	approach	taken	by	many	administrators	in	their	firewall	configurations.

One	approach	that	is	used	to	detect	malware	is	to	search	for	segments	of	code	from	known	malware,	sometimes
called	a	signature.	This	approach	has	its	own	challenges,	as	cleverly	designed	malware	can	tweak	its	representation
in	various	ways.	There	is	also	a	potential	impact	on	network	performance	to	perform	such	detailed	inspection	of	data
entering	a	network.	Cryptographic	security	cannot	eliminate	the	problem	either,	although	it	does	provide	a	means	to
authenticate	the	originator	of	a	piece	of	software	and	detect	any	tampering,	such	as	when	a	virus	inserts	a	copy	of
itself.

Related	to	firewalls	are	systems	known	as	intrusion	detection	systems	(IDS)	and	intrusion	prevention	systems	(IPS).
These	systems	try	to	look	for	anomalous	activity,	such	as	an	unusually	large	amount	of	traffic	targeting	a	given	host	or
port	number,	for	example,	and	generate	alarms	for	network	managers	or	perhaps	even	take	direct	action	to	limit	a
possible	attack.	While	there	are	commercial	products	in	this	space	today,	it	is	still	a	developing	field.
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8.6	Broader	Perspective

Blockchain	and	a	Decentralized	Internet

Probably	without	giving	it	much	thought,	users	have	invested	enormous	trust	in	the	applications	they	use,	especially
those	like	Facebook	and	Google	that	not	only	store	their	personal	photos	and	videos,	but	also	manage	their	identity
(i.e.,	provide	Single	Sign	On	for	other	web	applications).	This	is	troubling	to	many	people,	which	has	sparked	interest
in	decentralized	platforms,	systems	for	which	users	do	not	have	to	trust	a	third-party.	Such	systems	often	build	on	top
of	a	cryptocurrency	like	Bitcoin,	not	for	its	monetary	value,	but	because	cryptocurrency	is	itself	based	on	a
decentralized	technology	(called	a	blockchain)	that	no	single	organization	controls.	It’s	easy	to	be	distracted	by	all	the
hype,	but	a	blockchain	is	essentially	a	decentralized	log	(ledger)	that	anyone	can	write	a	“fact”	to,	and	later	prove	to
the	world	that	that	fact	was	recorded.

Blockstack	is	an	open	source	implementation	of	a	decentralized	platform,	including	the	blockchain,	but	more
interestingly,	it	has	been	used	to	implement	a	self-sovereign	identity	service	for	Internet	applications.	A	self-sovereign
identity	service	is	a	type	of	identity	service	that	is	administratively	decentralized:	it	has	no	distinct	service	operator,
and	no	single	principal	can	control	who	can	create	an	identity	and	who	cannot.	Blockstack	uses	a	commodity	public
blockchain	to	build	a	replicated	identity	database	log.	When	this	database	log	is	replayed	by	a	Blockstack	node,	it
produces	the	same	view	of	all	identities	in	the	system	as	every	other	Blockstack	node	reading	the	same	view	of	the
underlying	blockchain.	Anyone	can	register	an	identity	in	Blockstack	by	appending	to	the	blockchain.

Instead	of	requiring	users	to	place	trust	in	a	distinct	set	of	identity	providers,	Blockstack’s	identity	protocol	instead
asks	users	to	trust	that	the	majority	of	the	decision-making	nodes	in	the	blockchain	(called	miners)	will	preserve	the
order	of	writes	(called	transactions).	The	underlying	blockchain	provides	a	cryptocurrency	to	incentivize	miners	to	do
this.	Under	normal	operation,	miners	stand	to	earn	the	most	cryptocurrency	by	participating	honestly.	This	allows
Blockstack’s	database	log	to	remain	secure	against	tampering	without	a	distinct	service	operator.	An	adversary	who
wishes	to	tamper	with	the	log	must	compete	against	the	majority	of	miners	to	produce	an	alternative	transaction
history	in	the	underlying	blockchain	that	the	blockchain	peer	network	will	accept	as	the	canonical	write	history.

The	protocol	for	reading	and	appending	to	the	Blockstack	identity	database	log	operates	at	a	logical	layer	above	the
blockchain.	Blockchain	transactions	are	data	frames	for	identity	database	log	entries.	A	client	appends	to	the	identity
database	log	by	sending	a	blockchain	transaction	that	embeds	the	database	log	entry,	and	a	client	reads	the	log	back
by	extracting	the	log	entries	from	blockchain	transactions	in	the	blockchain-given	order.	This	makes	it	possible	to
implement	the	database	log	“on	top”	of	any	blockchain.

Identities	in	Blockstack	are	distinguished	by	user-chosen	names.	Blockstack’s	identity	protocol	binds	a	name	to	a
public	key	and	to	some	routing	state	(described	below).	It	ensures	that	names	are	globally	unique	by	assigning	them
on	a	first-come	first-serve	basis.

Names	are	registered	in	a	two-step	process—one	to	bind	the	client’s	public	key	to	the	salted	hash	of	the	name,	and
one	to	reveal	the	name	itself.	The	two-step	process	is	necessary	to	prevent	front-running—only	the	client	that	signed
the	name	hash	may	reveal	the	name,	and	only	the	client	that	calculated	the	salted	hash	can	reveal	the	preimage.
Once	a	name	is	registered,	only	the	owner	of	the	name’s	private	key	can	transfer	or	revoke	the	name,	or	update	its
routing	state.
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Figure	1.	Decentralized	identity	management	built	on	a	blockchain
foundation.

Each	name	in	Blockstack	has	an	associated	piece	of	routing	state	that	contains	one	or	more	URLs	that	point	to	where
the	user’s	identity	information	can	be	found	online.	This	data	is	too	big	and	expensive	to	store	on	the	blockchain
directly,	so	instead	Blockstack	implements	a	layer	of	indirection:	the	hash	of	the	routing	state	is	written	to	the	identity
database	log,	and	Blockstack	peers	implement	a	gossip	network	for	disseminating	and	authenticating	the	routing
state.	Each	peer	maintains	a	full	copy	of	the	routing	state.

Putting	it	all	together,	Figure	1	shows	how	resolving	a	name	to	its	corresponding	identity	state	works.	Given	a	name,	a
client	first	queries	a	Blockstack	peer	for	the	corresponding	public	key	and	routing	state	(Step	1).	Once	it	has	the
routing	state,	the	client	obtains	the	identity	data	by	resolving	the	URL(s)	contained	within	it	and	authenticates	the
identity	information	by	verifying	that	it	is	signed	by	the	name’s	public	key	(Step	2).

Broader	Perspective

To	continue	reading	about	the	cloudification	of	the	Internet,	see	The	Cloud	is	the	New	Internet.

To	learn	more	about	Blockstack	and	decentralizing	the	Internet,	we	recommend:

Blockstack:	A	New	Internet	for	Decentralized	Applications,	October	2017.
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Chapter	9:	Applications

Now	this	is	not	the	end.	It	is	not	even	the	beginning	of	the	end.	But	it	is,	perhaps,	the	end	of	the	beginning.	—
Winston	Churchill

Problem:	Applications	Need	Their	Own	Protocols

We	started	this	book	by	talking	about	application	programs—everything	from	web	browsers	to	videoconferencing	tools
—that	people	want	to	run	over	computer	networks.	In	the	intervening	chapters,	we	have	developed,	one	building	block
at	a	time,	the	networking	infrastructure	needed	to	make	such	applications	possible.	We	have	now	come	full	circle,
back	to	network	applications.	These	applications	are	part	network	protocol	(in	the	sense	that	they	exchange
messages	with	their	peers	on	other	machines)	and	part	traditional	application	program	(in	the	sense	that	they	interact
with	the	windowing	system,	the	file	system,	and	ultimately	the	user).	This	chapter	explores	some	popular	network
applications	available	today.

Looking	at	applications	drives	home	the	systems	approach	that	we	have	emphasized	throughout	this	book.	That	is,
the	best	way	to	build	effective	networked	applications	is	to	understand	the	building	blocks	that	a	network	can	provide
and	how	those	blocks	can	interact	with	each	other.	Thus,	for	example,	a	particular	networked	application	might	need
to	make	use	of	a	reliable	transport	protocol,	authentication	and	privacy	mechanisms,	and	resource	allocation
capabilities	of	the	underlying	network.	Applications	often	work	best	when	the	application	developer	knows	how	to
make	the	best	use	of	these	facilities	(and	there	are	also	plenty	of	counter-examples	of	applications	making	poor	use	of
available	networking	capabilities).	Applications	typically	need	their	own	protocols,	too,	in	many	cases	using	the	same
principles	that	we	have	seen	in	our	prior	examination	of	lower	layer	protocols.	Thus,	our	focus	in	this	chapter	is	on
how	to	put	together	the	ideas	and	techniques	already	described	to	build	effective	networked	applications.	Said
another	way,	if	you	ever	imagine	yourself	writing	a	network	application,	then	you	will	by	definition	also	become	a
protocol	designer	(and	implementer).

We	proceed	by	examining	a	variety	of	familiar,	and	not	so	familiar,	network	applications.	These	range	from
exchanging	email	and	surfing	the	Web,	to	integrating	applications	across	businesses,	to	multimedia	applications	like
videoconferencing,	to	managing	a	set	of	network	elements,	to	emerging	peer-to-peer	and	content	distribution
networks.	This	list	is	by	no	means	exhaustive,	but	it	does	serve	to	illustrate	many	of	the	key	principles	of	designing
and	building	applications.	Applications	need	to	pick	and	choose	the	appropriate	building	blocks	that	are	available	at
other	layers	either	inside	the	network	or	in	the	host	protocol	stacks	and	then	augment	those	underlying	services	to
provide	the	precise	communication	service	required	by	the	application.
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9.1	Traditional	Applications

We	begin	our	discussion	of	applications	by	focusing	on	two	of	the	most	popular—the	World	Wide	Web	and	email.
Broadly	speaking,	both	of	these	applications	use	the	request/reply	paradigm—users	send	requests	to	servers,	which
then	respond	accordingly.	We	refer	to	these	as	"traditional"	applications	because	they	typify	the	sort	of	applications
that	have	existed	since	the	early	days	of	computer	networks	(although	the	Web	is	a	lot	newer	than	email	but	has	its
roots	in	file	transfers	that	predated	it).	By	contrast,	later	sections	will	look	at	a	class	of	applications	that	have	become
popular	more	recently:	streaming	applications	(e.g.,	multimedia	applications	like	video	and	audio)	and	various	overlay-
based	applications.	(Note	that	there	is	a	bit	of	a	blurring	between	these	classes,	as	you	can	of	course	get	access	to
streaming	multimedia	data	over	the	Web,	but	for	now	we'll	focus	on	the	general	usage	of	the	Web	to	request	pages,
images,	etc.)

Before	taking	a	close	look	at	each	of	these	applications,	there	are	three	general	points	that	we	need	to	make.	The	first
is	that	it	is	important	to	distinguish	between	application	programs	and	application	protocols.	For	example,	the
HyperText	Transport	Protocol	(HTTP)	is	an	application	protocol	that	is	used	to	retrieve	Web	pages	from	remote
servers.	Many	different	application	programs—that	is,	web	clients	like	Internet	Explorer,	Chrome,	Firefox,	and	Safari—
provide	users	with	a	different	look	and	feel,	but	all	of	them	use	the	same	HTTP	protocol	to	communicate	with	web
servers	over	the	Internet.	Indeed,	it	is	the	fact	that	the	protocol	is	published	and	standardized	that	enables	application
programs	developed	by	many	different	companies	and	individuals	to	interoperate.	That	is	how	so	many	browsers	are
able	to	interoperate	with	all	the	web	servers	(of	which	there	are	also	many	varieties).

This	section	looks	at	two	very	widely	used,	standardized	application	protocols:

Simple	Mail	Transfer	Protocol	(SMTP)	is	used	to	exchange	electronic	mail.

HyperText	Transport	Protocol	(HTTP)	is	used	to	communicate	between	web	browsers	and	web	servers.

Second,	we	observe	that	many	application	layer	protocols,	including	HTTP	and	SMTP,	have	a	companion	protocol
that	specifies	the	format	of	the	data	that	can	be	exchanged.	This	is	one	reason	WHY	these	protocols	are	relatively
simple:	Much	of	the	complexity	is	managed	in	this	companion	standard.	For	example,	SMTP	is	a	protocol	for
exchanging	electronic	mail	messages,	but	RFC	822	and	Multipurpose	Internet	Mail	Extensions	(MIME)	define	the
format	of	email	messages.	Similarly,	HTTP	is	a	protocol	for	fetching	Web	pages,	but	HyperText	Markup	Language
(HTML)	is	a	companion	specification	that	defines	the	basic	form	of	those	pages.

Finally,	since	the	application	protocols	described	in	this	section	follow	the	same	request/reply	communication	pattern,
you	might	expect	that	they	would	be	built	on	top	of	a	Remote	Procedure	Call	(RPC)	transport	protocol.	This	is	not	the
case,	however,	as	they	are	instead	implemented	on	top	of	TCP.	In	effect,	each	protocol	reinvents	a	simple	RPC-like
mechanism	on	top	of	a	reliable	transport	protocol	(TCP).	We	say	"simple"	because	each	protocol	is	not	designed	to
support	arbitrary	remote	procedure	calls	of	the	sort	discussed	in	an	earlier	chapter,	but	is	instead	designed	to	send
and	respond	to	a	specific	set	of	request	messages.	Interestingly,	the	approach	taken	by	HTTP	has	proven	quite
powerful,	which	has	led	to	it	being	adopted	widely	by	the	Web	Services	architecture,	with	general	RPC	mechanisms
built	on	top	of	HTTP	rather	than	the	other	way	around.	More	on	this	topic	at	the	end	of	this	section.

Electronic	Mail	(SMTP,	MIME,	IMAP)

Email	is	one	of	the	oldest	network	applications.	After	all,	what	could	be	more	natural	than	wanting	to	send	a	message
to	the	user	at	the	other	end	of	a	cross-country	link	you	just	managed	to	get	running?	It's	the	20th	century's	version	of
"Mr.	Watson,	come	here...	I	want	to	see	you."	Surprisingly,	the	pioneers	of	the	ARPANET	had	not	really	envisioned
email	as	a	key	application	when	the	network	was	created—remote	access	to	computing	resources	was	the	main
design	goal—but	it	turned	out	to	be	the	Internet's	original	killer	app.
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As	noted	above,	it	is	important	(1)	to	distinguish	the	user	interface	(i.e.,	your	mail	reader)	from	the	underlying
message	transfer	protocols	(such	as	SMTP	or	IMAP),	and	(2)	to	distinguish	between	this	transfer	protocol	and	a
companion	standard	(RFC	822	and	MIME)	that	defines	the	format	of	the	messages	being	exchanged.	We	start	by
looking	at	the	message	format.

Message	Format

RFC	822	defines	messages	to	have	two	parts:	a	header	and	a	body.	Both	parts	are	represented	in	ASCII	text.
Originally,	the	body	was	assumed	to	be	simple	text.	This	is	still	the	case,	although	RFC	822	has	been	augmented	by
MIME	to	allow	the	message	body	to	carry	all	sorts	of	data.	This	data	is	still	represented	as	ASCII	text,	but	because	it
may	be	an	encoded	version	of,	say,	a	JPEG	image,	it's	not	necessarily	readable	by	human	users.	More	on	MIME	in	a
moment.

The	message	header	is	a	series	of		<CRLF>	-terminated	lines.	(	<CRLF>		stands	for	carriage-return	plus	line-feed,	which
are	a	pair	of	ASCII	control	characters	often	used	to	indicate	the	end	of	a	line	of	text.)	The	header	is	separated	from
the	message	body	by	a	blank	line.	Each	header	line	contains	a	type	and	value	separated	by	a	colon.	Many	of	these
header	lines	are	familiar	to	users,	since	they	are	asked	to	fill	them	out	when	they	compose	an	email	message;	for
example,	the	header	identifies	the	message	recipient,	and	the	header	says	something	about	the	purpose	of	the
message.	Other	headers	are	filled	in	by	the	underlying	mail	delivery	system.	Examples	include	(when	the	message
was	transmitted),	(what	user	sent	the	message),	and	(each	mail	server	that	handled	this	message).	There	are,	of
course,	many	other	header	lines;	the	interested	reader	is	referred	to	RFC	822.

RFC	822	was	extended	in	1993	(and	updated	quite	a	few	times	since	then)	to	allow	email	messages	to	carry	many
different	types	of	data:	audio,	video,	images,	PDF	documents,	and	so	on.	MIME	consists	of	three	basic	pieces.	The
first	piece	is	a	collection	of	header	lines	that	augment	the	original	set	defined	by	RFC	822.	These	header	lines
describe,	in	various	ways,	the	data	being	carried	in	the	message	body.	They	include	(the	version	of	MIME	being
used),	(a	human-readable	description	of	what's	in	the	message,	analogous	to	the	line),	(the	type	of	data	contained	in
the	message),	and	(how	the	data	in	the	message	body	is	encoded).

The	second	piece	is	definitions	for	a	set	of	content	types	(and	subtypes).	For	example,	MIME	defines	two	different	still
image	types,	denoted	and	,	each	with	the	obvious	meaning.	As	another	example,	refers	to	simple	text	you	might	find
in	a	vanilla	822-style	message,	while	denotes	a	message	that	contains	"marked	up"	text	(text	using	special	fonts,
italics,	etc.).	As	a	third	example,	MIME	defines	an		application		type,	where	the	subtypes	correspond	to	the	output	of
different	application	programs	(e.g.,		application/postscript		and		application/msword	).

MIME	also	defines	a		multipart		type	that	says	how	a	message	carrying	more	than	one	data	type	is	structured.	This	is
like	a	programming	language	that	defines	both	base	types	(e.g.,	integers	and	floats)	and	compound	types	(e.g.,
structures	and	arrays).	One	possible		multipart		subtype	is		mixed	,	which	says	that	the	message	contains	a	set	of
independent	data	pieces	in	a	specified	order.	Each	piece	then	has	its	own	header	line	that	describes	the	type	of	that
piece.

The	third	piece	is	a	way	to	encode	the	various	data	types	so	they	can	be	shipped	in	an	ASCII	email	message.	The
problem	is	that,	for	some	data	types	(a	JPEG	image,	for	example),	any	given	8-bit	byte	in	the	image	might	contain	one
of	256	different	values.	Only	a	subset	of	these	values	are	valid	ASCII	characters.	It	is	important	that	email	messages
contain	only	ASCII,	because	they	might	pass	through	a	number	of	intermediate	systems	(gateways,	as	described
below)	that	assume	all	email	is	ASCII	and	would	corrupt	the	message	if	it	contained	non-ASCII	characters.	To
address	this	issue,	MIME	uses	a	straightforward	encoding	of	binary	data	into	the	ASCII	character	set.	The	encoding	is
called		base64	.	The	idea	is	to	map	every	three	bytes	of	the	original	binary	data	into	four	ASCII	characters.	This	is	done
by	grouping	the	binary	data	into	24-bit	units	and	breaking	each	such	unit	into	four	6-bit	pieces.	Each	6-bit	piece	maps
onto	one	of	64	valid	ASCII	characters;	for	example,	0	maps	onto	A,	1	maps	onto	B,	and	so	on.	If	you	look	at	a
message	that	has	been	encoded	using	the	base64	encoding	scheme,	you'll	notice	only	the	52	upper-	and	lowercase
letters,	the	10	digits	0	through	9,	and	the	special	characters	+	and	/.	These	are	the	first	64	values	in	the	ASCII
character	set.
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As	one	aside,	so	as	to	make	reading	mail	as	painless	as	possible	for	those	who	still	insist	on	using	text-only	mail
readers,	a	MIME	message	that	consists	of	regular	text	only	can	be	encoded	using	7-bit	ASCII.	There's	also	a	readable
encoding	for	mostly	ASCII	data.

Putting	this	all	together,	a	message	that	contains	some	plain	text,	a	JPEG	image,	and	a	PostScript	file	would	look
something	like	this:

MIME-Version:	1.0
Content-Type:	multipart/mixed;
boundary="-------417CA6E2DE4ABCAFBC5"
From:	Alice	Smith	<Alice@cisco.com>
To:	Bob@cs.Princeton.edu
Subject:	promised	material
Date:	Mon,	07	Sep	1998	19:45:19	-0400

---------417CA6E2DE4ABCAFBC5
Content-Type:	text/plain;	charset=us-ascii
Content-Transfer-Encoding:	7bit

Bob,

Here's	the	jpeg	image	and	draft	report	I	promised.

--Alice

---------417CA6E2DE4ABCAFBC5
Content-Type:	image/jpeg
Content-Transfer-Encoding:	base64
...	unreadable	encoding	of	a	jpeg	figure
---------417CA6E2DE4ABCAFBC5
Content-Type:	application/postscript;	name="draft.ps"
Content-Transfer-Encoding:	7bit
...	readable	encoding	of	a	PostScript	document

In	this	example,	the	line	in	the	message	header	says	that	this	message	contains	various	pieces,	each	denoted	by	a
character	string	that	does	not	appear	in	the	data	itself.	Each	piece	then	has	its	own	and	lines.

Message	Transfer

For	many	years,	the	majority	of	email	was	moved	from	host	to	host	using	only	SMTP.	While	SMTP	continues	to	play	a
central	role,	it	is	now	just	one	email	protocol	of	several,	Internet	Message	Access	Protocol	(IMAP)	and	Post	Office
Protocol	(POP)	being	two	other	important	protocols	for	retrieving	mail	messages.	We'll	begin	our	discussion	by	looking
at	SMTP,	and	move	on	to	IMAP	below.

To	place	SMTP	in	the	right	context,	we	need	to	identify	the	key	players.	First,	users	interact	with	a	mail	reader	when
they	compose,	file,	search,	and	read	their	email.	Countless	mail	readers	are	available,	just	like	there	are	many	web
browsers	to	choose	from.	In	the	early	days	of	the	Internet,	users	typically	logged	into	the	machine	on	which	their
mailbox	resided,	and	the	mail	reader	they	invoked	was	a	local	application	program	that	extracted	messages	from	the
file	system.	Today,	of	course,	users	remotely	access	their	mailbox	from	their	laptop	or	smartphone;	they	do	not	first
log	into	the	host	that	stores	their	mail	(a	mail	server).	A	second	mail	transfer	protocol,	such	as	POP	or	IMAP,	is	used
to	remotely	download	email	from	a	mail	server	to	the	user's	device.

Second,	there	is	a	mail	daemon	(or	process)	running	on	each	host	that	holds	a	mailbox.	You	can	think	of	this	process,
also	called	a	message	transfer	agent	(MTA),	as	playing	the	role	of	a	post	office:	Users	(or	their	mail	readers)	give	the
daemon	messages	they	want	to	send	to	other	users,	the	daemon	uses	SMTP	running	over	TCP	to	transmit	the
message	to	a	daemon	running	on	another	machine,	and	the	daemon	puts	incoming	messages	into	the	user's	mailbox
(where	that	user's	mail	reader	can	later	find	them).	Since	SMTP	is	a	protocol	that	anyone	could	implement,	in	theory
there	could	be	many	different	implementations	of	the	mail	daemon.	It	turns	out,	though,	that	there	are	only	a	few
popular	implementations,	with	the	old		sendmail		program	from	Berkeley	Unix	and		postfix		being	the	most	widespread.
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Figure	1.	Sequence	of	mail	gateways	store	and	forward	email	messages.

While	it	is	certainly	possible	that	the	MTA	on	a	sender's	machine	establishes	an	SMTP/TCP	connection	to	the	MTA	on
the	recipient's	mail	server,	in	many	cases	the	mail	traverses	one	or	more	mail	gateways	on	its	route	from	the	sender's
host	to	the	receiver's	host.	Like	the	end	hosts,	these	gateways	also	run	a	message	transfer	agent	process.	It's	not	an
accident	that	these	intermediate	nodes	are	called	gateways	since	their	job	is	to	store	and	forward	email	messages,
much	like	an	"IP	gateway"	(which	we	have	referred	to	as	a	router)	stores	and	forwards	IP	datagrams.	The	only
difference	is	that	a	mail	gateway	typically	buffers	messages	on	disk	and	is	willing	to	try	retransmitting	them	to	the	next
machine	for	several	days,	while	an	IP	router	buffers	datagrams	in	memory	and	is	only	willing	to	retry	transmitting	them
for	a	fraction	of	a	second.	Figure	1	illustrates	a	two-hop	path	from	the	sender	to	the	receiver.

Why,	you	might	ask,	are	mail	gateways	necessary?	Why	can't	the	sender's	host	send	the	message	to	the	receiver's
host?	One	reason	is	that	the	recipient	does	not	want	to	include	the	specific	host	on	which	he	or	she	reads	email	in	his
or	her	address.	Another	is	scale:	In	large	organizations,	it's	often	the	case	that	a	number	of	different	machines	hold
the	mailboxes	for	the	organization.	For	example,	mail	delivered	to		bob@cs.princeton.edu		is	first	sent	to	a	mail	gateway
in	the	CS	Department	at	Princeton	(that	is,	to	the	host	named		cs.princeton.edu	),	and	then	forwarded—involving	a
second	connection—to	the	specific	machine	on	which	Bob	has	a	mailbox.	The	forwarding	gateway	maintains	a
database	that	maps	users	into	the	machine	on	which	their	mailbox	resides;	the	sender	need	not	be	aware	of	this
specific	name.	(The	list	of	header	lines	in	the	message	will	help	you	trace	the	mail	gateways	that	a	given	message
traversed.)	Yet	another	reason,	particularly	true	in	the	early	days	of	email,	is	that	the	machine	that	hosts	any	given
user's	mailbox	may	not	always	be	up	or	reachable,	in	which	case	the	mail	gateway	holds	the	message	until	it	can	be
delivered.

Independent	of	how	many	mail	gateways	are	in	the	path,	an	independent	SMTP	connection	is	used	between	each
host	to	move	the	message	closer	to	the	recipient.	Each	SMTP	session	involves	a	dialog	between	the	two	mail
daemons,	with	one	acting	as	the	client	and	the	other	acting	as	the	server.	Multiple	messages	might	be	transferred
between	the	two	hosts	during	a	single	session.	Since	RFC	822	defines	messages	using	ASCII	as	the	base
representation,	it	should	come	as	no	surprise	to	learn	that	SMTP	is	also	ASCII	based.	This	means	it	is	possible	for	a
human	at	a	keyboard	to	pretend	to	be	an	SMTP	client	program.

SMTP	is	best	understood	by	a	simple	example.	The	following	is	an	exchange	between	sending	host		cs.princeton.edu	
and	receiving	host		cisco.com		.	In	this	case,	user	Bob	at	Princeton	is	trying	to	send	mail	to	users	Alice	and	Tom	at
Cisco.	Extra	blank	lines	have	been	added	to	make	the	dialog	more	readable.

HELO	cs.princeton.edu
250	Hello	daemon@mail.cs.princeton.edu	[128.12.169.24]

MAIL	FROM:<Bob@cs.princeton.edu>
250	OK

RCPT	TO:<Alice@cisco.com>
250	OK

RCPT	TO:<Tom@cisco.com>
550	No	such	user	here

DATA
354	Start	mail	input;	end	with	<CRLF>.<CRLF>
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Blah	blah	blah...
...etc.	etc.	etc.
<CRLF>.<CRLF>
250	OK

QUIT
221	Closing	connection

As	you	can	see,	SMTP	involves	a	sequence	of	exchanges	between	the	client	and	the	server.	In	each	exchange,	the
client	posts	a	command	(e.g.,		QUIT	)	and	the	server	responds	with	a	code	(e.g.,		221	).	The	server	also	returns	a
human-readable	explanation	for	the	code	(e.g.,	).	In	this	particular	example,	the	client	first	identifies	itself	to	the	server
with	the		HELO		command.	It	gives	its	domain	name	as	an	argument.	The	server	verifies	that	this	name	corresponds	to
the	IP	address	being	used	by	the	TCP	connection;	you'll	notice	the	server	states	this	IP	address	back	to	the	client.
The	client	then	asks	the	server	if	it	is	willing	to	accept	mail	for	two	different	users;	the	server	responds	by	saying	"yes"
to	one	and	"no"	to	the	other.	Then	the	client	sends	the	message,	which	is	terminated	by	a	line	with	a	single	period	(".")
on	it.	Finally,	the	client	terminates	the	connection.

There	are,	of	course,	many	other	commands	and	return	codes.	For	example,	the	server	can	respond	to	a	client's
	RCPT		command	with	a		251		code,	which	indicates	that	the	user	does	not	have	a	mailbox	on	this	host,	but	that	the
server	promises	to	forward	the	message	onto	another	mail	daemon.	In	other	words,	the	host	is	functioning	as	a	mail
gateway.	As	another	example,	the	client	can	issue	a		VRFY		operation	to	verify	a	user's	email	address,	but	without
actually	sending	a	message	to	the	user.

The	only	other	point	of	interest	is	the	arguments	to	the		MAIL		and		RCPT		operations;	for	example,		FROM:
<Bob@cs.princeton.edu>		and		TO:<Alice@cisco.com>	,	respectively.	These	look	a	lot	like	822	header	fields,	and	in	some
sense	they	are.	What	actually	happens	is	that	the	mail	daemon	parses	the	message	to	extract	the	information	it	needs
to	run	SMTP.	The	information	it	extracts	is	said	to	form	an	envelope	for	the	message.	The	SMTP	client	uses	this
envelope	to	parameterize	its	exchange	with	the	SMTP	server.	One	historical	note:	The	reason		sendmail		became	so
popular	is	that	no	one	wanted	to	reimplement	this	message	parsing	function.	While	today's	email	addresses	look
pretty	tame	(e.g.,		Bob@cs.princeton.edu	),	this	was	not	always	the	case.	In	the	days	before	everyone	was	connected	to
the	Internet,	it	was	not	uncommon	to	see	email	addresses	of	the	form		user%host@site!neighbor	.

Mail	Reader

The	final	step	is	for	the	user	to	actually	retrieve	his	or	her	messages	from	the	mailbox,	read	them,	reply	to	them,	and
possibly	save	a	copy	for	future	reference.	The	user	performs	all	these	actions	by	interacting	with	a	mail	reader.	As
pointed	out	earlier,	this	reader	was	originally	just	a	program	running	on	the	same	machine	as	the	user's	mailbox,	in
which	case	it	could	simply	read	and	write	the	file	that	implements	the	mailbox.	This	was	the	common	case	in	the	pre-
laptop	era.	Today,	most	often	the	user	accesses	his	or	her	mailbox	from	a	remote	machine	using	yet	another	protocol,
such	as	POP	or	IMAP.	It	is	beyond	the	scope	of	this	book	to	discuss	the	user	interface	aspects	of	the	mail	reader,	but
it	is	definitely	within	our	scope	to	talk	about	the	access	protocol.	We	consider	IMAP,	in	particular.

IMAP	is	similar	to	SMTP	in	many	ways.	It	is	a	client/server	protocol	running	over	TCP,	where	the	client	(running	on	the
user's	desktop	machine)	issues	commands	in	the	form	of		<CRLF>	-terminated	ASCII	text	lines	and	the	mail	server
(running	on	the	machine	that	maintains	the	user's	mailbox)	responds	in	kind.	The	exchange	begins	with	the	client
authenticating	him-	or	herself	and	identifying	the	mailbox	he	or	she	wants	to	access.	This	can	be	represented	by	the
simple	state	transition	diagram	shown	in	Figure	2.	In	this	diagram,		LOGIN		and		LOGOUT		are	example	commands	that
the	client	can	issue,	while		OK		is	one	possible	server	response.	Other	common	commands	include	and		EXPUNGE	,	with
the	obvious	meanings.	Additional	server	responses	include		NO		(client	does	not	have	permission	to	perform	that
operation)	and		BAD		(command	is	ill	formed).
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Figure	2.	IMAP	state	transition	diagram.

When	the	user	asks	to		FETCH		a	message,	the	server	returns	it	in	MIME	format	and	the	mail	reader	decodes	it.	In
addition	to	the	message	itself,	IMAP	also	defines	a	set	of	message	attributes	that	are	exchanged	as	part	of	other
commands,	independent	of	transferring	the	message	itself.	Message	attributes	include	information	like	the	size	of	the
message	and,	more	interestingly,	various	flags	associated	with	the	message	(e.g.,	and		Recent	).	These	flags	are	used
to	keep	the	client	and	server	synchronized;	that	is,	when	the	user	deletes	a	message	in	the	mail	reader,	the	client
needs	to	report	this	fact	to	the	mail	server.	Later,	should	the	user	decide	to	expunge	all	deleted	messages,	the	client
issues	an		EXPUNGE		command	to	the	server,	which	knows	to	actually	remove	all	earlier	deleted	messages	from	the
mailbox.

Finally,	note	that	when	the	user	replies	to	a	message,	or	sends	a	new	message,	the	mail	reader	does	not	forward	the
message	from	the	client	to	the	mail	server	using	IMAP,	but	it	instead	uses	SMTP.	This	means	that	the	user's	mail
server	is	effectively	the	first	mail	gateway	traversed	along	the	path	from	the	desktop	to	the	recipient's	mailbox.

World	Wide	Web	(HTTP)
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The	World	Wide	Web	has	been	so	successful	and	has	made	the	Internet	accessible	to	so	many	people	that
sometimes	it	seems	to	be	synonymous	with	the	Internet.	In	fact,	the	design	of	the	system	that	became	the	Web
started	around	1989,	long	after	the	Internet	had	become	a	widely	deployed	system.	The	original	goal	of	the	Web	was
to	find	a	way	to	organize	and	retrieve	information,	drawing	on	ideas	about	hypertext—interlinked	documents—that	had
been	around	since	at	least	the	1960s.	The	core	idea	of	hypertext	is	that	one	document	can	link	to	another	document,
and	the	protocol	(HTTP)	and	document	language	(HTML)	were	designed	to	meet	that	goal.

A	short	history	of	the	Web	provided	by	the	World	Wide	Web	consortium	traces	its	roots	to	a	1945	article
describing	links	between	microfiche	documents.

One	helpful	way	to	think	of	the	Web	is	as	a	set	of	cooperating	clients	and	servers,	all	of	whom	speak	the	same
language:	HTTP.	Most	people	are	exposed	to	the	Web	through	a	graphical	client	program	or	web	browser	like	Safari,
Chrome,	Firefox,	or	Internet	Explorer.	Figure	3	shows	the	Safari	browser	in	use,	displaying	a	page	of	information	from
Princeton	University.

Figure	3.	The	Safari	web	browser.

Clearly,	if	you	want	to	organize	information	into	a	system	of	linked	documents	or	objects,	you	need	to	be	able	to
retrieve	one	document	to	get	started.	Hence,	any	web	browser	has	a	function	that	allows	the	user	to	obtain	an	object
by	opening	a	URL.	Uniform	Resource	Locators	(URLs)	are	so	familiar	to	most	of	us	by	now	that	it's	easy	to	forget	that
they	haven't	been	around	forever.	They	provide	information	that	allows	objects	on	the	Web	to	be	located,	and	they
look	like	the	following:

http://www.cs.princeton.edu/index.html

If	you	opened	that	particular	URL,	your	web	browser	would	open	a	TCP	connection	to	the	web	server	at	a	machine
called		www.cs.princeton.edu		and	immediately	retrieve	and	display	the	file	called		index.html	.	Most	files	on	the	Web
contain	images	and	text,	and	many	have	other	objects	such	as	audio	and	video	clips,	pieces	of	code,	etc.	They	also
frequently	include	URLs	that	point	to	other	files	that	may	be	located	on	other	machines,	which	is	the	core	of	the
"hypertext"	part	of	HTTP	and	HTML.	A	web	browser	has	some	way	in	which	you	can	recognize	URLs	(often	by
highlighting	or	underlining	some	text)	and	then	you	can	ask	the	browser	to	open	them.	These	embedded	URLs	are
called	hypertext	links.	When	you	ask	your	web	browser	to	open	one	of	these	embedded	URLs	(e.g.,	by	pointing	and
clicking	on	it	with	a	mouse),	it	will	open	a	new	connection	and	retrieve	and	display	a	new	file.	This	is	called	following	a
link.	It	thus	becomes	very	easy	to	hop	from	one	machine	to	another	around	the	network,	following	links	to	all	sorts	of
information.	Once	you	have	a	means	to	embed	a	link	in	a	document	and	allow	a	user	to	follow	that	link	to	get	another
document,	you	have	the	basis	of	a	hypertext	system.

When	you	ask	your	browser	to	view	a	page,	your	browser	(the	client)	fetches	the	page	from	the	server	using	HTTP
running	over	TCP.	Like	SMTP,	HTTP	is	a	text-oriented	protocol.	At	its	core,	HTTP	is	a	request/response	protocol,
where	every	message	has	the	general	form
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START_LINE	<CRLF>
MESSAGE_HEADER	<CRLF>
<CRLF>
MESSAGE_BODY	<CRLF>

where,	as	before,		<CRLF>		stands	for	carriage-return+line-feed.	The	first	line	(	START_LINE	)	indicates	whether	this	is	a
request	message	or	a	response	message.	In	effect,	it	identifies	the	"remote	procedure"	to	be	executed	(in	the	case	of
a	request	message),	or	the	status	of	the	request	(in	the	case	of	a	response	message).	The	next	set	of	lines	specifies	a
collection	of	options	and	parameters	that	qualify	the	request	or	response.	There	are	zero	or	more	of	these
	MESSAGE_HEADER		lines—the	set	is	terminated	by	a	blank	line—each	of	which	looks	like	a	header	line	in	an	email
message.	HTTP	defines	many	possible	header	types,	some	of	which	pertain	to	request	messages,	some	to	response
messages,	and	some	to	the	data	carried	in	the	message	body.	Instead	of	giving	the	full	set	of	possible	header	types,
though,	we	just	give	a	handful	of	representative	examples.	Finally,	after	the	blank	line	comes	the	contents	of	the
requested	message	(	MESSAGE_BODY	);	this	part	of	the	message	is	where	a	server	would	place	the	requested	page	when
responding	to	a	request,	and	it	is	typically	empty	for	request	messages.

Why	does	HTTP	run	over	TCP?	The	designers	didn't	have	to	do	it	that	way,	but	TCP	does	provide	a	pretty	good
match	to	what	HTTP	needs,	particularly	by	providing	reliable	delivery	(who	wants	a	Web	page	with	missing	data?),
flow	control,	and	congestion	control.	However,	as	we'll	see	below,	there	are	a	few	issues	that	can	arise	from	building	a
request/response	protocol	on	top	of	TCP,	especially	if	you	ignore	the	subtleties	of	the	interactions	between	the
application	and	transport	layer	protocols.

Request	Messages

The	first	line	of	an	HTTP	request	message	specifies	three	things:	the	operation	to	be	performed,	the	Web	page	the
operation	should	be	performed	on,	and	the	version	of	HTTP	being	used.	Although	HTTP	defines	a	wide	assortment	of
possible	request	operations—including	write	operations	that	allow	a	Web	page	to	be	posted	on	a	server—the	two
most	common	operations	are		GET		(fetch	the	specified	Web	page)	and		HEAD		(fetch	status	information	about	the
specified	Web	page).	The	former	is	obviously	used	when	your	browser	wants	to	retrieve	and	display	a	Web	page.	The
latter	is	used	to	test	the	validity	of	a	hypertext	link	or	to	see	if	a	particular	page	has	been	modified	since	the	browser
last	fetched	it.	The	full	set	of	operations	is	summarized	in	Table	1.	As	innocent	as	it	sounds,	the		POST		command
enables	much	mischief	(including	spam)	on	the	Internet.

Table	1.	HTTP	Request	Operations.

Operation Description

OPTIONS Request	information	about	available	options

GET Retrieve	document	identified	in	URL

HEAD Retrieve	metainformation	about	document	identified	in	URL

POST Give	information	(e.g.,	annotation)	to	server

PUT Store	document	under	specified	URL

DELETE Delete	specified	URL

TRACE Loopback	request	message

CONNECT For	use	by	proxies

For	example,	the		START_LINE	

GET	http://www.cs.princeton.edu/index.html
HTTP/1.1
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says	that	the	client	wants	the	server	on	host	to	return	the	page	named	.	This	particular	example	uses	an	absolute
URL.	It	is	also	possible	to	use	a	relative	identifier	and	specify	the	host	name	in	one	of	the		MESSAGE_HEADER		lines;	for
example,

GET	index.html	HTTP/1.1
Host:	www.cs.princeton.edu

Here,		Host		is	one	of	the	possible		MESSAGE_HEADER		fields.	One	of	the	more	interesting	of	these	is	,	which	gives	the	client
a	way	to	conditionally	request	a	Web	page—the	server	returns	the	page	only	if	it	has	been	modified	since	the	time
specified	in	that	header	line.

Response	Messages

Like	request	messages,	response	messages	begin	with	a	single		START_LINE	.	In	this	case,	the	line	specifies	the	version
of	HTTP	being	used,	a	three-digit	code	indicating	whether	or	not	the	request	was	successful,	and	a	text	string	giving
the	reason	for	the	response.	For	example,	the		START_LINE	

HTTP/1.1	202	Accepted

indicates	that	the	server	was	able	to	satisfy	the	request,	while

HTTP/1.1	404	Not	Found

indicates	that	it	was	not	able	to	satisfy	the	request	because	the	page	was	not	found.	There	are	five	general	types	of
response	codes,	with	the	first	digit	of	the	code	indicating	its	type.	Table	2	summarizes	the	five	types	of	codes.

Table	2.	Five	Types	of	HTTP	Result	Codes.

Code Type Example	Reasons

1xx Informational request	received,	continuing	process

2xx Success action	successfully	received,	understood,	and	accepted

3xx Redirection further	action	must	be	taken	to	complete	the	request

4xx Client	Error request	contains	bad	syntax	or	cannot	be	fulfilled

5xx Server	Error server	failed	to	fulfill	an	apparently	valid	request

As	with	the	unexpected	consequences	of	the		POST		request	message,	it	is	sometimes	surprising	how	various
response	messages	are	used	in	practice.	For	example,	request	redirection	(specifically	code	302)	turns	out	to	be	a
powerful	mechanism	that	plays	a	big	role	in	Content	Distribution	Networks	(CDNs)	by	redirecting	requests	to	a	nearby
cache.

Also	similar	to	request	messages,	response	messages	can	contain	one	or	more		MESSAGE_HEADER		lines.	These	lines
relay	additional	information	back	to	the	client.	For	example,	the		Location		header	line	specifies	that	the	requested	URL
is	available	at	another	location.	Thus,	if	the	Princeton	CS	Department	Web	page	had	moved	from	to	,	for	example,
then	the	server	at	the	original	address	might	respond	with

HTTP/1.1	301	Moved	Permanently
Location:	http://www.princeton.edu/cs/index.html
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In	the	common	case,	the	response	message	will	also	carry	the	requested	page.	This	page	is	an	HTML	document,	but
since	it	may	carry	nontextual	data	(e.g.,	a	GIF	image),	it	is	encoded	using	MIME	(see	the	previous	section).	Certain	of
the		MESSAGE_HEADER		lines	give	attributes	of	the	page	contents,	including	(number	of	bytes	in	the	contents),		Expires	
(time	at	which	the	contents	are	considered	stale),	and	(time	at	which	the	contents	were	last	modified	at	the	server).

Uniform	Resource	Identifiers

The	URLs	that	HTTP	uses	as	addresses	are	one	type	of	Uniform	Resource	Identifier	(URI).	A	URI	is	a	character	string
that	identifies	a	resource,	where	a	resource	can	be	anything	that	has	identity,	such	as	a	document,	an	image,	or	a
service.

The	format	of	URIs	allows	various	more	specialized	kinds	of	resource	identifiers	to	be	incorporated	into	the	URI	space
of	identifiers.	The	first	part	of	a	URI	is	a	scheme	that	names	a	particular	way	of	identifying	a	certain	kind	of	resource,
such	as		mailto		for	email	addresses	or		file		for	file	names.	The	second	part	of	a	URI,	separated	from	the	first	part	by
a	colon,	is	the	scheme-specific	part.	It	is	a	resource	identifier	consistent	with	the	scheme	in	the	first	part,	as	in	the
URIs		mailto:santa@northpole.org		and		file:///C:/foo.html	.

A	resource	doesn't	have	to	be	retrievable	or	accessible.	We	saw	an	example	of	this	in	an	earlier	chapter—extensible
markup	language	(XML)	namespaces	are	identified	by	URIs	that	look	an	awful	lot	like	URLs,	but	strictly	speaking	they
are	not	locators	because	they	don't	tell	you	how	to	locate	something;	they	just	provide	a	globally	unique	identifier	for
the	namespace.	There	is	no	requirement	that	you	can	retrieve	anything	at	the	URI	given	as	the	target	namespace	of
an	XML	document.	We'll	see	another	example	of	a	URI	that	is	not	a	URL	in	a	later	section.

TCP	Connections

The	original	version	of	HTTP	(1.0)	established	a	separate	TCP	connection	for	each	data	item	retrieved	from	the
server.	It's	not	too	hard	to	see	how	this	was	a	very	inefficient	mechanism:	connection	setup	and	teardown	messages
had	to	be	exchanged	between	the	client	and	server	even	if	all	the	client	wanted	to	do	was	verify	that	it	had	the	most
recent	copy	of	a	page.	Thus,	retrieving	a	page	that	included	some	text	and	a	dozen	icons	or	other	small	graphics
would	result	in	13	separate	TCP	connections	being	established	and	closed.	Figure	4	shows	the	sequence	of	events
for	fetching	a	page	that	has	just	a	single	embedded	object.	Colored	lines	indicate	TCP	messages,	while	black	lines
indicate	the	HTTP	requests	and	responses.	(Some	of	the	TCP	ACKs	are	not	shown	to	avoid	cluttering	the	picture.)
You	can	see	two	round	trip	times	are	spent	setting	up	TCP	connections	while	another	two	(at	least)	are	spent	getting
the	page	and	image.	As	well	as	the	latency	impact,	there	is	also	processing	cost	on	the	server	to	handle	the	extra
TCP	connection	establishment	and	termination.
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Figure	4.	HTTP	1.0	behavior.

To	overcome	this	situation,	HTTP	version	1.1	introduced	persistent	connections—the	client	and	server	can	exchange
multiple	request/response	messages	over	the	same	TCP	connection.	Persistent	connections	have	many	advantages.
First,	they	obviously	eliminate	the	connection	setup	overhead,	thereby	reducing	the	load	on	the	server,	the	load	on	the
network	caused	by	the	additional	TCP	packets,	and	the	delay	perceived	by	the	user.	Second,	because	a	client	can
send	multiple	request	messages	down	a	single	TCP	connection,	TCP's	congestion	window	mechanism	is	able	to
operate	more	efficiently.	This	is	because	it's	not	necessary	to	go	through	the	slow	start	phase	for	each	page.	Figure	5
shows	the	transaction	from	Figure	4	using	a	persistent	connection	in	the	case	where	the	connection	is	already	open
(presumably	due	to	some	prior	access	of	the	same	server).

Figure	5.	HTTP	1.1	behavior	with	persistent	connections.

Persistent	connections	do	not	come	without	a	price,	however.	The	problem	is	that	neither	the	client	nor	server
necessarily	knows	how	long	to	keep	a	particular	TCP	connection	open.	This	is	especially	critical	on	the	server,	which
might	be	asked	to	keep	connections	opened	on	behalf	of	thousands	of	clients.	The	solution	is	that	the	server	must
time	out	and	close	a	connection	if	it	has	received	no	requests	on	the	connection	for	a	period	of	time.	Also,	both	the
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client	and	server	must	watch	to	see	if	the	other	side	has	elected	to	close	the	connection,	and	they	must	use	that
information	as	a	signal	that	they	should	close	their	side	of	the	connection	as	well.	(Recall	that	both	sides	must	close	a
TCP	connection	before	it	is	fully	terminated.)	Concerns	about	this	added	complexity	may	be	one	reason	why
persistent	connections	were	not	used	from	the	outset,	but	today	it	is	widely	accepted	that	the	benefits	of	persistent
connections	more	than	offset	the	drawbacks.

While	1.1	is	still	the	most	widely	supported	version	of	HTTP,	a	new	version	(2.0)	was	formally	approved	by	the	IETF	in
2015.	Known	as	HTTP/2,	the	new	version	is	backwards	compatible	with	1.1	(i.e,.	it	adopts	the	same	syntax	for	header
fields,	status	codes,	and	URIs),	but	it	adds	two	new	features.

The	first	is	to	make	it	easier	for	web	servers	to	minify	the	information	they	send	back	to	web	browsers.	If	you	look
closely	at	the	makeup	of	the	HTML	in	a	typical	web	page,	you	will	find	a	plethora	of	references	to	other	bits-and-
pieces	(e.g.,	images,	scripts,	style	files)	that	the	browser	needs	to	render	the	page.	Rather	than	force	the	client	to
request	these	bits-and-pieces	(technically	known	as	resources)	in	subsequent	requests,	HTTP/2	provides	a	means	for
the	server	to	bundle	the	required	resources	and	proactively	push	them	to	the	client	without	incurring	the	round-trip
delay	of	forcing	the	client	to	request	them.	This	feature	is	coupled	with	a	compression	mechanism	that	reduces	the
number	of	bytes	that	need	to	be	pushed.	The	whole	goal	is	to	minimize	the	latency	an	end-user	experiences	from	the
moment	they	click	on	a	hyperlink	until	the	selected	page	is	fully	rendered.

The	second	big	advance	of	HTTP/2	is	to	multiplex	several	requests	on	a	single	TCP	connection.	This	goes	beyond
what	version	1.1	supports—allowing	a	sequence	of	requests	to	reuse	a	TCP	connection—by	permitting	these
requests	to	overlap	with	each	other.	The	way	HTTP/2	does	this	should	sound	familiar:	it	defines	a	channel	abstraction
(technically,	the	channels	are	called	streams),	permits	multiple	concurrent	streams	to	be	active	at	a	given	time	(each
labeled	with	a	unique	stream	id),	and	limits	each	stream	to	one	active	request/reply	exchange	at	a	time.

Caching

An	important	implementation	strategy	that	makes	the	web	more	usable	is	to	cache	Web	pages.	Caching	has	many
benefits.	From	the	client's	perspective,	a	page	that	can	be	retrieved	from	a	nearby	cache	can	be	displayed	much	more
quickly	than	if	it	has	to	be	fetched	from	across	the	world.	From	the	server's	perspective,	having	a	cache	intercept	and
satisfy	a	request	reduces	the	load	on	the	server.

Caching	can	be	implemented	in	many	different	places.	For	example,	a	user's	browser	can	cache	recently	accessed
pages	and	simply	display	the	cached	copy	if	the	user	visits	the	same	page	again.	As	another	example,	a	site	can
support	a	single	site-wide	cache.	This	allows	users	to	take	advantage	of	pages	previously	downloaded	by	other	users.
Closer	to	the	middle	of	the	Internet,	Internet	Service	Providers	(ISPs)	can	cache	pages.	Note	that,	in	the	second	case,
the	users	within	the	site	most	likely	know	what	machine	is	caching	pages	on	behalf	of	the	site,	and	they	configure	their
browsers	to	connect	directly	to	the	caching	host.	This	node	is	sometimes	called	a	proxy.	In	contrast,	the	sites	that
connect	to	the	ISP	are	probably	not	aware	that	the	ISP	is	caching	pages.	It	simply	happens	to	be	the	case	that	HTTP
requests	coming	out	of	the	various	sites	pass	through	a	common	ISP	router.	This	router	can	peek	inside	the	request
message	and	look	at	the	URL	for	the	requested	page.	If	it	has	the	page	in	its	cache,	it	returns	it.	If	not,	it	forwards	the
request	to	the	server	and	watches	for	the	response	to	fly	by	in	the	other	direction.	When	it	does,	the	router	saves	a
copy	in	the	hope	that	it	can	use	it	to	satisfy	a	future	request.

There	are	quite	a	few	issues	with	this	sort	of	caching,	ranging	from	the	technical	to	the	regulatory.	One	example
of	a	technical	challenge	is	the	effect	of	asymmetric	paths,	when	the	request	to	the	server	and	the	response	to
the	client	do	not	follow	the	same	sequence	of	router	hops.

No	matter	where	pages	are	cached,	the	ability	to	cache	Web	pages	is	important	enough	that	HTTP	has	been
designed	to	make	the	job	easier.	The	trick	is	that	the	cache	needs	to	make	sure	it	is	not	responding	with	an	out-of-
date	version	of	the	page.	For	example,	the	server	assigns	an	expiration	date	(the		Expires		header	field)	to	each	page
it	sends	back	to	the	client	(or	to	a	cache	between	the	server	and	client).	The	cache	remembers	this	date	and	knows
that	it	need	not	reverify	the	page	each	time	it	is	requested	until	after	that	expiration	date	has	passed.	After	that	time
(or	if	that	header	field	is	not	set)	the	cache	can	use	the		HEAD		or	conditional		GET		operation	(	GET		with	header	line)	to
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verify	that	it	has	the	most	recent	copy	of	the	page.	More	generally,	there	are	a	set	of	cache	directives	that	must	be
obeyed	by	all	caching	mechanisms	along	the	request/response	chain.	These	directives	specify	whether	or	not	a
document	can	be	cached,	how	long	it	can	be	cached,	how	fresh	a	document	must	be,	and	so	on.	We'll	look	at	the
related	issue	of	CDNs—which	are	effectively	distributed	caches—in	a	later	section.

Web	Services

So	far	we	have	focused	on	interactions	between	a	human	and	a	web	server.	For	example,	a	human	uses	a	web
browser	to	interact	with	a	server,	and	the	interaction	proceeds	in	response	to	input	from	the	user	(e.g.,	by	clicking	on
links).	However,	there	is	increasing	demand	for	direct	computer-to-computer	interaction.	And,	just	as	the	applications
described	above	need	protocols,	so	too	do	the	applications	that	communicate	directly	with	each	other.	We	conclude
this	section	by	looking	at	the	challenges	of	building	large	numbers	of	application-to-application	protocols	and	some	of
the	proposed	solutions.

Much	of	the	motivation	for	enabling	direct	application-to-application	communication	comes	from	the	business	world.
Historically,	interactions	between	enterprises—businesses	or	other	organizations—have	involved	some	manual	steps
such	as	filling	out	an	order	form	or	making	a	phone	call	to	determine	whether	some	product	is	in	stock.	Even	within	a
single	enterprise	it	is	common	to	have	manual	steps	between	software	systems	that	cannot	interact	directly	because
they	were	developed	independently.	Increasingly,	such	manual	interactions	are	being	replaced	with	direct	application-
to-application	interaction.	An	ordering	application	at	enterprise	A	would	send	a	message	to	an	order	fulfillment
application	at	enterprise	B,	which	would	respond	immediately	indicating	whether	the	order	can	be	filled.	Perhaps,	if
the	order	cannot	be	filled	by	B,	the	application	at	A	would	immediately	order	from	another	supplier	or	solicit	bids	from
a	collection	of	suppliers.

Here	is	a	simple	example	of	what	we	are	talking	about.	Suppose	you	buy	a	book	at	an	online	retailer	like
Amazon.com.	Once	your	book	has	been	shipped,	Amazon	could	send	you	the	tracking	number	in	an	email,	and	then
you	could	head	over	to	the	website	for	the	shipping	company—	http://www.fedex.com	,	perhaps—and	track	the	package.
However,	you	can	also	track	your	package	directly	from	the	Amazon.com	website.	In	order	to	make	this	happen,
Amazon	has	to	be	able	to	send	a	query	to	FedEx,	in	a	format	that	FedEx	understands,	interpret	the	result,	and	display
it	in	a	Web	page	that	perhaps	contains	other	information	about	your	order.	Underlying	the	user	experience	of	getting
all	the	information	about	the	order	served	up	at	once	on	the	Amazon.com	Web	page	is	the	fact	that	Amazon	and
FedEx	had	to	have	a	protocol	for	exchanging	the	information	needed	to	track	packages—call	it	the	Package	Tracking
Protocol.	It	should	be	clear	that	there	are	so	many	potential	protocols	of	this	type	that	we'd	better	have	some	tools	to
simplify	the	task	of	specifying	them	and	building	them.

Network	applications,	even	those	that	cross	organization	boundaries,	are	not	new—email	and	web	browsing	cross
such	boundaries.	What	is	new	about	this	problem	is	the	scale.	Not	scale	in	the	size	of	the	network,	but	scale	in	the
number	of	different	kinds	of	network	applications.	Both	the	protocol	specifications	and	the	implementations	of	those
protocols	for	traditional	applications	like	electronic	mail	and	file	transfer	have	typically	been	developed	by	a	small
group	of	networking	experts.	To	enable	the	vast	number	of	potential	network	applications	to	be	developed	quickly,	it
was	necessary	to	come	up	with	some	technologies	that	simplify	and	automate	the	task	of	application	protocol	design
and	implementation.

Two	architectures	have	been	advocated	as	solutions	to	this	problem.	Both	architectures	are	called	Web	Services,
taking	their	name	from	the	term	for	the	individual	applications	that	offer	a	remotely	accessible	service	to	client
applications	to	form	network	applications.	The	terms	used	as	informal	shorthand	to	distinguish	the	two	Web	Services
architectures	are	SOAP	and	REST.	We	will	discuss	the	technical	meanings	of	those	terms	shortly.

The	name	Web	Services	is	unfortunately	so	generic	sounding	that	many	mistakenly	assume	that	it	includes	any
sort	of	service	associated	with	the	Web.

9.1	Traditional	Applications

386



The	SOAP	architecture's	approach	to	the	problem	is	to	make	it	feasible,	at	least	in	theory,	to	generate	protocols	that
are	customized	to	each	network	application.	The	key	elements	of	the	approach	are	a	framework	for	protocol
specification,	software	toolkits	for	automatically	generating	protocol	implementations	from	the	specifications,	and
modular	partial	specifications	that	can	be	reused	across	protocols.

The	REST	architecture's	approach	to	the	problem	is	to	regard	individual	Web	Services	as	World	Wide	Web	resources
—identified	by	URIs	and	accessed	via	HTTP.	Essentially,	the	REST	architecture	is	just	the	Web	architecture.	The
Web	architecture's	strengths	include	stability	and	a	demonstrated	scalability	(in	the	network-size	sense).	It	could	be
considered	a	weakness	that	HTTP	is	not	well	suited	to	the	usual	procedural	or	operation-oriented	style	of	invoking	a
remote	service.	REST	advocates	argue,	however,	that	rich	services	can	nonetheless	be	exposed	using	a	more	data-
oriented	or	document-passing	style	for	which	HTTP	is	well	suited.

Custom	Application	Protocols	(WSDL,	SOAP)

The	architecture	informally	referred	to	as	SOAP	is	based	on	Web	Services	Description	Language	(WSDL)	and	SOAP.
Both	of	these	standards	are	issued	by	the	World	Wide	Web	Consortium	(W3C).	This	is	the	architecture	that	people
usually	mean	when	they	use	the	term	Web	Services	without	any	preceding	qualifier.	As	these	standards	are	still
evolving,	our	discussion	here	is	effectively	a	snapshot.

Although	the	name	SOAP	originated	as	an	acronym,	it	officially	no	longer	stands	for	anything.

WSDL	and	SOAP	are	frameworks	for	specifying	and	implementing	application	protocols	and	transport	protocols,
respectively.	They	are	generally	used	together,	although	that	is	not	strictly	required.	WSDL	is	used	to	specify
application-specific	details	such	as	what	operations	are	supported,	the	formats	of	the	application	data	to	invoke	or
respond	to	those	operations,	and	whether	an	operation	involves	a	response.	SOAP's	role	is	to	make	it	easy	to	define
a	transport	protocol	with	exactly	the	desired	semantics	regarding	protocol	features	such	as	reliability	and	security.

Both	WSDL	and	SOAP	consist	primarily	of	a	protocol	specification	language.	Both	languages	are	based	on	XML	with
an	eye	toward	making	specifications	accessible	to	software	tools	such	as	stub	compilers	and	directory	services.	In	a
world	of	many	custom	protocols,	support	for	automating	generation	of	implementations	is	crucial	to	avoid	the	effort	of
manually	implementing	each	protocol.	Support	software	generally	takes	the	form	of	toolkits	and	application	servers
developed	by	third-party	vendors,	which	allows	developers	of	individual	Web	Services	to	focus	more	on	the	business
problem	they	need	to	solve	(such	as	tracking	the	package	purchased	by	a	customer).

Defining	Application	Protocols

WSDL	has	chosen	a	procedural	operation	model	of	application	protocols.	An	abstract	Web	Service	interface	consists
of	a	set	of	named	operations,	each	representing	a	simple	interaction	between	a	client	and	the	Web	Service.	An
operation	is	analogous	to	a	remotely	callable	procedure	in	an	RPC	system.	An	example	from	W3C's	WSDL	Primer	is
a	hotel	reservation	Web	Service	with	two	operations,	CheckAvailability	and	MakeReservation.

Each	operation	specifies	a	Message	Exchange	Pattern	(MEP)	that	gives	the	sequence	in	which	the	messages	are	to
be	transmitted,	including	the	fault	messages	to	be	sent	when	an	error	disrupts	the	message	flow.	Several	MEPs	are
predefined,	and	new	custom	MEPs	can	be	defined,	but	it	appears	that	in	practice	only	two	MEPs	are	being	used:	In-
Only	(a	single	message	from	client	to	service)	and	In-Out	(a	request	from	client	and	a	corresponding	reply	from
service).	These	patterns	should	be	very	familiar,	and	suggest	that	the	costs	of	supporting	MEP	flexibility	perhaps
outweigh	the	benefits.

MEPs	are	templates	that	have	placeholders	instead	of	specific	message	types	or	formats,	so	part	of	the	definition	of
an	operation	involves	specifying	which	message	formats	to	map	into	the	placeholders	in	the	pattern.	Message	formats
are	not	defined	at	the	bit	level	that	is	typical	of	protocols	we	have	discussed.	They	are	instead	defined	as	an	abstract
data	model	using	XML.	XML	Schema	provides	a	set	of	primitive	data	types	and	ways	to	define	compound	data	types.
Data	that	conforms	to	an	XML	Schema-defined	format—its	abstract	data	model—can	be	concretely	represented	using
XML,	or	it	can	use	another	representation,	such	as	the	"binary"	representation	Fast	Infoset.
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WSDL	nicely	separates	the	parts	of	a	protocol	that	can	be	specified	abstractly—operations,	MEPs,	abstract	message
formats—from	the	parts	that	must	be	concrete.	WSDL's	concrete	part	specifies	an	underlying	protocol,	how	MEPs	are
mapped	onto	it,	and	what	bit-level	representation	is	used	for	messages	on	the	wire.	This	part	of	a	specification	is
known	as	a	binding,	although	it	is	better	described	as	an	implementation,	or	a	mapping	onto	an	implementation.
WSDL	has	predefined	bindings	for	HTTP	and	SOAP-based	protocols,	with	parameters	that	allow	the	protocol
designer	to	fine-tune	the	mapping	onto	those	protocols.	There	is	a	framework	for	defining	new	bindings,	but	SOAP
protocols	dominate.

A	crucial	aspect	of	how	WSDL	mitigates	the	problem	of	specifying	large	numbers	of	protocols	is	through	reuse	of	what
are	essentially	specification	modules.	The	WSDL	specification	of	a	Web	Service	may	be	composed	of	multiple	WSDL
documents,	and	individual	WSDL	documents	may	also	be	used	in	other	Web	Service	specifications.	This	modularity
makes	it	easier	to	develop	a	specification	and	easier	to	ensure	that,	if	two	specifications	are	supposed	to	have	some
elements	that	are	identical	(for	example,	so	that	they	can	be	supported	by	the	same	tool),	then	those	elements	are
indeed	identical.	This	modularity,	together	with	WSDL's	defaulting	rules,	also	helps	keep	specifications	from	becoming
overwhelmingly	verbose	for	human	protocol	designers.

WSDL	modularity	should	be	familiar	to	anyone	who	has	developed	moderately	large	pieces	of	software.	A	WSDL
document	need	not	be	a	complete	specification;	it	could,	for	example,	define	a	single	message	format.	The	partial
specifications	are	uniquely	identified	using	XML	Namespaces;	each	WSDL	document	specifies	the	URI	of	a	target
namespace,	and	any	new	definitions	in	the	document	are	named	in	the	context	of	that	namespace.	One	WSDL
document	can	incorporate	components	of	another	by	including	the	second	document	if	both	share	the	same	target
namespace	or	importing	it	if	the	target	namespaces	differ.

Defining	Transport	Protocols

Although	SOAP	is	sometimes	called	a	protocol,	it	is	better	thought	of	as	a	framework	for	defining	protocols.	As	the
SOAP	1.2	specification	explains,	"SOAP	provides	a	simple	messaging	framework	whose	core	functionality	is
concerned	with	providing	extensibility."	SOAP	uses	many	of	the	same	strategies	as	WSDL,	including	message
formats	defined	using	XML	Schema,	bindings	to	underlying	protocols,	Message	Exchange	Patterns,	and	reusable
specification	elements	identified	using	XML	namespaces.

SOAP	is	used	to	define	transport	protocols	with	exactly	the	features	needed	to	support	a	particular	application
protocol.	SOAP	aims	to	make	it	feasible	to	define	many	such	protocols	by	using	reusable	components.	Each
component	captures	the	header	information	and	logic	that	go	into	implementing	a	particular	feature.	To	define	a
protocol	with	a	certain	set	of	features,	just	compose	the	corresponding	components.	Let's	look	more	closely	at	this
aspect	of	SOAP.

SOAP	1.2	introduced	a	feature	abstraction,	which	the	specification	describes	thus:	A	SOAP	feature	is	an	extension	of
the	SOAP	messaging	framework.	Although	SOAP	poses	no	constraints	on	the	potential	scope	of	such	features,
example	features	may	include	"reliability,"	"security,"	"correlation,"	"routing,"	and	message	exchange	patterns	(MEPs)
such	as	request/response,	one-way,	and	peer-to-peer	conversations.	A	SOAP	feature	specification	must	include:

A	URI	that	identifies	the	feature

The	state	information	and	processing,	abstractly	described,	that	is	required	at	each	SOAP	node	to	implement	the
feature

The	information	to	be	relayed	to	the	next	node

(If	the	feature	is	a	MEP)	the	life	cycle	and	temporal/causal	relationships	of	the	messages	exchanged—for
example,	responses	follow	requests	and	are	sent	to	the	originator	of	the	request

Note	that	this	formalization	of	the	concept	of	a	protocol	feature	is	rather	low	level;	it	is	almost	a	design.
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Given	a	set	of	features,	there	are	two	strategies	for	defining	a	SOAP	protocol	that	will	implement	them.	One	is	by
layering:	binding	SOAP	to	an	underlying	protocol	in	such	a	way	as	to	derive	the	features.	For	example,	we	could
obtain	a	request/response	protocol	by	binding	SOAP	to	HTTP,	with	a	SOAP	request	in	an	HTTP	request	and	a	SOAP
reply	in	an	HTTP	response.	Because	this	is	such	a	common	example,	it	happens	that	SOAP	has	a	predefined	binding
to	HTTP;	new	bindings	may	be	defined	using	the	SOAP	Protocol	Binding	Framework.

The	second	and	more	flexible	way	to	implement	features	involves	header	blocks.	A	SOAP	message	consists	of	an
Envelope,	which	contains	a	Header	that	contains	header	blocks,	and	a	Body,	which	contains	the	payload	destined	for
the	ultimate	receiver.	This	message	structure	is	illustrated	in	Figure	6.

Figure	6.	SOAP	message	structure.

It	should	be	a	familiar	notion	by	now	that	certain	header	information	corresponds	to	particular	features.	A	digital
signature	is	used	to	implement	authentication,	a	sequence	number	is	used	for	reliability,	and	a	checksum	is	used	to
detect	message	corruption.	A	SOAP	header	block	is	intended	to	encapsulate	the	header	information	that	corresponds
to	a	particular	feature.	The	correspondence	is	not	always	one-to-one	since	multiple	header	blocks	could	be	involved	in
a	single	feature,	or	a	single	header	block	could	be	used	in	multiple	features.	A	SOAP	module	is	a	specification	of	the
syntax	and	the	semantics	of	one	or	more	header	blocks.	Each	module	is	intended	to	provide	one	or	more	features	and
must	declare	the	features	it	implements.

The	goal	behind	SOAP	modules	is	to	be	able	to	compose	a	protocol	with	a	set	of	features	by	simply	including	each	of
the	corresponding	module	specifications.	If	your	protocol	is	required	to	have	at-most-once	semantics	and
authentication,	include	the	corresponding	modules	in	your	specification.	This	represents	a	novel	approach	to
modularizing	protocol	services,	an	alternative	to	the	protocol	layering	we	have	seen	throughout	this	book.	It	is	a	bit	like
flattening	a	series	of	protocol	layers	into	a	single	protocol,	but	in	a	structured	way.	It	remains	to	be	seen	how	well
SOAP	features	and	modules,	introduced	in	version	1.2	of	SOAP,	will	work	in	practice.	The	main	weakness	of	this
scheme	is	that	modules	may	well	interfere	with	each	other.	A	module	specification	is	required	to	specify	any	known
interactions	with	other	SOAP	modules,	but	clearly	that	doesn't	do	much	to	alleviate	the	problem.	On	the	other	hand,	a
core	set	of	features	and	modules	that	provides	the	most	important	properties	may	be	small	enough	to	be	well	known
and	well	understood.

Standardizing	Web	Services	Protocols

As	we've	said,	WSDL	and	SOAP	aren't	protocols;	they	are	standards	for	specifying	protocols.	For	different	enterprises
to	implement	Web	Services	that	interoperate	with	each	other,	it	is	not	enough	to	agree	to	use	WSDL	and	SOAP	to
define	their	protocols;	they	must	agree	on—standardize—specific	protocols.	For	example,	you	could	imagine	that
online	retailers	and	shipping	companies	might	like	to	standardize	a	protocol	by	which	they	exchange	information,
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along	the	lines	of	the	simple	package	tracking	example	at	the	start	of	this	section.	This	standardization	is	crucial	for
tool	support	as	well	as	interoperability.	And,	yet,	different	network	applications	in	this	architecture	must	necessarily
differ	in	at	least	the	message	formats	and	operations	they	use.

This	tension	between	standardization	and	customization	is	tackled	by	establishing	partial	standards	called	profiles.	A
profile	is	a	set	of	guidelines	that	narrow	or	constrain	choices	available	in	WSDL,	SOAP,	and	other	standards	that	may
be	referenced	in	defining	a	protocol.	They	may	at	the	same	time	resolve	ambiguities	or	gaps	in	those	standards.	In
practice,	a	profile	often	formalizes	an	emerging	de	facto	standard.

The	broadest	and	most	widely	adopted	profile	is	known	as	the	WS-I	Basic	Profile.	It	was	proposed	by	the	Web
Services	Interoperability	Organization	(WS-I),	an	industry	consortium,	while	WSDL	and	SOAP	are	specified	by	the
World	Wide	Web	Consortium	(W3C).	The	Basic	Profile	resolves	some	of	the	most	basic	choices	faced	in	defining	a
Web	Service.	Most	notably	it	requires	that	WSDL	be	bound	exclusively	to	SOAP	and	SOAP	be	bound	exclusively	to
HTTP	and	use	the	HTTP	POST	method.	It	also	specifies	which	versions	of	WSDL	and	SOAP	must	be	used.

The	WS-I	Basic	Security	Profile	adds	security	constraints	to	the	Basic	Profile	by	specifying	how	the	SSL/TLS	layer	is
to	be	used	and	requiring	conformance	to	WS-Security	(Web	Services	Security).	WS-Security	specifies	how	to	use
various	existing	techniques	such	as	X.509	public	key	certificates	and	Kerberos	to	provide	security	features	in	SOAP
protocols.

WS-Security	is	just	the	first	of	a	growing	suite	of	SOAP-level	standards	established	by	the	industry	consortium	OASIS
(Organization	for	the	Advancement	of	Structured	Information	Standards).	The	standards	known	collectively	as	WS-*
include	WS-Reliability,	WS-ReliableMessaging,	WS-Coordination,	and	WS-AtomicTransaction.

A	Generic	Application	Protocol	(REST)

The	WSDL/SOAP	Web	Services	architecture	is	based	on	the	assumption	that	the	best	way	to	integrate	applications
across	networks	is	via	protocols	that	are	customized	to	each	application.	That	architecture	is	designed	to	make	it
practical	to	specify	and	implement	all	those	protocols.	In	contrast,	the	REST	Web	Services	architecture	is	based	on
the	assumption	that	the	best	way	to	integrate	applications	across	networks	is	by	re-applying	the	model	underlying	the
World	Wide	Web	architecture.	This	model,	articulated	by	Web	architect	Roy	Fielding,	is	known	as	REpresentational
State	Transfer	(REST).	There	is	no	need	for	a	new	REST	architecture	for	Web	Services—the	existing	Web
architecture	is	sufficient,	although	a	few	extensions	are	probably	necessary.	In	the	Web	architecture,	individual	Web
Services	are	regarded	as	resources	identified	by	URIs	and	accessed	via	HTTP—a	single	generic	application	protocol
with	a	single	generic	addressing	scheme.

Where	WSDL	has	user-defined	operations,	REST	uses	the	small	set	of	available	HTTP	methods,	such	as		GET		and
	POST		(see	Table	1).	So	how	can	these	simple	methods	provide	an	interface	to	a	rich	Web	Service?	By	employing	the
REST	model,	in	which	the	complexity	is	shifted	from	the	protocol	to	the	payload.	The	payload	is	a	representation	of
the	abstract	state	of	a	resource.	For	example,	a		GET		could	return	a	representation	of	the	current	state	of	the	resource,
and	a		POST		could	send	a	representation	of	a	desired	state	of	the	resource.

The	representation	of	a	resource	state	is	abstract;	it	need	not	resemble	how	the	resource	is	actually	implemented	by	a
particular	Web	Service	instance.	It	is	not	necessary	to	transmit	a	complete	resource	state	in	each	message.	The	size
of	messages	can	be	reduced	by	transmitting	just	the	parts	of	a	state	that	are	of	interest	(e.g.,	just	the	parts	that	are
being	modified).	And,	because	Web	Services	share	a	single	protocol	and	address	space	with	other	web	resources,
parts	of	states	can	be	passed	by	reference—by	URI—even	when	they	are	other	Web	Services.

This	approach	is	best	summarized	as	a	data-oriented	or	document-passing	style,	as	opposed	to	a	procedural	style.
Defining	an	application	protocol	in	this	architecture	consists	of	defining	the	document	structure	(i.e.,	the	state
representation).	XML	and	the	lighter-weight	JavaScript	Object	Notation	(JSON)	are	the	most	frequently	used
presentation	languages	for	this	state.	Interoperability	depends	on	agreement,	between	a	Web	Service	and	its	clients,
on	the	state	representation.	Of	course,	the	same	is	true	in	the	SOAP	architecture;	a	Web	Service	and	its	client	have	to
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be	in	agreement	on	payload	format.	The	difference	is	that	in	the	SOAP	architecture	interoperability	additionally
depends	on	agreement	on	the	protocol;	in	the	REST	architecture,	the	protocol	is	always	HTTP,	so	that	source	of
interoperability	problems	is	eliminated.

One	of	the	selling	features	of	REST	is	that	it	leverages	the	infrastructure	that	has	been	deployed	to	support	the	Web.
For	example,	Web	proxies	can	enforce	security	or	cache	information.	Existing	content	distribution	networks	(CDNs)
can	be	used	to	support	RESTful	applications.

In	contrast	with	WSDL/SOAP,	the	Web	has	had	time	for	standards	to	stabilize	and	to	demonstrate	that	it	scales	very
well.	It	also	comes	with	some	security	in	the	form	of	Secure	Socket	Layer	(SSL)/Transport	Layer	Security	(TLS).	The
Web	and	REST	may	also	have	an	advantage	in	evolvability.	Although	the	WSDL	and	SOAP	frameworks	are	highly
flexible	with	regard	to	what	new	features	and	bindings	can	go	into	the	definition	of	a	protocol,	that	flexibility	is
irrelevant	once	the	protocol	is	defined.	Standardized	protocols	such	as	HTTP	are	designed	with	a	provision	for	being
extended	in	a	backward-compatible	way.	HTTP's	own	extensibility	takes	the	form	of	headers,	new	methods,	and	new
content	types.	Protocol	designers	using	WSDL/SOAP	need	to	design	such	extensibility	into	each	of	their	custom
protocols.	Of	course,	the	designers	of	state	representations	in	a	REST	architecture	also	have	to	design	for
evolvability.

An	area	where	WSDL/SOAP	may	have	an	advantage	is	in	adapting	or	wrapping	previously	written,	"legacy"
applications	to	conform	to	Web	Services.	This	is	an	important	point	since	most	Web	Services	will	be	based	on	legacy
applications	for	the	near	future	at	least.	These	applications	usually	have	a	procedural	interface	that	maps	more	easily
into	WSDL's	operations	than	REST	states.	The	REST	versus	WSDL/SOAP	competition	may	very	well	hinge	on	how
easy	or	difficult	it	turns	out	to	be	to	devise	REST-style	interfaces	for	individual	Web	Services.	We	may	find	that	some
Web	Services	are	better	served	by	WSDL/SOAP	and	others	by	REST.

The	online	retailer	Amazon.com,	as	it	happens,	was	an	early	adopter	(2002)	of	Web	Services.	Interestingly,	Amazon
made	its	systems	publicly	accessible	via	both	of	the	Web	Services	architectures,	and	according	to	some	reports	a
substantial	majority	of	developers	use	the	REST	interface.	Of	course,	this	is	just	one	data	point	and	may	well	reflect
factors	specific	to	Amazon.

From	Web	Services	to	Cloud	Services

If	Web	Services	is	what	we	call	it	when	the	web	server	that	implements	my	application	sends	a	request	to	the	web
server	that	implements	your	application,	then	what	do	we	call	it	when	we	both	put	our	applications	in	the	cloud	so	that
they	can	support	scalable	workloads?	We	can	call	both	of	them	Cloud	Services	if	we	want	to,	but	is	that	a	distinction
without	a	difference?	It	depends.

Moving	a	server	process	from	a	physical	machine	running	in	my	machine	room	into	a	virtual	machine	running	in	a
cloud	provider's	datacenter	shifts	responsibility	for	keeping	the	machine	running	from	my	system	admin	to	the	cloud
provider's	operations	team,	but	the	application	is	still	designed	according	to	the	Web	Services	architecture.	On	the
other	hand,	if	the	application	is	designed	from	scratch	to	run	on	a	scalable	cloud	platform,	for	example	by	adhering	to
the	micro-services	architecture,	then	we	say	the	application	is	cloud	native.	So	the	important	distinction	is	cloud	native
versus	legacy	web	services	deployed	in	the	cloud.

We	briefly	saw	the	micro-services	architecture	in	Chapter	5	when	describing	gRPC,	and	although	it's	difficult	to
definitively	declare	micro-services	superior	to	web	services,	the	current	trend	in	industry	almost	certainly	favors	the
former.	More	interesting,	perhaps,	is	the	ongoing	debate	about	REST+Json	versus	gRPC+Protbufs	as	the	preferred
RPC	mechanism	for	implementing	micro-services.	Keeping	in	mind	that	both	run	on	top	of	HTTP,	we	leave	it	as	an
exercise	for	the	reader	to	pick	a	side	and	defend	it.
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9.2	Multimedia	Applications

Just	like	the	traditional	applications	described	in	the	previous	section,	multimedia	applications	such	as	telephony	and
videoconferencing	need	their	own	protocols.	Much	of	the	initial	experience	in	designing	protocols	for	multimedia
applications	came	from	the	MBone	tools—applications	such	as		vat		and		vic		that	were	developed	for	use	on	the
MBone,	an	overlay	network	that	supports	IP	multicast	to	enable	multiparty	conferencing.	(More	on	overlay	networks
including	the	MBone	in	the	next	section.)	Initially,	each	application	implemented	its	own	protocol	(or	protocols),	but	it
became	apparent	that	many	multimedia	applications	have	common	requirements.	This	ultimately	led	to	the
development	of	a	number	of	general-purpose	protocols	for	use	by	multimedia	applications.

We	have	already	seen	a	number	of	protocols	that	multimedia	applications	use.	The	Real-Time	Transport	Protocol
(RTP)	provides	many	of	the	functions	that	are	common	to	multimedia	applications	such	as	conveying	timing
information	and	identifying	the	coding	schemes	and	media	types	of	an	application.

The	Resource	Reservation	Protocol	(RSVP)	can	be	used	to	request	the	allocation	of	resources	in	the	network	so	that
the	desired	quality	of	service	(QoS)	can	be	provided	to	an	application.	We	will	see	how	resource	allocation	interacts
with	other	aspects	of	multimedia	applications	later	in	this	section.

In	addition	to	these	protocols	for	multimedia	transport	and	resource	allocation,	many	multimedia	applications	also
need	a	signalling	or	session	control	protocol.	For	example,	suppose	that	we	wanted	to	be	able	to	make	telephone
calls	across	the	Internet	(Voice	over	IP,	or	VoIP).	We	would	need	some	mechanism	to	notify	the	intended	recipient	of
such	a	call	that	we	wanted	to	talk	to	her,	such	as	by	sending	a	message	to	some	multimedia	device	that	would	cause
it	to	make	a	ringing	sound.	We	would	also	like	to	be	able	to	support	features	like	call	forwarding,	three-way	calling,
etc.	The	Session	Initiation	Protocol	(SIP)	and	H.323	are	examples	of	protocols	that	address	the	issues	of	session
control;	we	begin	our	discussion	of	multimedia	applications	by	examining	these	protocols.

Session	Control	and	Call	Control	(SDP,	SIP,	H.323)

To	understand	some	of	the	issues	of	session	control,	consider	the	following	problem.	Suppose	you	want	to	hold	a
videoconference	at	a	certain	time	and	make	it	available	to	a	wide	number	of	participants.	Perhaps	you	have	decided
to	encode	the	video	stream	using	the	MPEG-2	standard,	to	use	the	multicast	IP	address	224.1.1.1	for	transmission	of
the	data,	and	to	send	it	using	RTP	over	UDP	port	number	4000.	How	would	you	make	all	that	information	available	to
the	intended	participants?	One	way	would	be	to	put	all	that	information	in	an	email	and	send	it	out,	but	ideally	there
should	be	a	standard	format	and	protocol	for	disseminating	this	sort	of	information.	The	IETF	has	defined	protocols	for
just	this	purpose.	The	protocols	that	have	been	defined	include

Session	Description	Protocol	(SDP)

Session	Announcement	Protocol	(SAP)

Session	Initiation	Protocol	(SIP)

Simple	Conference	Control	Protocol	(SCCP)

You	might	think	that	this	is	a	lot	of	protocols	for	a	seemingly	simple	task,	but	there	are	many	aspects	of	the	problem
and	several	different	situations	in	which	it	must	be	addressed.	For	example,	there	is	a	difference	between	announcing
the	fact	that	a	certain	conference	session	is	going	to	be	made	available	on	the	MBone	(which	would	be	done	using
SDP	and	SAP)	and	trying	to	make	an	Internet	phone	call	to	a	certain	user	at	a	particular	time	(which	could	be	done
using	SDP	and	SIP).	In	the	former	case,	you	could	consider	your	job	done	once	you	have	sent	all	the	session
information	in	a	standard	format	to	a	well-known	multicast	address.	In	the	latter,	you	would	need	to	locate	one	or	more
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users,	get	a	message	to	them	announcing	your	desire	to	talk	(analogous	to	ringing	their	phone),	and	perhaps
negotiate	a	suitable	audio	encoding	among	all	parties.	We	will	look	first	at	SDP,	which	is	common	to	many
applications,	then	at	SIP,	which	is	widely	used	for	a	number	of	interactive	applications	such	as	Internet	telephony.

Session	Description	Protocol	(SDP)

The	Session	Description	Protocol	(SDP)	is	a	rather	general	protocol	that	can	be	used	in	a	variety	of	situations	and	is
typically	used	in	conjunction	with	one	or	more	other	protocols	(e.g.,	SIP).	It	conveys	the	following	information:

The	name	and	purpose	of	the	session

Start	and	end	times	for	the	session

The	media	types	(e.g.,	audio,	video)	that	comprise	the	session

Detailed	information	required	to	receive	the	session	(e.g.,	the	multicast	address	to	which	data	will	be	sent,	the
transport	protocol	to	be	used,	the	port	numbers,	the	encoding	scheme)

SDP	provides	this	information	formatted	in	ASCII	using	a	sequence	of	lines	of	text,	each	of	the	form	"."	An	example	of
an	SDP	message	will	illustrate	the	main	points.

v=0
o=larry	2890844526	2890842807	IN	IP4	128.112.136.10
s=Networking	101
i=A	class	on	computer	networking
u=http://www.cs.princeton.edu/
e=larry@cs.princeton.edu
c=IN	IP4	224.2.17.12/127
t=2873397496	2873404696
m=audio	49170	RTP/AVP	0
m=video	51372	RTP/AVP	31
m=application	32416	udp	wb

Note	that	SDP,	like	HTML,	is	fairly	easy	for	a	human	to	read	but	has	strict	formatting	rules	that	make	it	possible	for
machines	to	interpret	the	data	unambiguously.	For	example,	the	SDP	specification	defines	all	the	possible	information
types	that	are	allowed	to	appear,	the	order	in	which	they	must	appear,	and	the	format	and	reserved	words	for	every
type	that	is	defined.

The	first	thing	to	notice	is	that	each	information	type	is	identified	by	a	single	character.	For	example,	the	line	tells	us
that	"version"	has	the	value	zero;	that	is,	this	message	is	formatted	according	to	version	zero	of	SDP.	The	next	line
provides	the	"origin"	of	the	session	which	contains	enough	information	to	uniquely	identify	the	session.		larry		is	a
username	of	the	session	creator,	and	is	the	IP	address	of	his	computer.	The	number	following		larry		is	a	session
identifier	that	is	chosen	to	be	unique	to	that	machine.	This	is	followed	by	a	"version"	number	for	the	SDP
announcement;	if	the	session	information	was	updated	by	a	later	message,	the	version	number	would	be	increased.

The	next	three	lines	(	i	,		s		and		u	)	provide	the	session	name,	a	session	description,	and	a	session	Uniform
Resource	Identifier	(URI,	as	described	earlier	in	this	chapter)—information	that	would	be	helpful	to	a	user	in	deciding
whether	to	participate	in	this	session.	Such	information	could	be	displayed	in	the	user	interface	of	a	session	directory
tool	that	shows	current	and	upcoming	events	that	have	been	advertised	using	SDP.	The	next	line	(	e=...	)	contains	an
email	address	of	a	person	to	contact	regarding	the	session.	Figure	1	shows	a	screen	shot	of	a	(somewhat	archaic)
session	directory	tool	called		sdr		along	with	the	descriptions	of	several	sessions	that	had	been	announced	at	the	time
the	picture	was	taken.
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Figure	1.	A	session	directory	tool	displays	information	extracted	from	SDP
messages.

Next	we	get	to	the	technical	details	that	would	enable	an	application	program	to	participate	in	the	session.	The	line
beginning		c=...		provides	the	IP	multicast	address	to	which	data	for	this	session	will	be	sent;	a	user	would	need	to
join	this	multicast	group	to	receive	the	session.	Next	we	see	the	start	and	end	times	for	the	session	(encoded	as
integers	according	to	the	Network	Time	Protocol).	Finally,	we	get	to	the	information	about	the	media	for	this	session.
This	session	has	three	media	types	available—audio,	video,	and	a	shared	whiteboard	application	known	as	"	wb	."	For
each	media	type	there	is	one	line	of	information	formatted	as	follows:

m=<media>	<port>	<transport>	<format>

The	media	types	are	self-explanatory,	and	the	port	numbers	in	each	case	are	UDP	ports.	When	we	look	at	the
"transport"	field,	we	can	see	that	the		wb		application	runs	directly	over	UDP,	while	the	audio	and	video	are	transported
using	"RTP/AVP."	This	means	that	they	run	over	RTP	and	use	the	application	profile	known	as	AVP.	That	application
profile	defines	a	number	of	different	encoding	schemes	for	audio	and	video;	we	can	see	in	this	case	that	the	audio	is
using	encoding	0	(which	is	an	encoding	using	an	8-kHz	sampling	rate	and	8	bits	per	sample)	and	the	video	is	using
encoding	31,	which	represents	the	H.261	encoding	scheme.	These	"magic	numbers"	for	the	encoding	schemes	are
defined	in	the	RFC	that	defines	the	AVP	profile;	it	is	also	possible	to	describe	nonstandard	coding	schemes	in	SDP.

Finally,	we	see	a	description	of	the	"wb"	media	type.	All	the	encoding	information	for	this	data	is	specific	to	the		wb	
application,	and	so	it	is	sufficient	just	to	provide	the	name	of	the	application	in	the	"format"	field.	This	is	analogous	to
putting		application/wb		in	a	MIME	message.

Now	that	we	know	how	to	describe	sessions,	we	can	look	at	how	they	can	be	initiated.	One	way	in	which	SDP	is	used
is	to	announce	multimedia	conferences,	by	sending	SDP	messages	to	a	well-known	multicast	address.	The	session
directory	tool	shown	in	Figure	1	would	function	by	joining	that	multicast	group	and	displaying	information	that	it	gleans
from	received	SDP	messages.	SDP	is	also	used	in	the	delivery	of	entertainment	video	of	IP	(often	called	IPTV)	to
provide	information	about	the	video	content	on	each	TV	channel.

SDP	also	plays	an	important	role	in	conjunction	with	the	Session	Initiation	Protocol	(SIP).	With	the	widespread
adoption	of	Voice	over	IP	(i.e.,	the	support	of	telephony-like	applications	over	IP	networks)	and	IP-based	video
conferencing,	SIP	is	now	one	of	the	more	important	members	of	the	Internet	protocol	suite.

SIP
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SIP	is	an	application	layer	protocol	that	bears	a	certain	resemblance	to	HTTP,	being	based	on	a	similar
request/response	model.	However,	it	is	designed	with	rather	different	sorts	of	applications	in	mind	and	thus	provides
quite	different	capabilities	than	HTTP.	The	capabilities	provided	by	SIP	can	be	grouped	into	five	categories:

User	location—Determining	the	correct	device	with	which	to	communicate	to	reach	a	particular	user

User	availability—Determining	if	the	user	is	willing	or	able	to	take	part	in	a	particular	communication	session

User	capabilities—Determining	such	items	as	the	choice	of	media	and	coding	scheme	to	use

Session	setup—Establishing	session	parameters	such	as	port	numbers	to	be	used	by	the	communicating	parties

Session	management—A	range	of	functions	including	transferring	sessions	(e.g.,	to	implement	"call	forwarding")
and	modifying	session	parameters

Most	of	these	functions	are	easy	enough	to	understand,	but	the	issue	of	location	bears	some	further	discussion.	One
important	difference	between	SIP	and,	say,	HTTP,	is	that	SIP	is	primarily	used	for	human-to-human	communication.
Thus,	it	is	important	to	be	able	to	locate	individual	users,	not	just	machines.	And,	unlike	email,	it's	not	good	enough
just	to	locate	a	server	that	the	user	will	be	checking	on	at	some	later	date	and	dump	the	message	there—we	need	to
know	where	the	user	is	right	now	if	we	want	to	be	able	to	communicate	with	him	in	real	time.	This	is	further
complicated	by	the	fact	that	a	user	might	choose	to	communicate	using	a	range	of	different	devices,	such	as	using	his
desktop	PC	when	he's	in	the	office	and	using	a	handheld	device	when	traveling.	Multiple	devices	might	be	active	at
the	same	time	and	might	have	widely	different	capabilities	(e.g.,	an	alphanumeric	pager	and	a	PC-based	video
"phone").	Ideally,	it	should	be	possible	for	other	users	to	be	able	to	locate	and	communicate	with	the	appropriate
device	at	any	time.	Furthermore,	the	user	must	be	able	to	have	control	over	when,	where,	and	from	whom	he	receives
calls.

To	enable	a	user	to	exercise	the	appropriate	level	of	control	over	his	calls,	SIP	introduces	the	notion	of	a	proxy.	A	SIP
proxy	can	be	thought	of	as	a	point	of	contact	for	a	user	to	which	initial	requests	for	communication	with	him	are	sent.
Proxies	also	perform	functions	on	behalf	of	callers.	We	can	see	how	proxies	work	best	through	an	example.

Figure	2.	Establishing	communication	through	SIP	proxies.

Consider	the	two	users	in	Figure	2.	The	first	thing	to	notice	is	that	each	user	has	a	name	in	the	format		user@domain	,
very	much	like	an	email	address.	When	user	Bruce	wants	to	initiate	a	session	with	Larry,	he	sends	his	initial	SIP
message	to	the	local	proxy	for	his	domain,		cisco.com	.	Among	other	things,	this	initial	message	contains	a	SIP	URI—
these	are	a	form	of	uniform	resource	identifier	which	look	like	this:

SIP:larry@princeton.edu

A	SIP	URI	provides	complete	identification	of	a	user,	but	(unlike	a	URL)	does	not	provide	his	location,	since	that	may
change	over	time.	We	will	see	shortly	how	the	location	of	a	user	can	be	determined.

Upon	receiving	the	initial	message	from	Bruce,	the	proxy	looks	at	the	SIP	URI	and	deduces	that	this	message	should
be	sent	to	the	proxy.	For	now,	we	assume	that	the	proxy	has	access	to	some	database	that	enables	it	to	obtain	a
mapping	from	the	name	to	the	IP	address	of	one	or	more	devices	at	which	Larry	currently	wishes	to	receive
messages.	The	proxy	can	therefore	forward	the	message	on	to	Larry's	chosen	device(s).	Sending	the	message	to
more	than	one	device	is	called	forking	and	may	be	done	either	in	parallel	or	in	series	(e.g.,	send	it	to	his	mobile	phone
if	he	doesn't	answer	the	phone	at	his	desk).
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The	initial	message	from	Bruce	to	Larry	is	likely	to	be	a	SIP		invite		message,	which	looks	something	like	the
following:

INVITE	sip:larry@princeton.edu	SIP/2.0
Via:	SIP/2.0/UDP	bsd-pc.cisco.com;branch=z9hG4bK433yte4
To:	Larry	<sip:larry@princeton.edu>
From:	Bruce	<sip:bruce@cisco.com>;tag=55123
Call-ID:	xy745jj210re3@bsd-pc.cisco.com
CSeq:	271828	INVITE
Contact:	<sip:bruce@bsd-pc.cisco.com>
Content-Type:	application/sdp
Content-Length:	142

The	first	line	identifies	the	type	of	function	to	be	performed	(	invite	);	the	resource	on	which	to	perform	it,	the	called
party	(	sip:larry@princeton.edu		);	and	the	protocol	version	(2.0).	The	subsequent	header	lines	probably	look	somewhat
familiar	because	of	their	resemblance	to	the	header	lines	in	an	email	message.	SIP	defines	a	large	number	of	header
fields,	only	some	of	which	we	describe	here.	Note	that	the	header	in	this	example	identifies	the	device	from	which	this
message	originated.	The	and	headers	describe	the	contents	of	the	message	following	the	header,	just	as	in	a	MIME-
encoded	email	message.	In	this	case,	the	content	is	an	SDP	message.	That	message	would	describe	such	things	as
the	type	of	media	(audio,	video,	etc.)	that	Bruce	would	like	to	exchange	with	Larry	and	other	properties	of	the	session
such	as	codec	types	that	he	supports.	Note	that	the	field	in	SIP	provides	the	capability	to	use	any	protocol	for	this
purpose,	although	SDP	is	the	most	common.

Returning	to	the	example,	when	the		invite		message	arrives	at	the	proxy,	not	only	does	the	proxy	forward	the
message	on	toward		princeton.edu	,	but	it	also	responds	to	the	sender	of	the		invite	.	Just	as	in	HTTP,	all	responses
have	a	response	code,	and	the	organization	of	codes	is	similar	to	that	for	HTTP.	In	Figure	3	we	can	see	a	sequence
of	SIP	messages	and	responses.

Figure	3.	Message	flow	for	a	basic	SIP	session.

The	first	response	message	in	this	figure	is	the	provisional	response		100	trying	,	which	indicates	that	the	message
was	received	without	error	by	the	caller's	proxy.	Once	the		invite		is	delivered	to	Larry's	phone,	it	alerts	Larry	and
responds	with	a		180	ringing		message.	The	arrival	of	this	message	at	Bruce's	computer	is	a	sign	that	it	can	generate	a
"ringtone."	Assuming	Larry	is	willing	and	able	to	communicate	with	Bruce,	he	could	pick	up	his	phone,	causing	the
message		200	OK		to	be	sent.	Bruce's	computer	responds	with	an		ACK	,	and	media	(e.g.,	an	RTP-encapsulated	audio
stream)	can	now	begin	to	flow	between	the	two	parties.	Note	that	at	this	point	the	parties	know	each	others'
addresses,	so	the		ACK		can	be	sent	directly,	bypassing	the	proxies.	The	proxies	are	now	no	longer	involved	in	the	call.
Note	that	the	media	will	therefore	typically	take	a	different	path	through	the	network	than	the	original	signalling
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messages.	Furthermore,	even	if	one	or	both	of	the	proxies	were	to	crash	at	this	point,	the	call	could	continue	on
normally.	Finally,	when	one	party	wishes	to	end	the	session,	it	sends	a		BYE		message,	which	elicits	a		200	OK	
response	under	normal	circumstances.

There	are	a	few	details	that	we	have	glossed	over.	One	is	the	negotiation	of	session	characteristics.	Perhaps	Bruce
would	have	liked	to	communicate	using	both	audio	and	video	but	Larry's	phone	only	supports	audio.	Thus,	Larry's
phone	would	send	an	SDP	message	in	its		200	OK		describing	the	properties	of	the	session	that	will	be	acceptable	to
Larry	and	the	device,	considering	the	options	that	were	proposed	in	Bruce's		invite	.	In	this	way,	mutually	acceptable
session	parameters	are	agreed	to	before	the	media	flow	starts.

The	other	big	issue	we	have	glossed	over	is	that	of	locating	the	correct	device	for	Larry.	First,	Bruce's	computer	had	to
send	its		invite		to	the		cisco.com		proxy.	This	could	have	been	a	configured	piece	of	information	in	the	computer,	or	it
could	have	been	learned	by	DHCP.	Then	the		cisco.com		proxy	had	to	find	the		princeton.ed		proxy.	This	could	be	done
using	a	special	sort	of	DNS	lookup	that	would	return	the	IP	address	of	the	SIP	proxy	for	the	domain.	(We'll	discuss
how	DNS	can	do	this	in	the	next	section.)	Finally,	the		princeton.ed		proxy	had	to	find	a	device	on	which	Larry	could	be
contacted.	Typically,	a	proxy	server	has	access	to	a	location	database	that	can	be	populated	in	several	ways.	Manual
configuration	is	one	option,	but	a	more	flexible	option	is	to	use	the	registration	capabilities	of	SIP.

A	user	can	register	with	a	location	service	by	sending	a	SIP		register		message	to	the	"registrar"	for	his	domain.	This
message	creates	a	binding	between	an	"address	of	record"	and	a	"contact	address."	An	"address	of	record"	is	likely	to
be	a	SIP	URI	that	is	the	well-known	address	for	the	user	(e.g.,		sip:larry@princeton.edu	)	and	the	"contact	address"	will
be	the	address	at	which	the	user	can	currently	be	found	(e.g.,		sip:larry@llp-ph.cs.princeton.edu	).	This	is	exactly	the
binding	that	was	needed	by	the	proxy		princeton.edu		in	our	example.

Note	that	a	user	may	register	at	several	locations	and	that	multiple	users	may	register	at	a	single	device.	For	example,
one	can	imagine	a	group	of	people	walking	into	a	conference	room	that	is	equipped	with	an	IP	phone	and	all	of	them
registering	on	it	so	that	they	can	receive	calls	on	that	phone.

SIP	is	a	very	rich	and	flexible	protocol	that	can	support	a	wide	range	of	complex	calling	scenarios	as	well	as
applications	that	have	little	or	nothing	to	do	with	telephony.	For	example,	SIP	supports	operations	that	enable	a	call	to
be	routed	to	a	"music-on-hold"	server	or	a	voicemail	server.	It	is	also	easy	to	see	how	it	could	be	used	for	applications
like	instant	messaging,	and	standardization	of	SIP	extensions	for	such	purposes	is	ongoing.

H.323

The	International	Telecommunication	Union	(ITU)	has	also	been	very	active	in	the	call	control	area,	which	is	not
surprising	given	its	relevance	to	telephony,	the	traditional	realm	of	that	body.	Fortunately,	there	has	been	considerable
coordination	between	the	IETF	and	the	ITU	in	this	instance,	so	that	the	various	protocols	are	somewhat	interoperable.
The	major	ITU	recommendation	for	multimedia	communication	over	packet	networks	is	known	as	H.323,	which	ties
together	many	other	recommendations,	including	H.225	for	call	control.	The	full	set	of	recommendations	covered	by
H.323	runs	to	many	hundreds	of	pages,	and	the	protocol	is	known	for	its	complexity,	so	it	is	only	possible	to	give	a
brief	overview	of	it	here.

H.323	is	popular	as	a	protocol	for	Internet	telephony,	including	video	calls,	and	we	consider	that	class	of	application
here.	A	device	that	originates	or	terminates	calls	is	known	as	an	H.323	terminal;	this	might	be	a	workstation	running
an	Internet	telephony	application,	or	it	might	be	a	specially	designed	"appliance"—a	telephone-like	device	with
networking	software	and	an	Ethernet	port,	for	example.	H.323	terminals	can	talk	to	each	other	directly,	but	the	calls
are	frequently	mediated	by	a	device	known	as	a	gatekeeper.	Gatekeepers	perform	a	number	of	functions	such	as
translating	among	the	various	address	formats	used	for	phone	calls	and	controlling	how	many	calls	can	be	placed	at	a
given	time	to	limit	the	bandwidth	used	by	the	H.323	applications.	H.323	also	includes	the	concept	of	a	gateway,	which
connects	the	H.323	network	to	other	types	of	networks.	The	most	common	use	of	a	gateway	is	to	connect	an	H.323
network	to	the	public	switched	telephone	network	(PSTN)	as	illustrated	in	Figure	4.	This	enables	a	user	running	an
H.323	application	on	a	computer	to	talk	to	a	person	using	a	conventional	phone	on	the	public	telephone	network.	One
useful	function	performed	by	the	gatekeeper	is	to	help	a	terminal	find	a	gateway,	perhaps	choosing	among	several
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options	to	find	one	that	is	relatively	close	to	the	ultimate	destination	of	the	call.	This	is	clearly	useful	in	a	world	where
conventional	phones	greatly	outnumber	PC-based	phones.	When	an	H.323	terminal	makes	a	call	to	an	endpoint	that
is	a	conventional	phone,	the	gateway	becomes	the	effective	endpoint	for	the	H.323	call	and	is	responsible	for
performing	the	appropriate	translation	of	both	signalling	information	and	the	media	stream	that	need	to	be	carried	over
the	telephone	network.

Figure	4.	Devices	in	an	H.323	network.

An	important	part	of	H.323	is	the	H.245	protocol,	which	is	used	to	negotiate	the	properties	of	the	call,	somewhat
analogously	to	the	use	of	SDP	described	above.	H.245	messages	might	list	a	number	of	different	audio	codec
standards	that	it	can	support;	the	far	endpoint	of	the	call	would	reply	with	a	list	of	its	own	supported	codecs,	and	the
two	ends	could	pick	a	coding	standard	that	they	can	both	live	with.	H.245	can	also	be	used	to	signal	the	UDP	port
numbers	that	will	be	used	by	RTP	and	Real-Time	Control	Protocol	(RTCP)	for	the	media	stream	(or	streams—a	call
might	include	both	audio	and	video,	for	example)	for	this	call.	Once	this	is	accomplished,	the	call	can	proceed,	with
RTP	being	used	to	transport	the	media	streams	and	RTCP	carrying	the	relevant	control	information.

Resource	Allocation	for	Multimedia	Applications
As	we	have	just	seen,	session	control	protocols	like	SIP	and	H.323	can	be	used	to	initiate	and	control	communication
in	multimedia	applications,	while	RTP	provides	transport-level	functions	for	the	data	streams	of	the	applications.	A
final	piece	of	the	puzzle	in	getting	multimedia	applications	to	work	is	making	sure	that	suitable	resources	are	allocated
inside	the	network	to	ensure	that	the	quality	of	service	needs	of	the	application	are	met.	We	presented	a	number	of
methods	for	resource	allocation	in	an	earlier	chapter.	The	motivation	for	developing	these	technologies	was	largely	for
the	support	of	multimedia	applications.	So	how	do	applications	take	advantage	of	the	underlying	resource	allocation
capabilities	of	the	network?

It	is	worth	noting	that	many	multimedia	applications	run	successfully	over	"best-effort"	networks,	such	as	the	public
Internet.	The	wide	array	of	commercial	VOIP	services	(such	as	Skype)	are	a	testimony	to	the	fact	that	you	only	have
to	worry	about	resource	allocation	when	resources	are	not	abundant—and	in	many	parts	of	today's	Internet,	resource
abundance	is	the	norm.

A	protocol	like	RTCP	can	help	applications	in	best-effort	networks,	by	giving	the	application	detailed	information	about
the	quality	of	service	that	is	being	delivered	by	the	network.	Recall	that	RTCP	carries	information	about	the	loss	rate
and	delay	characteristics	between	participants	in	a	multimedia	application.	An	application	can	use	this	information	to
change	its	coding	scheme—changing	to	a	lower	bitrate	codec,	for	example,	when	bandwidth	is	scarce.	Note	that,
while	it	might	be	tempting	to	change	to	a	codec	that	sends	additional,	redundant	information	when	loss	rates	are	high,
this	is	frowned	upon;	it	is	analogous	to	increasing	the	window	size	of	TCP	in	the	presence	of	loss,	the	exact	opposite
of	what	is	required	to	avoid	congestion	collapse.
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As	discussed	in	an	earlier	chapter,	Differentiated	Services	(DiffServ)	can	be	used	to	provide	fairly	basic	and	scalable
resource	allocation	to	applications.	A	multimedia	application	can	set	the	differentiated	services	code	point	(DSCP)	in
the	IP	header	of	the	packets	that	it	generates	in	an	effort	to	ensure	that	both	the	media	and	control	packets	receive
appropriate	quality	of	service.	For	example,	it	is	common	to	mark	voice	media	packets	as	"EF"	(expedited	forwarding)
to	cause	them	to	be	placed	in	a	low-latency	or	priority	queue	in	routers	along	the	path,	while	the	call	signalling	(e.g.,
SIP)	packets	are	often	marked	with	some	sort	of	"AF"	(assured	forwarding)	to	enable	them	to	be	queued	separately
from	best-effort	traffic	and	thus	reduce	their	risk	of	loss.

Of	course,	it	only	makes	sense	to	mark	the	packets	inside	the	sending	host	or	appliance	if	network	devices	such	as
routers	pay	attention	to	the	DSCP.	In	general,	routers	in	the	public	Internet	ignore	the	DSCP,	providing	best-effort
service	to	all	packets.	However,	enterprise	or	corporate	networks	have	the	ability	to	use	DiffServ	for	their	internal
multimedia	traffic,	and	frequently	do	so.	Also,	even	residential	users	of	the	Internet	can	often	improve	the	quality	of
VOIP	or	other	multimedia	applications	just	by	using	DiffServ	on	the	outbound	direction	of	their	Internet	connections,	as
illustrated	in	Figure	5.	This	is	effective	because	of	the	asymmetry	of	many	broadband	Internet	connections:	If	the
outbound	link	is	substantially	slower	(i.e.,	more	resource	constrained)	than	the	inbound,	then	resource	allocation	using
DiffServ	on	that	link	may	be	enough	to	make	all	the	difference	in	quality	for	latency-	and	loss-sensitive	applications.

Figure	5.	Differentiated	Services	applied	to	a	VOIP	application.	DiffServ
queueing	is	applied	only	on	the	upstream	link	from	customer	router	to	ISP.

While	DiffServ	is	appealing	for	its	simplicity,	it	is	clear	that	it	cannot	meet	the	needs	of	applications	under	all
conditions.	For	example,	suppose	the	upstream	bandwidth	in	Figure	5	is	only	100	kbps,	and	the	customer	attempts	to
place	two	VOIP	calls,	each	with	a	64-kbps	codec.	Clearly	the	upstream	link	is	now	more	than	100%	loaded,	which	will
lead	to	large	queueing	delays	and	lost	packets.	No	amount	of	clever	queueing	in	the	customer's	router	can	fix	that.

The	characteristics	of	many	multimedia	applications	are	such	that,	rather	than	try	to	squeeze	too	many	calls	into	a
too-narrow	pipe,	it	would	be	better	to	block	one	call	while	allowing	another	to	proceed.	That	is,	it	is	better	to	have	one
person	carrying	on	a	conversation	successfully	while	another	hears	a	busy	signal	than	to	have	both	callers
experiencing	unacceptable	audio	quality	at	the	same	time.	We	sometimes	refer	to	such	applications	as	having	a	steep
utility	curve,	meaning	that	the	utility	(usefulness)	of	the	application	drops	rapidly	as	the	quality	of	service	provided	by
the	network	degrades.	Multimedia	applications	often	have	this	property,	whereas	many	traditional	applications	do	not.
Email,	for	example,	continues	to	work	quite	well	even	if	delays	run	into	the	hours.

Applications	with	steep	utility	curves	are	often	well	suited	to	some	form	of	admission	control.	If	you	cannot	be	sure	that
sufficient	resources	will	always	be	available	to	support	the	offered	load	of	the	applications,	then	admission	control
provides	a	way	to	say	"no"	to	some	applications	while	allowing	others	to	get	the	resources	they	need.

We	saw	one	way	to	do	admission	control	using	RSVP	in	an	earlier	chapter,	and	we	will	return	to	that	shortly,	but
multimedia	applications	that	use	session	control	protocols	provide	some	other	admission	control	options.	The	key
point	to	observe	here	is	that	session	control	protocols	like	SIP	or	H.323	often	involve	some	sort	of	message	exchange
between	an	endpoint	and	another	entity	(SIP	proxy	or	H.323	gatekeeper)	at	the	beginning	of	a	call	or	session.	This
can	provide	a	handy	means	to	say	"no"	to	a	new	call	for	which	sufficient	resources	are	not	available.
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As	an	example,	consider	the	network	in	Figure	6.	Suppose	the	wide	area	link	from	the	branch	office	to	the	head	office
has	enough	bandwidth	to	accommodate	three	VOIP	calls	simultaneously	using	64-kbps	codecs.	Each	phone	already
needs	to	communicate	with	the	local	SIP	proxy	or	H.323	gatekeeper	when	it	begins	to	place	a	call,	so	it	is	easy
enough	for	the	proxy/gatekeeper	to	send	back	a	message	that	tells	the	IP	phone	to	play	a	busy	signal	if	that	link	is
already	fully	loaded.	The	proxy	or	gatekeeper	can	even	deal	with	the	possibility	that	a	particular	IP	phone	might	be
making	multiple	calls	at	the	same	time	and	that	different	codec	speeds	might	be	used.	However,	this	scheme	will	work
only	if	no	other	device	can	overload	the	link	without	first	talking	to	the	gatekeeper	or	proxy.	DiffServ	queueing	can	be
used	to	ensure	that,	for	example,	a	PC	engaged	in	a	file	transfer	doesn't	interfere	with	the	VOIP	calls.	But,	suppose
some	VOIP	application	that	doesn't	first	talk	to	the	gatekeeper	or	proxy	is	enabled	in	the	remote	office.	Such	an
application,	if	it	can	get	its	packets	marked	appropriately	and	in	the	same	queue	as	the	existing	VOIP	traffic,	can
clearly	drive	the	link	to	the	point	of	overload	with	no	feedback	from	the	proxy	or	gatekeeper.

Figure	6.	Admission	control	using	session	control	protocol.

Another	problem	with	the	approach	just	described	is	that	it	depends	on	the	gatekeeper	or	proxy	having	knowledge	of
the	path	that	each	application	will	use.	In	the	simple	topology	of	Figure	6	this	isn't	a	big	issue,	but	in	more	complex
networks	it	can	quickly	become	unmanageable.	We	only	need	to	imagine	the	case	where	the	remote	office	has	two
different	connections	to	the	outside	world	to	see	that	we	are	asking	the	proxy	or	gatekeeper	to	understand	not	just	SIP
or	H.323	but	also	routing,	link	failures,	and	current	network	conditions.	This	can	quickly	become	unmanageable.

We	refer	to	the	sort	of	admission	control	just	described	as	off-path,	in	the	sense	that	the	device	making	admission
control	decisions	does	not	sit	on	the	data	path	where	resources	need	to	be	allocated.	The	obvious	alternative	is	on-
path	admission	control,	and	the	standard	example	of	a	protocol	that	does	on-path	admission	control	in	IP	networks	is
the	Resource	Reservation	Protocol	(RSVP).	We	saw	in	an	earlier	chapter	how	RSVP	can	be	used	to	ensure	that
sufficient	resources	are	allocated	along	a	path,	and	it	is	straightforward	to	use	RSVP	in	applications	like	those
described	in	this	section.	The	one	detail	that	still	needs	to	be	filled	in	is	how	the	admission	control	protocol	interacts
with	the	session	control	protocol.
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Figure	7.	Coordination	of	SIP	signalling	and	resource	reservation.

Coordinating	the	actions	of	an	admission	control	(or	resource	reservation)	protocol	and	a	session	control	protocol	is
not	rocket	science,	but	it	does	require	some	attention	to	details.	As	an	example,	consider	a	simple	telephone	call
between	two	parties.	Before	you	can	make	a	reservation,	you	need	to	know	how	much	bandwidth	the	call	is	going	to
use,	which	means	you	need	to	know	what	codecs	are	to	be	used.	That	implies	you	need	to	do	some	of	the	session
control	first,	to	exchange	information	about	the	codecs	supported	by	the	two	phones.	However,	you	can't	do	all	the
session	control	first,	because	you	wouldn't	want	the	phone	to	ring	before	the	admission	control	decision	had	been
made,	in	case	admission	control	failed.	Figure	7	illustrates	this	situation	where	SIP	is	used	for	session	control	and
RSVP	is	used	to	make	the	admission	control	decision	(successfully	in	this	case).

The	main	thing	to	notice	here	is	the	interleaving	of	session	control	and	resource	allocation	tasks.	Solid	lines	represent
SIP	messages,	dashed	lines	represent	RSVP	messages.	Note	that	SIP	messages	are	transmitted	direction	from
phone	to	phone	in	this	example	(i.e.,	we	have	not	shown	any	SIP	proxies),	whereas	the	RSVP	messages	are	also
processed	by	the	routers	in	the	middle	as	the	check	for	sufficient	resources	to	admit	the	call.

We	begin	with	an	initial	exchange	of	codec	information	in	the	first	two	SIP	messages	(recall	that	SDP	is	used	to	list
available	codecs,	among	other	things).		PRACK		is	a	"provisional	acknowledgment."	Once	these	messages	have	been
exchanged,	RSVP		PATH		messages,	which	contain	a	description	of	the	amount	of	resources	that	will	be	required,	can
be	sent	as	the	first	step	in	reserving	resources	in	both	directions	of	the	call.	Next,		RESV		messages	can	be	sent	back	to
actually	reserve	the	resources.	Once	a		RESV		is	received	by	the	initiating	phone,	it	can	send	an	updated	SDP	message
reporting	the	fact	that	resources	have	been	reserved	in	one	direction.	When	the	called	phone	has	received	both	that
message	and	the		RESV		from	the	other	phone,	it	can	start	to	ring	and	tell	the	other	phone	that	resources	are	now
reserved	in	both	directions	(with	the	SDP	message)	and	also	notify	the	calling	phone	that	it	is	ringing.	From	here	on,
normal	SIP	signalling	and	media	flow,	similar	to	that	shown	in	Figure	3,	proceeds.

Again	we	see	how	building	applications	requires	us	to	understand	the	interaction	between	different	building	blocks
(SIP	and	RSVP,	in	this	case).	The	designers	of	SIP	actually	made	some	changes	to	the	protocol	to	enable	this
interleaving	of	functions	between	protocols	with	different	jobs,	hence	our	repeated	emphasis	in	this	book	on	focusing
on	complete	systems	rather	than	just	looking	at	one	layer	or	component	in	isolation	from	the	other	parts	of	the	system.
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9.3	Infrastructure	Applications

There	are	some	protocols	that	are	essential	to	the	smooth	running	of	the	Internet	but	that	don't	fit	neatly	into	the
strictly	layered	model.	One	of	these	is	the	Domain	Name	System	(DNS)—not	an	application	that	users	normally
invoke	directly,	but	rather	a	service	that	almost	all	other	applications	depend	upon.	This	is	because	the	name	service
is	used	to	translate	host	names	into	host	addresses;	the	existence	of	such	an	application	allows	the	users	of	other
applications	to	refer	to	remote	hosts	by	name	rather	than	by	address.	In	other	words,	a	name	service	is	usually	used
by	other	applications,	rather	than	by	humans.

A	second	critical	function	is	network	management,	which	although	not	so	familiar	to	the	average	user,	is	performed
most	often	by	the	people	that	operate	the	network	on	behalf	of	users.	Network	management	is	widely	considered	one
of	the	hard	problems	of	networking	and	continues	to	be	the	focus	of	much	innovation.	We'll	look	at	some	of	the	issues
and	approaches	to	the	problem	below.

Name	Service	(DNS)

In	most	of	this	book,	we	have	been	using	addresses	to	identify	hosts.	While	perfectly	suited	for	processing	by	routers,
addresses	are	not	exactly	user	friendly.	It	is	for	this	reason	that	a	unique	name	is	also	typically	assigned	to	each	host
in	a	network.	Already	in	this	section	we	have	seen	application	protocols	like	HTTP	using	names	such	as
	www.princeton.edu	.	We	now	describe	how	a	naming	service	can	be	developed	to	map	user-friendly	names	into	router-
friendly	addresses.	Name	services	are	sometimes	called	middleware	because	they	fill	a	gap	between	applications	and
the	underlying	network.

Host	names	differ	from	host	addresses	in	two	important	ways.	First,	they	are	usually	of	variable	length	and	mnemonic,
thereby	making	them	easier	for	humans	to	remember.	(In	contrast,	fixed-length	numeric	addresses	are	easier	for
routers	to	process.)	Second,	names	typically	contain	no	information	that	helps	the	network	locate	(route	packets
toward)	the	host.	Addresses,	in	contrast,	sometimes	have	routing	information	embedded	in	them;	flat	addresses
(those	not	divisible	into	component	parts)	are	the	exception.

Before	getting	into	the	details	of	how	hosts	are	named	in	a	network,	we	first	introduce	some	basic	terminology.	First,	a
name	space	defines	the	set	of	possible	names.	A	name	space	can	be	either	flat	(names	are	not	divisible	into
components)	or	hierarchical	(Unix	file	names	are	an	obvious	example).	Second,	the	naming	system	maintains	a
collection	of	bindings	of	names	to	values.	The	value	can	be	anything	we	want	the	naming	system	to	return	when
presented	with	a	name;	in	many	cases,	it	is	an	address.	Finally,	a	resolution	mechanism	is	a	procedure	that,	when
invoked	with	a	name,	returns	the	corresponding	value.	A	name	server	is	a	specific	implementation	of	a	resolution
mechanism	that	is	available	on	a	network	and	that	can	be	queried	by	sending	it	a	message.

Because	of	its	large	size,	the	Internet	has	a	particularly	well-developed	naming	system	in	place—the	Domain	Name
System	(DNS).	We	therefore	use	DNS	as	a	framework	for	discussing	the	problem	of	naming	hosts.	Note	that	the
Internet	did	not	always	use	DNS.	Early	in	its	history,	when	there	were	only	a	few	hundred	hosts	on	the	Internet,	a
central	authority	called	the	Network	Information	Center	(NIC)	maintained	a	flat	table	of	name-to-address	bindings;	this
table	was	called		HOSTS.TXT	.	Whenever	a	site	wanted	to	add	a	new	host	to	the	Internet,	the	site	administrator	sent
email	to	the	NIC	giving	the	new	host's	name/address	pair.	This	information	was	manually	entered	into	the	table,	the
modified	table	was	mailed	out	to	the	various	sites	every	few	days,	and	the	system	administrator	at	each	site	installed
the	table	on	every	host	at	the	site.	Name	resolution	was	then	simply	implemented	by	a	procedure	that	looked	up	a
host's	name	in	the	local	copy	of	the	table	and	returned	the	corresponding	address.

Believe	it	or	not,	there	was	also	a	paper	book	(like	a	phone	book)	published	periodically	that	listed	all	the
machines	connected	to	the	Internet	and	all	the	people	that	had	an	Internet	email	account.
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It	should	come	as	no	surprise	that	the	approach	to	naming	did	not	work	well	as	the	number	of	hosts	in	the	Internet
started	to	grow.	Therefore,	in	the	mid-1980s,	the	Domain	Naming	System	was	put	into	place.	DNS	employs	a
hierarchical	namespace	rather	than	a	flat	name	space,	and	the	"table"	of	bindings	that	implements	this	name	space	is
partitioned	into	disjoint	pieces	and	distributed	throughout	the	Internet.	These	subtables	are	made	available	in	name
servers	that	can	be	queried	over	the	network.

What	happens	in	the	Internet	is	that	a	user	presents	a	host	name	to	an	application	program	(possibly	embedded	in	a
compound	name	such	as	an	email	address	or	URL),	and	this	program	engages	the	naming	system	to	translate	this
name	into	a	host	address.	The	application	then	opens	a	connection	to	this	host	by	presenting	some	transport	protocol
(e.g.,	TCP)	with	the	host's	IP	address.	This	situation	is	illustrated	(in	the	case	of	sending	email)	in	Figure	1.	While	this
picture	makes	the	name	resolution	task	look	simple	enough,	there	is	a	bit	more	to	it,	as	we	shall	see.

Figure	1.	Names	translated	into	addresses,	where	the	numbers	1	to	5	show
the	sequence	of	steps	in	the	process.

Domain	Hierarchy

DNS	implements	a	hierarchical	name	space	for	Internet	objects.	Unlike	Unix	file	names,	which	are	processed	from	left
to	right	with	the	naming	components	separated	with	slashes,	DNS	names	are	processed	from	right	to	left	and	use
periods	as	the	separator.	(Although	they	are	processed	from	right	to	left,	humans	still	read	domain	names	from	left	to
right.)	An	example	domain	name	for	a	host	is		cicada.cs.princeton.edu	.	Notice	that	we	said	domain	names	are	used	to
name	Internet	"objects."	What	we	mean	by	this	is	that	DNS	is	not	strictly	used	to	map	host	names	into	host	addresses.
It	is	more	accurate	to	say	that	DNS	maps	domain	names	into	values.	For	the	time	being,	we	assume	that	these	values
are	IP	addresses;	we	will	come	back	to	this	issue	later	in	this	section.

Figure	2.	Example	of	a	domain	hierarchy.

Like	the	Unix	file	hierarchy,	the	DNS	hierarchy	can	be	visualized	as	a	tree,	where	each	node	in	the	tree	corresponds
to	a	domain,	and	the	leaves	in	the	tree	correspond	to	the	hosts	being	named.	Figure	2	gives	an	example	of	a	domain
hierarchy.	Note	that	we	should	not	assign	any	semantics	to	the	term	domain	other	than	that	it	is	simply	a	context	in
which	additional	names	can	be	defined.
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Confusingly,	the	word	domain	is	also	used	in	Internet	routing,	where	it	means	something	different	than	it	does	in
DNS,	being	roughly	equivalent	to	the	term	autonomous	system.

There	was	actually	a	substantial	amount	of	discussion	that	took	place	when	the	domain	name	hierarchy	was	first
being	developed	as	to	what	conventions	would	govern	the	names	that	were	to	be	handed	out	near	the	top	of	the
hierarchy.	Without	going	into	that	discussion	in	any	detail,	notice	that	the	hierarchy	is	not	very	wide	at	the	first	level.
There	are	domains	for	each	country,	plus	the	"big	six"	domains:		.edu	,		.com	,		.gov	,		.mil	,		.org	,	and		.net	.	These
six	domains	were	all	originally	based	in	the	United	States	(where	the	Internet	and	DNS	were	invented);	for	example,
only	U.S.-accredited	educational	institutions	can	register	an		.edu		domain	name.	In	recent	years,	the	number	of	top-
level	domains	has	been	expanded,	partly	to	deal	with	the	high	demand	for		.com		domains	names.	The	newer	top-level
domains	include		.biz	,		.coop	,	and		.info	.	There	are	now	over	1200	top-level	domains.

Name	Servers

The	complete	domain	name	hierarchy	exists	only	in	the	abstract.	We	now	turn	our	attention	to	the	question	of	how	this
hierarchy	is	actually	implemented.	The	first	step	is	to	partition	the	hierarchy	into	subtrees	called	zones.	Figure	3
shows	how	the	hierarchy	given	in	Figure	2	might	be	divided	into	zones.	Each	zone	can	be	thought	of	as
corresponding	to	some	administrative	authority	that	is	responsible	for	that	portion	of	the	hierarchy.	For	example,	the
top	level	of	the	hierarchy	forms	a	zone	that	is	managed	by	the	Internet	Corporation	for	Assigned	Names	and	Numbers
(ICANN).	Below	this	is	a	zone	that	corresponds	to	Princeton	University.	Within	this	zone,	some	departments	do	not
want	the	responsibility	of	managing	the	hierarchy	(and	so	they	remain	in	the	university-level	zone),	while	others,	like
the	Department	of	Computer	Science,	manage	their	own	department-level	zone.

Figure	3.	Domain	hierarchy	partitioned	into	zones.

The	relevance	of	a	zone	is	that	it	corresponds	to	the	fundamental	unit	of	implementation	in	DNS—the	name	server.
Specifically,	the	information	contained	in	each	zone	is	implemented	in	two	or	more	name	servers.	Each	name	server,
in	turn,	is	a	program	that	can	be	accessed	over	the	Internet.	Clients	send	queries	to	name	servers,	and	name	servers
respond	with	the	requested	information.	Sometimes	the	response	contains	the	final	answer	that	the	client	wants,	and
sometimes	the	response	contains	a	pointer	to	another	server	that	the	client	should	query	next.	Thus,	from	an
implementation	perspective,	it	is	more	accurate	to	think	of	DNS	as	being	represented	by	a	hierarchy	of	name	servers
rather	than	by	a	hierarchy	of	domains,	as	illustrated	in	Figure	4.
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Figure	4.	Hierarchy	of	name	servers.

Note	that	each	zone	is	implemented	in	two	or	more	name	servers	for	the	sake	of	redundancy;	that	is,	the	information
is	still	available	even	if	one	name	server	fails.	On	the	flip	side,	a	given	name	server	is	free	to	implement	more	than
one	zone.

Each	name	server	implements	the	zone	information	as	a	collection	of	resource	records.	In	essence,	a	resource	record
is	a	name-to-value	binding	or,	more	specifically,	a	5-tuple	that	contains	the	following	fields:

(Name,	Value,	Type,	Class,	TTL)

The		Name		and		Value		fields	are	exactly	what	you	would	expect,	while	the		Type		field	specifies	how	the		Value		should
be	interpreted.	For	example,	indicates	that	the		Value		is	an	IP	address.	Thus,		A		records	implement	the	name-to-
address	mapping	we	have	been	assuming.	Other	record	types	include:

	NS	—The		Value		field	gives	the	domain	name	for	a	host	that	is	running	a	name	server	that	knows	how	to	resolve
names	within	the	specified	domain.

	CNAME	—The		Value		field	gives	the	canonical	name	for	a	particular	host;	it	is	used	to	define	aliases.

	MX	—The		Value		field	gives	the	domain	name	for	a	host	that	is	running	a	mail	server	that	accepts	messages	for
the	specified	domain.

The		Class		field	was	included	to	allow	entities	other	than	the	NIC	to	define	useful	record	types.	To	date,	the	only
widely	used		Class		is	the	one	used	by	the	Internet;	it	is	denoted		IN	.	Finally,	the	time-to-live	(	TTL	)	field	shows	how
long	this	resource	record	is	valid.	It	is	used	by	servers	that	cache	resource	records	from	other	servers;	when	the		TTL	
expires,	the	server	must	evict	the	record	from	its	cache.

To	better	understand	how	resource	records	represent	the	information	in	the	domain	hierarchy,	consider	the	following
examples	drawn	from	the	domain	hierarchy	given	in	Figure	2.	To	simplify	the	example,	we	ignore	the		TTL		field	and
we	give	the	relevant	information	for	only	one	of	the	name	servers	that	implement	each	zone.

First,	a	root	name	server	contains	an		NS		record	for	each	top-level	domain	(TLD)	name	server.	This	identifies	a	server
that	can	resolve	queries	for	this	part	of	the	DNS	hierarchy	(	.edu		and		.com	in	this	example).	It	also	has		A		records
that	translates	these	names	into	the	corresponding	IP	addresses.	Taken	together,	these	two	records	effectively
implement	a	pointer	from	the	root	name	server	to	one	of	the	TLD	servers.

(edu,	a3.nstld.com,	NS,	IN)
(a3.nstld.com,	192.5.6.32,	A,	IN)
(com,	a.gtld-servers.net,	NS,	IN)
(a.gtld-servers.net,	192.5.6.30,	A,	IN)
...
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Moving	our	way	down	the	hierarchy	by	one	level,	the	server	has	records	for	domains	like	this:

(princeton.edu,	dns.princeton.edu,	NS,	IN)
(dns.princeton.edu,	128.112.129.15,	A,	IN)
...

In	this	case,	we	get	an		NS		record	and	an		A		record	for	the	name	server	that	is	responsible	for	the		princeton.edu		part
of	the	hierarchy.	That	server	might	be	able	to	directly	resolve	some	queries	(e.g.,	for	email.princeton.edu	)	while	it
would	redirect	others	to	a	server	at	yet	another	layer	in	the	hierarchy	(e.g.,	for	a	query	about
	penguins.cs.princeton.edu	).

(email.princeton.edu,	128.112.198.35,	A,	IN)
(penguins.cs.princeton.edu,	dns1.cs.princeton.edu,	NS,	IN)
(dns1.cs.princeton.edu,	128.112.136.10,	A,	IN)
...

Finally,	a	third-level	name	server,	such	as	the	one	managed	by	domain		cs.princeton.edu	,	contains		A		records	for	all
of	its	hosts.	It	might	also	define	a	set	of	aliases	(	CNAME		records)	for	each	of	those	hosts.	Aliases	are	sometimes	just
convenient	(e.g.,	shorter)	names	for	machines,	but	they	can	also	be	used	to	provide	a	level	of	indirection.	For
example,	www.cs.princeton.edu		is	an	alias	for	the	host	named		coreweb.cs.princeton.edu	.This	allows	the	site's	web	server
to	move	to	another	machine	without	affecting	remote	users;	they	simply	continue	to	use	the	alias	without	regard	for
what	machine	currently	runs	the	domain's	web	server.	The	mail	exchange	(	MX	)	records	serve	the	same	purpose	for
the	email	application—they	allow	an	administrator	to	change	which	host	receives	mail	on	behalf	of	the	domain	without
having	to	change	everyone's	email	address.

(penguins.cs.princeton.edu,	128.112.155.166,	A,	IN)
(www.cs.princeton.edu,	coreweb.cs.princeton.edu,	CNAME,	IN)
coreweb.cs.princeton.edu,	128.112.136.35,	A,	IN)
(cs.princeton.edu,	mail.cs.princeton.edu,	MX,	IN)
(mail.cs.princeton.edu,	128.112.136.72,	A,	IN)
...

Note	that,	although	resource	records	can	be	defined	for	virtually	any	type	of	object,	DNS	is	typically	used	to	name
hosts	(including	servers)	and	sites.	It	is	not	used	to	name	individual	people	or	other	objects	like	files	or	directories;
other	naming	systems	are	typically	used	to	identify	such	objects.	For	example,	X.500	is	an	ISO	naming	system
designed	to	make	it	easier	to	identify	people.	It	allows	you	to	name	a	person	by	giving	a	set	of	attributes:	name,	title,
phone	number,	postal	address,	and	so	on.	X.500	proved	too	cumbersome—and,	in	some	sense,	was	usurped	by
powerful	search	engines	now	available	on	the	Web—but	it	did	eventually	evolve	into	the	Lightweight	Directory	Access
Protocol	(LDAP).	LDAP	is	a	subset	of	X.500	originally	designed	as	a	PC	front	end	to	X.500.	Today,	widely	used,
mostly	at	the	enterprise	level,	as	a	system	for	learning	information	about	users.

Name	Resolution

Given	a	hierarchy	of	name	servers,	we	now	consider	the	issue	of	how	a	client	engages	these	servers	to	resolve	a
domain	name.	To	illustrate	the	basic	idea,	suppose	the	client	wants	to	resolve	the	name		penguins.cs.princeton.edu	
relative	to	the	set	of	servers	given	in	the	previous	subsection.	The	client	could	first	send	a	query	containing	this	name
to	one	of	the	root	servers	(as	we'll	see	below,	this	rarely	happens	in	practice	but	will	suffice	to	illustrate	the	basic
operation	for	now).	The	root	server,	unable	to	match	the	entire	name,	returns	the	best	match	it	has—the		NS		record
for		edu		which	points	to	the	TLD	server		a3.nstld.com	.	The	server	also	returns	all	records	that	are	related	to	this
record,	in	this	case,	the		A		record	for		a3.nstld.com	.	The	client,	having	not	received	the	answer	it	was	after,	next	sends
the	same	query	to	the	name	server	at	IP	host		192.5.6.32	.	This	server	also	cannot	match	the	whole	name	and	so
returns	the		NS		and	corresponding		A		records	for	the		princeton.edu		domain.	Once	again,	the	client	sends	the	same
query	as	before	to	the	server	at	IP	host		128.112.129.15	,	and	this	time	gets	back	the		NS		record	and	corresponding		A	
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record	for	the		cs.princeton.edu		domain.	This	time,	the	server	that	can	fully	resolve	the	query	has	been	reached.	A	final
query	to	the	server	at		128.112.136.10		yields	the		A		record	for		penguins.cs.princeton.edu	,	and	the	client	learns	that	the
corresponding	IP	address	is		128.112.155.166	.

This	example	still	leaves	a	couple	of	questions	about	the	resolution	process	unanswered.	The	first	question	is	how	did
the	client	locate	the	root	server	in	the	first	place,	or,	put	another	way,	how	do	you	resolve	the	name	of	the	server	that
knows	how	to	resolve	names?	This	is	a	fundamental	problem	in	any	naming	system,	and	the	answer	is	that	the
system	has	to	be	bootstrapped	in	some	way.	In	this	case,	the	name-to-address	mapping	for	one	or	more	root	servers
is	well	known;	that	is,	it	is	published	through	some	means	outside	the	naming	system	itself.

In	practice,	however,	not	all	clients	know	about	the	root	servers.	Instead,	the	client	program	running	on	each	Internet
host	is	initialized	with	the	address	of	a	local	name	server.	For	example,	all	the	hosts	in	the	Department	of	Computer
Science	at	Princeton	know	about	the	server	on		dns1.cs.princeton.edu	.	This	local	name	server,	in	turn,	has	resource
records	for	one	or	more	of	the	root	servers,	for	example:

('root',	a.root-servers.net,	NS,	IN)
(a.root-servers.net,	198.41.0.4,	A,	IN)

Thus,	resolving	a	name	actually	involves	a	client	querying	the	local	server,	which	in	turn	acts	as	a	client	that	queries
the	remote	servers	on	the	original	client's	behalf.	This	results	in	the	client/server	interactions	illustrated	in	Figure	5.
One	advantage	of	this	model	is	that	all	the	hosts	in	the	Internet	do	not	have	to	be	kept	up-to-date	on	where	the	current
root	servers	are	located;	only	the	servers	have	to	know	about	the	root.	A	second	advantage	is	that	the	local	server
gets	to	see	the	answers	that	come	back	from	queries	that	are	posted	by	all	the	local	clients.	The	local	server	caches
these	responses	and	is	sometimes	able	to	resolve	future	queries	without	having	to	go	out	over	the	network.	The		TTL	
field	in	the	resource	records	returned	by	remote	servers	indicates	how	long	each	record	can	be	safely	cached.	This
caching	mechanism	can	be	used	further	up	the	hierarchy	as	well,	reducing	the	load	on	the	root	and	TLD	servers.

The	second	question	is	how	the	system	works	when	a	user	submits	a	partial	name	(e.g.,		penguins	)	rather	than	a
complete	domain	name	(e.g.,		penguins.cs.princeton.edu	).	The	answer	is	that	the	client	program	is	configured	with	the
local	domain	in	which	the	host	resides	(e.g.,		cs.princeton.edu	),	and	it	appends	this	string	to	any	simple	names	before
sending	out	a	query.

Figure	5.	Name	resolution	in	practice,	where	the	numbers	1	to	10	show	the
sequence	of	steps	in	the	process.

Key	Takeaway
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Just	to	make	sure	we	are	clear,	we	have	now	seen	three	different	levels	of	identifiers—domain	names,	IP
addresses,	and	physical	network	addresses—and	the	mapping	of	identifiers	at	one	level	into	identifiers	at
another	level	happens	at	different	points	in	the	network	architecture.	First,	users	specify	domain	names	when
interacting	with	the	application.	Second,	the	application	engages	DNS	to	translate	this	name	into	an	IP	address;
it	is	the	IP	address	that	is	placed	in	each	datagram,	not	the	domain	name.	(As	an	aside,	this	translation	process
involves	IP	datagrams	being	sent	over	the	Internet,	but	these	datagrams	are	addressed	to	a	host	that	runs	a
name	server,	not	to	the	ultimate	destination.)	Third,	IP	does	forwarding	at	each	router,	which	often	means	that	it
maps	one	IP	address	into	another;	that	is,	it	maps	the	ultimate	destination's	address	into	the	address	for	the
next	hop	router.	Finally,	IP	engages	the	Address	Resolution	Protocol	(ARP)	to	translate	the	next	hop	IP	address
into	the	physical	address	for	that	machine;	the	next	hop	might	be	the	ultimate	destination	or	it	might	be	an
intermediate	router.	Frames	sent	over	the	physical	network	have	these	physical	addresses	in	their	headers.

Network	Management	(SNMP,	OpenConfig)

A	network	is	a	complex	system,	both	in	terms	of	the	number	of	nodes	that	are	involved	and	in	terms	of	the	suite	of
protocols	that	can	be	running	on	any	one	node.	Even	if	you	restrict	yourself	to	worrying	about	the	nodes	within	a
single	administrative	domain,	such	as	a	campus,	there	might	be	dozens	of	routers	and	hundreds—or	even	thousands
—of	hosts	to	keep	track	of.	If	you	think	about	all	the	state	that	is	maintained	and	manipulated	on	any	one	of	those
nodes—address	translation	tables,	routing	tables,	TCP	connection	state,	and	so	on—then	it	is	easy	to	become
overwhelmed	by	the	prospect	of	having	to	manage	all	of	this	information.

It	is	easy	to	imagine	wanting	to	know	about	the	state	of	various	protocols	on	different	nodes.	For	example,	you	might
want	to	monitor	the	number	of	IP	datagram	reassemblies	that	have	been	aborted,	so	as	to	determine	if	the	timeout
that	garbage	collects	partially	assembled	datagrams	needs	to	be	adjusted.	As	another	example,	you	might	want	to
keep	track	of	the	load	on	various	nodes	(i.e.,	the	number	of	packets	sent	or	received)	so	as	to	determine	if	new
routers	or	links	need	to	be	added	to	the	network.	Of	course,	you	also	have	to	be	on	the	watch	for	evidence	of	faulty
hardware	and	misbehaving	software.

What	we	have	just	described	is	the	problem	of	network	management,	an	issue	that	pervades	the	entire	network
architecture.	Since	the	nodes	we	want	to	keep	track	of	are	distributed,	our	only	real	option	is	to	use	the	network	to
manage	the	network.	This	means	we	need	a	protocol	that	allows	us	to	read	and	write	various	pieces	of	state
information	on	different	network	nodes.	The	following	describes	two	approaches.

SNMP

A	widely	used	protocol	for	network	management	is	SNMP	(Simple	Network	Management	Protocol).	SNMP	is
essentially	a	specialized	request/reply	protocol	that	supports	two	kinds	of	request	messages:		GET		and		SET	.	The
former	is	used	to	retrieve	a	piece	of	state	from	some	node,	and	the	latter	is	used	to	store	a	new	piece	of	state	in	some
node.	(SNMP	also	supports	a	third	operation,		GET-NEXT	,	which	we	explain	below.)	The	following	discussion	focuses	on
the		GET		operation,	since	it	is	the	one	most	frequently	used.

SNMP	is	used	in	the	obvious	way.	An	operator	interacts	with	a	client	program	that	displays	information	about	the
network.	This	client	program	usually	has	a	graphical	interface.	You	can	think	of	this	interface	as	playing	the	same	role
as	a	web	browser.	Whenever	the	operator	selects	a	certain	piece	of	information	that	he	or	she	wants	to	see,	the	client
program	uses	SNMP	to	request	that	information	from	the	node	in	question.	(SNMP	runs	on	top	of	UDP.)	An	SNMP
server	running	on	that	node	receives	the	request,	locates	the	appropriate	piece	of	information,	and	returns	it	to	the
client	program,	which	then	displays	it	to	the	user.

There	is	only	one	complication	to	this	otherwise	simple	scenario:	Exactly	how	does	the	client	indicate	which	piece	of
information	it	wants	to	retrieve,	and,	likewise,	how	does	the	server	know	which	variable	in	memory	to	read	to	satisfy
the	request?	The	answer	is	that	SNMP	depends	on	a	companion	specification	called	the	management	information
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base	(MIB).	The	MIB	defines	the	specific	pieces	of	information—the	MIB	variables—that	you	can	retrieve	from	a
network	node.

The	current	version	of	MIB,	called	MIB-II,	organizes	variables	into	different	groups.	You	will	recognize	that	most	of	the
groups	correspond	to	one	of	the	protocols	described	in	this	book,	and	nearly	all	of	the	variables	defined	for	each
group	should	look	familiar.	For	example:

System—General	parameters	of	the	system	(node)	as	a	whole,	including	where	the	node	is	located,	how	long	it
has	been	up,	and	the	system's	name

Interfaces—Information	about	all	the	network	interfaces	(adaptors)	attached	to	this	node,	such	as	the	physical
address	of	each	interface	and	how	many	packets	have	been	sent	and	received	on	each	interface

Address	translation—Information	about	the	Address	Resolution	Protocol,	and	in	particular,	the	contents	of	its
address	translation	table

IP—Variables	related	to	IP,	including	its	routing	table,	how	many	datagrams	it	has	successfully	forwarded,	and
statistics	about	datagram	reassembly;	includes	counts	of	how	many	times	IP	drops	a	datagram	for	one	reason	or
another

TCP—Information	about	TCP	connections,	such	as	the	number	of	passive	and	active	opens,	the	number	of
resets,	the	number	of	timeouts,	default	timeout	settings,	and	so	on;	per-connection	information	persists	only	as
long	as	the	connection	exists

UDP—Information	about	UDP	traffic,	including	the	total	number	of	UDP	datagrams	that	have	been	sent	and
received.

There	are	also	groups	for	Internet	Control	Message	Protocol	(ICMP)	and	SNMP	itself.

Returning	to	the	issue	of	the	client	stating	exactly	what	information	it	wants	to	retrieve	from	a	node,	having	a	list	of
MIB	variables	is	only	half	the	battle.	Two	problems	remain.	First,	we	need	a	precise	syntax	for	the	client	to	use	to	state
which	of	the	MIB	variables	it	wants	to	fetch.	Second,	we	need	a	precise	representation	for	the	values	returned	by	the
server.	Both	problems	are	addressed	using	Abstract	Syntax	Notation	One	(ASN.1).

Consider	the	second	problem	first.	As	we	already	saw	in	a	previous	chapter,	ASN.1/Basic	Encoding	Rules	(BER)
defines	a	representation	for	different	data	types,	such	as	integers.	The	MIB	defines	the	type	of	each	variable,	and	then
it	uses	ASN.1/BER	to	encode	the	value	contained	in	this	variable	as	it	is	transmitted	over	the	network.	As	far	as	the
first	problem	is	concerned,	ASN.1	also	defines	an	object	identification	scheme.	The	MIB	uses	this	identification
system	to	assign	a	globally	unique	identifier	to	each	MIB	variable.	These	identifiers	are	given	in	a	"dot"	notation,	not
unlike	domain	names.	For	example,	1.3.6.1.2.1.4.3	is	the	unique	ASN.1	identifier	for	the	IP-related	MIB	variable
	ipInReceives	;	this	variable	counts	the	number	of	IP	datagrams	that	have	been	received	by	this	node.	In	this	example,
the	1.3.6.1.2.1	prefix	identifies	the	MIB	database	(remember,	ASN.1	object	IDs	are	for	all	possible	objects	in	the
world),	the	4	corresponds	to	the	IP	group,	and	the	final	3	denotes	the	third	variable	in	this	group.

Thus,	network	management	works	as	follows.	The	SNMP	client	puts	the	ASN.1	identifier	for	the	MIB	variable	it	wants
to	get	into	the	request	message,	and	it	sends	this	message	to	the	server.	The	server	then	maps	this	identifier	into	a
local	variable	(i.e.,	into	a	memory	location	where	the	value	for	this	variable	is	stored),	retrieves	the	current	value	held
in	this	variable,	and	uses	ASN.1/BER	to	encode	the	value	it	sends	back	to	the	client.

There	is	one	final	detail.	Many	of	the	MIB	variables	are	either	tables	or	structures.	Such	compound	variables	explain
the	reason	for	the	SNMP		GET-NEXT		operation.	This	operation,	when	applied	to	a	particular	variable	ID,	returns	the
value	of	that	variable	plus	the	ID	of	the	next	variable,	for	example,	the	next	item	in	the	table	or	the	next	field	in	the
structure.	This	aids	the	client	in	"walking	through"	the	elements	of	a	table	or	structure.

OpenConfig
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SNMP	is	still	widely	used	and	has	historically	been	"the"	management	protocol	for	switches	and	routers,	but	there	has
recently	been	growing	attention	paid	to	more	flexible	and	powerful	ways	to	manage	networks.	There	isn't	yet	complete
agreement	on	an	industry-wide	standard,	but	a	consensus	about	the	general	approach	is	starting	to	emerge.	We
describe	one	example,	called	OpenConfig,	that	is	both	getting	a	lot	of	traction	and	illustrates	many	of	the	key	ideas
that	are	being	pursued.

The	general	strategy	is	to	automate	network	management	as	much	as	possible,	with	the	goal	of	getting	the	error-
prone	human	out	of	the	loop.	This	is	sometimes	called	zero-touch	management,	and	it	implies	two	things	have	to
happen.	First,	whereas	historically	operators	used	tools	like	SNMP	to	monitor	the	network,	but	had	to	log	into	any
misbehaving	network	device	and	use	a	command	line	interface	(CLI)	to	fix	the	problem,	zero-touch	management
implies	that	we	also	need	to	configure	the	network	programmatically.	In	other	words,	network	management	is	equal
parts	reading	status	information	and	writing	configuration	information.	The	goal	is	to	build	a	closed	control	loop,
although	there	will	always	be	scenarios	where	the	operator	has	to	be	alerted	that	manual	intervention	is	required.

Second,	whereas	historically	the	operator	had	to	configure	each	network	device	individually,	all	the	devices	have	to	be
configured	in	a	consistent	way	if	they	are	going	to	function	correctly	as	a	network.	As	a	consequence,	zero-touch	also
implies	that	the	operator	should	be	able	to	declare	their	network-wide	intent,	with	the	management	tool	being	smart
enough	to	issue	the	necessary	per-device	configuration	directives	in	a	globally	consistent	way.

Figure	6.	Operator	manages	a	network	through	a	configuration	and
management	tool,	which	in	turn	programmatically	interacts	with	the

underlying	network	devices	(e.g.,	using	gNMI	as	the	transport	protocol	and
YANG	to	specify	the	schema	for	the	data	being	exchanged).

Figure	6	gives	a	high-level	depiction	of	this	idealized	approach	to	network	management.	We	say	"idealized"	because
achieving	true	zero-touch	management	is	still	more	aspirational	than	reality.	But	progress	is	being	made.	For
example,	new	management	tools	are	starting	to	leverage	standard	protocols	like	HTTP	to	monitor	and	configure
network	devices.	This	is	a	positive	step	because	it	gets	us	out	of	the	business	of	creating	yet	another	request/reply
protocol	and	lets	us	focus	on	creating	smarter	management	tools,	perhaps	by	taking	advantage	of	Machine	Learning
algorithms	to	determine	if	something	is	amiss.

In	the	same	way	HTTP	is	starting	to	replace	SNMP	as	the	protocol	for	talking	to	network	devices,	there	is	a	parallel
effort	to	replace	the	MIB	with	a	new	standard	for	what	status	information	various	types	of	devices	can	report,	plus
what	configuration	information	those	same	devices	are	able	to	respond	to.	Agreeing	to	a	single	standard	for
configuration	is	inherently	challenging	because	every	vendor	claims	their	device	is	a	unicorn,	unlike	any	of	the	devices
their	competitors	sell.	(That	is	to	say,	the	challenge	is	not	entirely	technical.)
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The	general	approach	is	to	allow	each	device	manufacturer	to	publish	a	data	model	that	specifies	the	configuration
knobs	(and	available	monitoring	data)	for	its	product,	and	limit	standardization	to	the	modeling	language.	The	leading
candidate	is	YANG,	which	stands	for	Yet	Another	Next	Generation,	a	name	chosen	to	poke	fun	at	how	often	a	do-over
proves	necessary.	YANG	can	be	viewed	as	a	restricted	version	of	XSD,	which	you	may	recall	is	a	language	for
defining	a	schema	(model)	for	XML.	That	is,	YANG	defines	the	structure	of	the	data.	But	unlike	XSD,	YANG	is	not
XML-specific.	It	can	instead	be	used	in	conjunction	with	different	over-the-wire	message	formats,	including	XML,	but
also	ProtoBufs	and	JSON.

What's	important	about	going	in	this	direction	is	that	the	data	model	that	defines	the	semantics	of	the	variables
available	to	be	read	and	written	in	a	programmatic	form	(i.e.,	it's	not	just	text	in	a	standards	specification).	It's	not	a
free-for-all	with	each	vendor	defining	a	unique	model	since	the	network	operators	that	buy	network	hardware	have	a
strong	incentive	to	drive	the	models	for	similar	devices	towards	convergence.	YANG	makes	the	process	of	creating,
using,	and	modifying	models	more	programmable,	and	hence,	adaptable	to	this	process.

This	is	where	OpenConfig	comes	in.	It	uses	YANG	as	its	modeling	language,	but	has	also	established	a	process	for
driving	the	industry	towards	common	models.	OpenConfig	is	officially	agnostic	as	to	the	RPC	mechanism	used	to
communicate	with	network	devices,	but	one	approach	it	is	actively	pursuing	is	called	gNMI	(gRPC	Network
Management	Interface).	As	you	might	guess	from	its	name,	gNMI	uses	gRPC,	which	you	may	recall,	runs	on	top	of
HTTP.	This	means	gNMI	also	adopts	ProtoBufs	as	the	way	it	specifies	the	data	actually	communicated	over	the	HTTP
connection.	Thus,	as	depicted	in	Figure	6,	gNMI	is	intended	as	a	standard	management	interface	for	network	devices.
What's	not	standardized	is	the	richness	of	the	management	tool's	ability	to	automate,	or	the	exact	form	of	the
operator-facing	interface.	Like	any	application	that	is	trying	to	serve	a	need	and	support	more	features	than	the
alternatives,	there	is	still	much	room	for	innovation	in	tools	for	network	management.

For	completeness,	we	note	that	NETCONF	is	another	of	the	post-SNMP	protocols	for	communicating
configuration	information	to	network	devices.	OpenConfig	works	with	NETCONF,	but	our	reading	of	the	tea
leaves	points	to	gNMI	as	the	future.

We	conclude	by	emphasizing	that	a	seachange	is	underway.	While	listing	SNMP	and	OpenConfig	in	the	title	to	this
section	suggests	they	are	equivalent,	it	is	more	accurate	to	say	that	each	is	"what	we	call"	these	two	approaches,	but
the	approaches	are	quite	different.	On	the	one	hand,	SNMP	is	really	just	a	transport	protocol,	analogous	to	gNMI	in
the	OpenConfig	world.	It	historically	enabled	monitoring	devices,	but	had	virtually	nothing	to	say	about	configuring
devices.	(The	latter	has	historically	required	manual	intervention.)	On	the	other	hand,	OpenConfig	is	primarily	an	effort
to	define	a	common	set	of	data	models	for	network	devices,	roughly	similar	to	the	role	MIB	plays	in	the	SNMP	world,
except	OpenConfig	is	(1)	model-based,	using	YANG,	and	(2)	equally	focused	on	monitoring	and	configuration.
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9.4	Overlay	Networks

From	its	inception,	the	Internet	has	adopted	a	clean	model,	in	which	the	routers	inside	the	network	are	responsible	for
forwarding	packets	from	source	to	destination,	and	application	programs	run	on	the	hosts	connected	to	the	edges	of
the	network.	The	client/server	paradigm	illustrated	by	the	applications	discussed	in	the	first	two	sections	of	this
chapter	certainly	adhere	to	this	model.

In	the	last	few	years,	however,	the	distinction	between	packet	forwarding	and	application	processing	has	become	less
clear.	New	applications	are	being	distributed	across	the	Internet,	and	in	many	cases	these	applications	make	their
own	forwarding	decisions.	These	new	hybrid	applications	can	sometimes	be	implemented	by	extending	traditional
routers	and	switches	to	support	a	modest	amount	of	application-specific	processing.	For	example,	so-called	level-7
switches	sit	in	front	of	server	clusters	and	forward	HTTP	requests	to	a	specific	server	based	on	the	requested	URL.
However,	overlay	networks	are	quickly	emerging	as	the	mechanism	of	choice	for	introducing	new	functionality	into	the
Internet.

Figure	1.	Overlay	network	layered	on	top	of	a	physical	network.

You	can	think	of	an	overlay	as	a	logical	network	implemented	on	top	of	some	underlying	network.	By	this	definition,
the	Internet	started	out	as	an	overlay	network	on	top	of	the	links	provided	by	the	old	telephone	network.	Figure	1
depicts	an	overlay	implemented	on	top	of	an	underlying	network.	Each	node	in	the	overlay	also	exists	in	the
underlying	network;	it	processes	and	forwards	packets	in	an	application-specific	way.	The	links	that	connect	the
overlay	nodes	are	implemented	as	tunnels	through	the	underlying	network.	Multiple	overlay	networks	can	exist	on	top
of	the	same	underlying	network—each	implementing	its	own	application-specific	behavior—and	overlays	can	be
nested,	one	on	top	of	another.	For	example,	all	of	the	example	overlay	networks	discussed	in	this	section	treat	today's
Internet	as	the	underlying	network.
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Figure	2.	Overlay	nodes	tunnel	through	physical	nodes.

We	have	already	seen	examples	of	tunneling,	for	example,	to	implement	virtual	private	networks	(VPNs).	As	a	brief
refresher,	the	nodes	on	either	end	of	a	tunnel	treat	the	multi-hop	path	between	them	as	a	single	logical	link,	the	nodes
that	are	tunneled	through	forward	packets	based	on	the	outer	header,	never	aware	that	the	end	nodes	have	attached
an	inner	header.	Figure	2	shows	three	overlay	nodes	(A,	B,	and	C)	connected	by	a	pair	of	tunnels.	In	this	example,
overlay	node	B	might	make	a	forwarding	decision	for	packets	from	A	to	C	based	on	the	inner	header	(	IHdr	),	and	then
attach	an	outer	header	(	OHdr	)	that	identifies	C	as	the	destination	in	the	underlying	network.	Nodes	A,	B,	and	C	are
able	to	interpret	both	the	inner	and	outer	header,	whereas	the	intermediate	routers	understand	only	the	outer	header.
Similarly,	A,	B,	and	C	have	addresses	in	both	the	overlay	network	and	the	underlying	network,	but	they	are	not
necessarily	the	same;	for	example,	their	underlying	address	might	be	a	32-bit	IP	address,	while	their	overlay	address
might	be	an	experimental	128-bit	address.	In	fact,	the	overlay	need	not	use	conventional	addresses	at	all	but	may
route	based	on	URLs,	domain	names,	an	XML	query,	or	even	the	content	of	the	packet.

Routing	Overlays

The	simplest	kind	of	overlay	is	one	that	exists	purely	to	support	an	alternative	routing	strategy;	no	additional
application-level	processing	is	performed	at	the	overlay	nodes.	You	can	view	a	virtual	private	network	(VPN)	as	an
example	of	a	routing	overlay,	but	one	that	doesn't	so	much	define	an	alternative	strategy	or	algorithm	as	it	does
alternative	routing	table	entries	to	be	processed	by	the	standard	IP	forwarding	algorithm.	In	this	particular	case,	the
overlay	is	said	to	use	"IP	tunnels,"	and	the	ability	to	utilize	these	VPNs	is	supported	in	many	commercial	routers.

Suppose,	however,	you	wanted	to	use	a	routing	algorithm	that	commercial	router	vendors	were	not	willing	to	include
in	their	products.	How	would	you	go	about	doing	it?	You	could	simply	run	your	algorithm	on	a	collection	of	end	hosts,
and	tunnel	through	the	Internet	routers.	These	hosts	would	behave	like	routers	in	the	overlay	network:	As	hosts	they
are	probably	connected	to	the	Internet	by	only	one	physical	link,	but	as	a	node	in	the	overlay	they	would	be	connected
to	multiple	neighbors	via	tunnels.

Since	overlays,	almost	by	definition,	are	a	way	to	introduce	new	technologies	independent	of	the	standardization
process,	there	are	no	standard	overlays	we	can	point	to	as	examples.	Instead,	we	illustrate	the	general	idea	of	routing
overlays	by	describing	several	experimental	systems	that	have	been	built	by	network	researchers.

Experimental	Versions	of	IP

Overlays	are	ideal	for	deploying	experimental	versions	of	IP	that	you	hope	will	eventually	take	over	the	world.	For
example,	IP	multicast	started	off	as	an	extension	to	IP	and	even	today	is	not	enabled	in	many	Internet	routers.	The
MBone	(multicast	backbone)	was	an	overlay	network	that	implemented	IP	multicast	on	top	of	the	unicast	routing
provided	by	the	Internet.	A	number	of	multimedia	conference	tools	were	developed	for	and	deployed	on	the	Mbone.
For	example,	IETF	meetings—which	are	a	week	long	and	attract	thousands	of	participants—were	for	many	years
broadcast	over	the	MBone.

Like	VPNs,	the	MBone	used	both	IP	tunnels	and	IP	addresses,	but	unlike	VPNs,	the	MBone	implemented	a	different
forwarding	algorithm—forwarding	packets	to	all	downstream	neighbors	in	the	shortest	path	multicast	tree.	As	an
overlay,	multicast-aware	routers	tunnel	through	legacy	routers,	with	the	hope	that	one	day	there	will	be	no	more
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legacy	routers.

The	6-BONE	was	a	similar	overlay	that	was	used	to	incrementally	deploy	IPv6.	Like	the	MBone,	the	6-BONE	used
tunnels	to	forward	packets	through	IPv4	routers.	Unlike	the	MBone,	however,	6-BONE	nodes	did	not	simply	provide	a
new	interpretation	of	IPv4's	32-bit	addresses.	Instead,	they	forwarded	packets	based	on	IPv6's	128-bit	address	space.
The	6-BONE	also	supported	IPv6	multicast.

End	System	Multicast

Although	IP	multicast	is	popular	with	researchers	and	certain	segments	of	the	networking	community,	its	deployment
in	the	global	Internet	has	been	limited	at	best.	In	response,	multicast-based	applications	like	videoconferencing	have
recently	turned	to	an	alternative	strategy,	called	end	system	multicast.	The	idea	of	end	system	multicast	is	to	accept
that	IP	multicast	will	never	become	ubiquitous	and	to	instead	let	the	end	hosts	that	are	participating	in	a	particular
multicast-based	application	implement	their	own	multicast	trees.

Before	describing	how	end	system	multicast	works,	it	is	important	to	first	understand	that,	unlike	VPNs	and	the
MBone,	end	system	multicast	assumes	that	only	Internet	hosts	(as	opposed	to	Internet	routers)	participate	in	the
overlay.	Moreover,	these	hosts	typically	exchange	messages	with	each	other	through	UDP	tunnels	rather	than	IP
tunnels,	making	it	easy	to	implement	as	regular	application	programs.	This	makes	it	possible	to	view	the	underlying
network	as	a	fully	connected	graph,	since	every	host	in	the	Internet	is	able	to	send	a	message	to	every	other	host.
Abstractly,	then,	end	system	multicast	solves	the	following	problem:	Starting	with	a	fully	connected	graph	representing
the	Internet,	the	goal	is	to	find	the	embedded	multicast	tree	that	spans	all	the	group	members.

There	is	a	simpler	version	of	this	problem,	enabled	by	the	ready	availability	of	cloud-hosted	VMs	around	the
world.	The	multicast-aware	"end	systems"	can	be	VMs	running	at	multiple	sites.	As	these	sites	are	well-known
and	relatively	fixed,	it's	possible	to	construct	a	static	multicast	tree	in	the	cloud,	and	have	the	actual	end-hosts
simply	connect	to	the	nearest	cloud	location.	But	for	the	sake	of	completeness,	the	following	describes	the
approach	in	its	full	glory.
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Figure	3.	Alternative	multicast	trees	mapped	onto	a	physical	topology.

Since	we	take	the	underlying	Internet	to	be	fully	connected,	a	naive	solution	would	be	to	have	each	source	directly
connected	to	each	member	of	the	group.	In	other	words,	end	system	multicast	could	be	implemented	by	having	each
node	send	unicast	messages	to	every	group	member.	To	see	the	problem	in	doing	this,	especially	compared	to
implementing	IP	multicast	in	routers,	consider	the	example	topology	in	Figure	3.	Figure	3(a)	depicts	an	example
physical	topology,	where	R1	and	R2	are	routers	connected	by	a	low-bandwidth	transcontinental	link;	A,	B,	C,	and	D
are	end	hosts;	and	link	delays	are	given	as	edge	weights.	Assuming	A	wants	to	send	a	multicast	message	to	the	other
three	hosts,	Figure	3(b)	shows	how	naive	unicast	transmission	would	work.	This	is	clearly	undesirable	because	the
same	message	must	traverse	the	link	A-R1	three	times,	and	two	copies	of	the	message	traverse	R1-R2.	Figure	3(c)
depicts	the	IP	multicast	tree	constructed	by	the	Distance	Vector	Multicast	Routing	Protocol	(DVMRP).	Clearly,	this
approach	eliminates	the	redundant	messages.	Without	support	from	the	routers,	however,	the	best	one	can	hope	for
with	end	system	multicast	is	a	tree	similar	to	the	one	shown	in	Figure	3(d).	End	system	multicast	defines	an
architecture	for	constructing	this	tree.
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Figure	4.	Multicast	tree	embedded	in	an	overlay	network.

The	general	approach	is	to	support	multiple	levels	of	overlay	networks,	each	of	which	extracts	a	subgraph	from	the
overlay	below	it,	until	we	have	selected	the	subgraph	that	the	application	expects.	For	end	system	multicast,	in
particular,	this	happens	in	two	stages:	First	we	construct	a	simple	mesh	overlay	on	top	of	the	fully	connected	Internet,
and	then	we	select	a	multicast	tree	within	this	mesh.	The	idea	is	illustrated	in	Figure	4,	again	assuming	the	four	end
hosts	A,	B,	C,	and	D.	The	first	step	is	the	critical	one:	Once	we	have	selected	a	suitable	mesh	overlay,	we	simply	run
a	standard	multicast	routing	algorithm	(e.g.,	DVMRP)	on	top	of	it	to	build	the	multicast	tree.	We	also	have	the	luxury	of
ignoring	the	scalability	issue	that	Internet-wide	multicast	faces	since	the	intermediate	mesh	can	be	selected	to	include
only	those	nodes	that	want	to	participate	in	a	particular	multicast	group.

The	key	to	constructing	the	intermediate	mesh	overlay	is	to	select	a	topology	that	roughly	corresponds	to	the	physical
topology	of	the	underlying	Internet,	but	we	have	to	do	this	without	anyone	telling	us	what	the	underlying	Internet
actually	looks	like	since	we	are	running	only	on	end	hosts	and	not	routers.	The	general	strategy	is	for	the	end	hosts	to
measure	the	roundtrip	latency	to	other	nodes	and	decide	to	add	links	to	the	mesh	only	when	they	like	what	they	see.
This	works	as	follows.

First,	assuming	a	mesh	already	exists,	each	node	exchanges	the	list	of	all	other	nodes	it	believes	is	part	of	the	mesh
with	its	directly	connected	neighbors.	When	a	node	receives	such	a	membership	list	from	a	neighbor,	it	incorporates
that	information	into	its	membership	list	and	forwards	the	resulting	list	to	its	neighbors.	This	information	eventually
propagates	through	the	mesh,	much	as	in	a	distance	vector	routing	protocol.

When	a	host	wants	to	join	the	multicast	overlay,	it	must	know	the	IP	address	of	at	least	one	other	node	already	in	the
overlay.	It	then	sends	a	"join	mesh"	message	to	this	node.	This	connects	the	new	node	to	the	mesh	by	an	edge	to	the
known	node.	In	general,	the	new	node	might	send	a	join	message	to	multiple	current	nodes,	thereby	joining	the	mesh
by	multiple	links.	Once	a	node	is	connected	to	the	mesh	by	a	set	of	links,	it	periodically	sends	"keep	alive"	messages
to	its	neighbors,	letting	them	know	that	it	still	wants	to	be	part	of	the	group.

When	a	node	leaves	the	group,	it	sends	a	"leave	mesh"	message	to	its	directly	connected	neighbors,	and	this
information	is	propagated	to	the	other	nodes	in	the	mesh	via	the	membership	list	described	above.	Alternatively,	a
node	can	fail	or	just	silently	decide	to	quit	the	group,	in	which	case	its	neighbors	detect	that	it	is	no	longer	sending
"keep	alive"	messages.	Some	node	departures	have	little	effect	on	the	mesh,	but	should	a	node	detect	that	the	mesh
has	become	partitioned	due	to	a	departing	node,	it	creates	a	new	edge	to	a	node	in	the	other	partition	by	sending	it	a
"join	mesh"	message.	Note	that	multiple	neighbors	can	simultaneously	decide	that	a	partition	has	occurred	in	the
mesh,	leading	to	multiple	cross-partition	edges	being	added	to	the	mesh.
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As	described	so	far,	we	will	end	up	with	a	mesh	that	is	a	subgraph	of	the	original	fully	connected	Internet,	but	it	may
have	suboptimal	performance	because	(1)	initial	neighbor	selection	adds	random	links	to	the	topology,	(2)	partition
repair	might	add	edges	that	are	essential	at	the	moment	but	not	useful	in	the	long	run,	(3)	group	membership	may
change	due	to	dynamic	joins	and	departures,	and	(4)	underlying	network	conditions	may	change.	What	needs	to
happen	is	that	the	system	must	evaluate	the	value	of	each	edge,	resulting	in	new	edges	being	added	to	the	mesh	and
existing	edges	being	removed	over	time.

To	add	new	edges,	each	node	i	periodically	probes	some	random	member	j 	that	it	is	not	currently	connected	to	in	the
mesh,	measures	the	round-trip	latency	of	edge	(i, j),	and	then	evaluates	the	utility	of	adding	this	edge.	If	the	utility	is
above	a	certain	threshold,	link	(i, j)	is	added	to	the	mesh.	Evaluating	the	utility	of	adding	edge	(i, j)	might	look
something	like	this:

EvaluateUtility(j)
				utility	=	0
				for	each	member	m	not	equal	to	i
								CL	=	current	latency	to	node	m	along	route	through	mesh
								NL	=	new	latency	to	node	m	along	mesh	if	edge	(i,j)	is	added}
								if	(NL	<	CL)	then
												utility	+=	(CL	-	NL)/CL
				return	utility

Deciding	to	remove	an	edge	is	similar,	except	each	node	i	computes	the	cost	of	each	link	to	current	neighbor	j	as
follows:

EvaluateCost(j)
				Cost[i,j]	=	number	of	members	for	which	i	uses	j	as	next	hop
				Cost[j,i]	=	number	of	members	for	which	j	uses	i	as	next	hop
				return	max(Cost[i,j],	Cost[j,i])

It	then	picks	the	neighbor	with	the	lowest	cost,	and	drops	it	if	the	cost	falls	below	a	certain	threshold.

Finally,	since	the	mesh	is	maintained	using	what	is	essentially	a	distance	vector	protocol,	it	is	trivial	to	run	DVMRP	to
find	an	appropriate	multicast	tree	in	the	mesh.	Note	that,	although	it	is	not	possible	to	prove	that	the	protocol	just
described	results	in	the	optimum	mesh	network,	thereby	allowing	DVMRP	to	select	the	best	possible	multicast	tree,
both	simulation	and	extensive	practical	experience	suggests	that	it	does	a	good	job.

Resilient	Overlay	Networks

Another	function	that	can	be	performed	by	an	overlay	is	to	find	alternative	routes	for	traditional	unicast	applications.
Such	overlays	exploit	the	observation	that	the	triangle	inequality	does	not	hold	in	the	Internet.	Figure	5	illustrates	what
we	mean	by	this.	It	is	not	uncommon	to	find	three	sites	in	the	Internet—call	them	A,	B,	and	C—such	that	the	latency
between	A	and	B	is	greater	than	the	sum	of	the	latencies	from	A	to	C	and	from	C	to	B.	That	is,	sometimes	you	would
be	better	off	indirectly	sending	your	packets	via	some	intermediate	node	than	sending	them	directly	to	the	destination.
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Figure	5.	The	triangle	inequality	does	not	necessarily	hold	in	networks.

How	can	this	be?	Well,	the	Border	Gateway	Protocol	(BGP)	never	promised	that	it	would	find	the	shortest	route
between	any	two	sites;	it	only	tries	to	find	some	route.	To	make	matters	more	complex,	BGP's	routes	are	heavily
influenced	by	policy	issues,	such	as	who	is	paying	whom	to	carry	their	traffic.	This	often	happens,	for	example,	at
peering	points	between	major	backbone	ISPs.	In	short,	that	the	triangle	inequality	does	not	hold	in	the	Internet	should
not	come	as	a	surprise.

How	do	we	exploit	this	observation?	The	first	step	is	to	realize	that	there	is	a	fundamental	tradeoff	between	the
scalability	and	optimality	of	a	routing	algorithm.	On	the	one	hand,	BGP	scales	to	very	large	networks,	but	often	does
not	select	the	best	possible	route	and	is	slow	to	adapt	to	network	outages.	On	the	other	hand,	if	you	were	only	worried
about	finding	the	best	route	among	a	handful	of	sites,	you	could	do	a	much	better	job	of	monitoring	the	quality	of	every
path	you	might	use,	thereby	allowing	you	to	select	the	best	possible	route	at	any	moment	in	time.

An	experimental	overlay,	called	the	Resilient	Overlay	Network	(RON),	did	exactly	this.	RON	scaled	to	only	a	few
dozen	nodes	because	it	used	an	n× n	strategy	of	closely	monitoring	(via	active	probes)	three	aspects	of	path	quality
—latency,	available	bandwidth,	and	loss	probability—between	every	pair	of	sites.	It	was	then	able	to	both	select	the
optimal	route	between	any	pair	of	nodes,	and	rapidly	change	routes	should	network	conditions	change.	Experience
showed	that	RON	was	able	to	deliver	modest	performance	improvements	to	applications,	but	more	importantly,	it
recovered	from	network	failures	much	more	quickly.	For	example,	during	one	64-hour	period	in	2001,	an	instance	of
RON	running	on	12	nodes	detected	32	outages	lasting	over	30	minutes,	and	it	was	able	to	recover	from	all	of	them	in
less	than	20	seconds	on	average.	This	experiment	also	suggested	that	forwarding	data	through	just	one	intermediate
node	is	usually	sufficient	to	recover	from	Internet	failures.

Since	RON	was	not	designed	to	be	a	scalable	approach,	it	is	not	possible	to	use	RON	to	help	random	host	A
communicate	with	random	host	B;	A	and	B	have	to	know	ahead	of	time	that	they	are	likely	to	communicate	and	then
join	the	same	RON.	However,	RON	seems	like	a	good	idea	in	certain	settings,	such	as	when	connecting	a	few	dozen
corporate	sites	spread	across	the	Internet	or	allowing	you	and	50	of	your	friends	to	establish	your	own	private	overlay
for	the	sake	of	running	some	application.	(Today,	this	idea	is	put	to	practice	with	the	marketing	name	Software-
Defined	WAN,	or	SD-WAN.)	The	real	question,	though,	is	what	happens	when	everyone	starts	to	run	their	own	RON.
Does	the	overhead	of	millions	of	RONs	aggressively	probing	paths	swamp	the	network,	and	does	anyone	see
improved	behavior	when	many	RONs	compete	for	the	same	paths?	These	questions	are	still	unanswered.

Key	Takeaway

All	of	these	overlays	illustrate	a	concept	that	is	central	to	computer	networks	in	general:	virtualization.	That	is,	it
is	possible	to	build	a	virtual	network	from	abstract	(logical)	resources	on	top	of	a	physical	network	constructed
from	physical	resources.	Moreover,	it	is	possible	to	stack	these	virtualized	networks	on	top	of	each	other	and	for
multiple	virtual	network	to	coexist	at	the	same	level.	Each	virtual	network,	in	turn,	provides	new	capabilities	that
are	of	value	to	some	set	of	users,	applications,	or	higher-level	networks.
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Peer-to-Peer	Networks

Music-sharing	applications	like	Napster	and	KaZaA	introduced	the	term	"peer-to-peer"	into	the	popular	vernacular.	But
what	exactly	does	it	mean	for	a	system	to	be	"peer-to-peer"?	Certainly	in	the	context	of	sharing	MP3	files	it	means	not
having	to	download	music	from	a	central	site,	but	instead	being	able	to	access	music	files	directly	from	whoever	in	the
Internet	happens	to	have	a	copy	stored	on	their	computer.	More	generally	then,	we	could	say	that	a	peer-to-peer
network	allows	a	community	of	users	to	pool	their	resources	(content,	storage,	network	bandwidth,	disk	bandwidth,
CPU),	thereby	providing	access	to	a	larger	archival	store,	larger	video/audio	conferences,	more	complex	searches
and	computations,	and	so	on	than	any	one	user	could	afford	individually.

Quite	often,	attributes	like	decentralized	and	self-organizing	are	mentioned	when	discussing	peer-to-peer	networks,
meaning	that	individual	nodes	organize	themselves	into	a	network	without	any	centralized	coordination.	If	you	think
about	it,	terms	like	these	could	be	used	to	describe	the	Internet	itself.	Ironically,	however,	Napster	was	not	a	true	peer-
to-peer	system	by	this	definition	since	it	depended	on	a	central	registry	of	known	files,	and	users	had	to	search	this
directory	to	find	what	machine	offered	a	particular	file.	It	was	only	the	last	step—actually	downloading	the	file—that
took	place	between	machines	that	belong	to	two	users,	but	this	is	little	more	than	a	traditional	client/server	transaction.
The	only	difference	is	that	the	server	is	owned	by	someone	just	like	you	rather	than	a	large	corporation.

So	we	are	back	to	the	original	question:	What's	interesting	about	peer-to-peer	networks?	One	answer	is	that	both	the
process	of	locating	an	object	of	interest	and	the	process	of	downloading	that	object	onto	your	local	machine	happen
without	your	having	to	contact	a	centralized	authority,	and	at	the	same	time	the	system	is	able	to	scale	to	millions	of
nodes.	A	peer-to-peer	system	that	can	accomplish	these	two	tasks	in	a	decentralized	manner	turns	out	to	be	an
overlay	network,	where	the	nodes	are	those	hosts	that	are	willing	to	share	objects	of	interest	(e.g.,	music	and	other
assorted	files),	and	the	links	(tunnels)	connecting	these	nodes	represent	the	sequence	of	machines	that	you	have	to
visit	to	track	down	the	object	you	want.	This	description	will	become	clearer	after	we	look	at	two	examples.

Gnutella

Gnutella	is	an	early	peer-to-peer	network	that	attempted	to	distinguish	between	exchanging	music	(which	likely
violates	somebody's	copyright)	and	the	general	sharing	of	files	(which	must	be	good	since	we've	been	taught	to	share
since	the	age	of	two).	What's	interesting	about	Gnutella	is	that	it	was	one	of	the	first	such	systems	to	not	depend	on	a
centralized	registry	of	objects.	Instead,	Gnutella	participants	arrange	themselves	into	an	overlay	network	similar	to	the
one	shown	in	Figure	6.	That	is,	each	node	that	runs	the	Gnutella	software	(i.e.,	implements	the	Gnutella	protocol)
knows	about	some	set	of	other	machines	that	also	run	the	Gnutella	software.	The	relationship	"A	and	B	know	each
other"	corresponds	to	the	edges	in	this	graph.	(We'll	talk	about	how	this	graph	is	formed	in	a	moment.)
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Figure	6.	Example	topology	of	a	gnutella	peer-to-peer	network.

Whenever	the	user	on	a	given	node	wants	to	find	an	object,	Gnutella	sends	a	QUERY	message	for	the	object—for
example,	specifying	the	file's	name—to	its	neighbors	in	the	graph.	If	one	of	the	neighbors	has	the	object,	it	responds
to	the	node	that	sent	it	the	query	with	a	QUERY	RESPONSE	message,	specifying	where	the	object	can	be
downloaded	(e.g.,	an	IP	address	and	TCP	port	number).	That	node	can	subsequently	use	GET	or	PUT	messages	to
access	the	object.	If	the	node	cannot	resolve	the	query,	it	forwards	the	QUERY	message	to	each	of	its	neighbors
(except	the	one	that	sent	it	the	query),	and	the	process	repeats.	In	other	words,	Gnutella	floods	the	overlay	to	locate
the	desired	object.	Gnutella	sets	a	TTL	on	each	query	so	this	flood	does	not	continue	indefinitely.

In	addition	to	the	TTL	and	query	string,	each	QUERY	message	contains	a	unique	query	identifier	(QID),	but	it	does
not	contain	the	identity	of	the	original	message	source.	Instead,	each	node	maintains	a	record	of	the	QUERY
messages	it	has	seen	recently:	both	the	QID	and	the	neighbor	that	sent	it	the	QUERY.	It	uses	this	history	in	two	ways.
First,	if	it	ever	receives	a	QUERY	with	a	QID	that	matches	one	it	has	seen	recently,	the	node	does	not	forward	the
QUERY	message.	This	serves	to	cut	off	forwarding	loops	more	quickly	than	the	TTL	might	have	done.	Second,
whenever	the	node	receives	a	QUERY	RESPONSE	from	a	downstream	neighbor,	it	knows	to	forward	the	response	to
the	upstream	neighbor	that	originally	sent	it	the	QUERY	message.	In	this	way,	the	response	works	its	way	back	to	the
original	node	without	any	of	the	intermediate	nodes	knowing	who	wanted	to	locate	this	particular	object	in	the	first
place.

Returning	to	the	question	of	how	the	graph	evolves,	a	node	certainly	has	to	know	about	at	least	one	other	node	when
it	joins	a	Gnutella	overlay.	The	new	node	is	attached	to	the	overlay	by	at	least	this	one	link.	After	that,	a	given	node
learns	about	other	nodes	as	the	result	of	QUERY	RESPONSE	messages,	both	for	objects	it	requested	and	for
responses	that	just	happen	to	pass	through	it.	A	node	is	free	to	decide	which	of	the	nodes	it	discovers	in	this	way	that
it	wants	to	keep	as	a	neighbor.	The	Gnutella	protocol	provides	PING	and	PONG	messages	by	which	a	node	probes
whether	or	not	a	given	neighbor	still	exists	and	that	neighbor's	response,	respectively.

It	should	be	clear	that	Gnutella	as	described	here	is	not	a	particularly	clever	protocol,	and	subsequent	systems	have
tried	to	improve	upon	it.	One	dimension	along	which	improvements	are	possible	is	in	how	queries	are	propagated.
Flooding	has	the	nice	property	that	it	is	guaranteed	to	find	the	desired	object	in	the	fewest	possible	hops,	but	it	does
not	scale	well.	It	is	possible	to	forward	queries	randomly,	or	according	to	the	probability	of	success	based	on	past
results.	A	second	dimension	is	to	proactively	replicate	the	objects,	since	the	more	copies	of	a	given	object	there	are,
the	easier	it	should	be	to	find	a	copy.	Alternatively,	one	could	develop	a	completely	different	strategy,	which	is	the
topic	we	consider	next.

Structured	Overlays

At	the	same	time	file	sharing	systems	started	fighting	to	fill	the	void	left	by	Napster,	the	research	community	began	to
explore	an	alternative	design	for	peer-to-peer	networks.	We	refer	to	these	networks	as	structured,	to	contrast	them
with	the	essentially	random	(unstructured)	way	in	which	a	Gnutella	network	evolves.	Unstructured	overlays	like
Gnutella	employ	trivial	overlay	construction	and	maintenance	algorithms,	but	the	best	they	can	offer	is	unreliable,
random	search.	In	contrast,	structured	overlays	are	designed	to	conform	to	a	particular	graph	structure	that	allows
reliable	and	efficient	(probabilistically	bounded	delay)	object	location,	in	return	for	additional	complexity	during	overlay
construction	and	maintenance.

If	you	think	about	what	we	are	trying	to	do	at	a	high	level,	there	are	two	questions	to	consider:	(1)	How	do	we	map
objects	onto	nodes,	and	(2)	How	do	we	route	a	request	to	the	node	that	is	responsible	for	a	given	object?	We	start
with	the	first	question,	which	has	a	simple	statement:	How	do	we	map	an	object	with	name	x	into	the	address	of	some
node	n	that	is	able	to	serve	that	object?	While	traditional	peer-to-peer	networks	have	no	control	over	which	node
hosts	object	x,	if	we	could	control	how	objects	get	distributed	over	the	network,	we	might	be	able	to	do	a	better	job	of
finding	those	objects	at	a	later	time.

A	well-known	technique	for	mapping	names	into	an	address	is	to	use	a	hash	table,	so	that
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hash(x) → n

implies	object	x	is	first	placed	on	node	n,	and	at	a	later	time	a	client	trying	to	locate	x	would	only	have	to	perform	the
hash	of	x	to	determine	that	it	is	on	node	n.	A	hash-based	approach	has	the	nice	property	that	it	tends	to	spread	the
objects	evenly	across	the	set	of	nodes,	but	straightforward	hashing	algorithms	suffer	from	a	fatal	flaw:	How	many
possible	values	of	n	should	we	allow?	(In	hashing	terminology,	how	many	buckets	should	there	be?)	Naively,	we
could	decide	that	there	are,	say,	101	possible	hash	values,	and	we	use	a	modulo	hash	function;	that	is,

hash(x)
				return	x	%	101

Unfortunately,	if	there	are	more	than	101	nodes	willing	to	host	objects,	then	we	can't	take	advantage	of	all	of	them.	On
the	other	hand,	if	we	select	a	number	larger	than	the	largest	possible	number	of	nodes,	then	there	will	be	some	values
of	x	that	will	hash	into	an	address	for	a	node	that	does	not	exist.	There	is	also	the	not-so-small	issue	of	translating	the
value	returned	by	the	hash	function	into	an	actual	IP	address.

Figure	7.	Both	nodes	and	objects	map	(hash)	onto	the	ID	space,	where
objects	are	maintained	at	the	nearest	node	in	this	space

To	address	these	issues,	structured	peer-to-peer	networks	use	an	algorithm	known	as	consistent	hashing,	which
hashes	a	set	of	objects	x	uniformly	across	a	large	ID	space.	Figure	7	visualizes	a	128-bit	ID	space	as	a	circle,	where
we	use	the	algorithm	to	place	both	objects

hash(object_name) → objid

and	nodes

hash(IP_addr) → nodeid

onto	this	circle.	Since	a	128-bit	ID	space	is	enormous,	it	is	unlikely	that	an	object	will	hash	to	exactly	the	same	ID	as	a
machine's	IP	address	hashes	to.	To	account	for	this	unlikelihood,	each	object	is	maintained	on	the	node	whose	ID	is
closest,	in	this	128-bit	space,	to	the	object	ID.	In	other	words,	the	idea	is	to	use	a	high-quality	hash	function	to	map
both	nodes	and	objects	into	the	same	large,	sparse	ID	space;	you	then	map	objects	to	nodes	by	numerical	proximity
of	their	respective	identifiers.	Like	ordinary	hashing,	this	distributes	objects	fairly	evenly	across	nodes,	but,	unlike
ordinary	hashing,	only	a	small	number	of	objects	have	to	move	when	a	node	(hash	bucket)	joins	or	leaves.
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Figure	8.	Objects	are	located	by	routing	through	the	peer-to-peer	overlay
network.

We	now	turn	to	the	second	question—how	does	a	user	that	wants	to	access	object	x	know	which	node	is	closest	in	
x's	ID	in	this	space?	One	possible	answer	is	that	each	node	keeps	a	complete	table	of	node	IDs	and	their	associated
IP	addresses,	but	this	would	not	be	practical	for	a	large	network.	The	alternative,	which	is	the	approach	used	by
structured	peer-to-peer	networks,	is	to	route	a	message	to	this	node!	In	other	words,	if	we	construct	the	overlay	in	a
clever	way—which	is	the	same	as	saying	that	we	need	to	choose	entries	for	a	node's	routing	table	in	a	clever	way—
then	we	find	a	node	simply	by	routing	toward	it.	Collectively,	this	approach	is	sometimes	called	a	distributed	hash
table	(DHT),	since	conceptually,	the	hash	table	is	distributed	over	all	the	nodes	in	the	network.

Figure	8	illustrates	what	happens	for	a	simple	28-bit	ID	space.	To	keep	the	discussion	as	concrete	as	possible,	we
consider	the	approach	used	by	a	particular	peer-to-peer	network	called	Pastry.	Other	systems	work	in	a	similar
manner.

Suppose	you	are	at	the	node	with	id		65a1fc		(hex)	and	you	are	trying	to	locate	the	object	with	ID		d46a1c	.	You	realize
that	your	ID	shares	nothing	with	the	object's,	but	you	know	of	a	node	that	shares	at	least	the	prefix		d	.	That	node	is
closer	than	you	in	the	128-bit	ID	space,	so	you	forward	the	message	to	it.	(We	do	not	give	the	format	of	the	message
being	forwarded,	but	you	can	think	of	it	as	saying	"locate	object		d46a1c	.")	Assuming	node		d13da3		knows	of	another
node	that	shares	an	even	longer	prefix	with	the	object,	it	forwards	the	message	on.	This	process	of	moving	closer	in
ID-space	continues	until	you	reach	a	node	that	knows	of	no	closer	node.	This	node	is,	by	definition,	the	one	that	hosts
the	object.	Keep	in	mind	that	as	we	logically	move	through	"ID	space"	the	message	is	actually	being	forwarded,	node
to	node,	through	the	underlying	Internet.

Each	node	maintains	a	both	routing	table	(more	below)	and	the	IP	addresses	of	a	small	set	of	numerically	larger	and
smaller	node	IDs.	This	is	called	the	node's	leaf	set.	The	relevance	of	the	leaf	set	is	that,	once	a	message	is	routed	to
any	node	in	the	same	leaf	set	as	the	node	that	hosts	the	object,	that	node	can	directly	forward	the	message	to	the
ultimate	destination.	Said	another	way,	the	leaf	set	facilitates	correct	and	efficient	delivery	of	a	message	to	the
numerically	closest	node,	even	though	multiple	nodes	may	exist	that	share	a	maximal	length	prefix	with	the	object	ID.
Moreover,	the	leaf	set	makes	routing	more	robust	because	any	of	the	nodes	in	a	leaf	set	can	route	a	message	just	as
well	as	any	other	node	in	the	same	set.	Thus,	if	one	node	is	unable	to	make	progress	routing	a	message,	one	of	its
neighbors	in	the	leaf	set	may	be	able	to.	In	summary,	the	routing	procedure	is	defined	as	follows:

Route(D)
				if	D	is	within	range	of	my	leaf	set
								forward	to	numerically	closest	member	in	leaf	set
				else
								let	l	=	length	of	shared	prefix
								let	d	=	value	of	l-th	digit	in	D's	address
								if	RouteTab[l,d]	exists
												forward	to	RouteTab[l,d]
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								else
												forward	to	known	node	with	at	least	as	long	a	shared	prefix
												and	numerically	closer	than	this	node

The	routing	table,	denoted		RouteTab	,	is	a	two-dimensional	array.	It	has	a	row	for	every	hex	digit	in	an	ID	(there	such
32	digits	in	a	128-bit	ID)	and	a	column	for	every	hex	value	(there	are	obviously	16	such	values).	Every	entry	in	row	i
shares	a	prefix	of	length	i	with	this	node,	and	within	this	row	the	entry	in	column	j	has	the	hex	value	j	in	the	i+ 1th
position.	Figure	9	shows	the	first	three	rows	of	an	example	routing	table	for	node		65a1fcx	,	where	x	denotes	an
unspecified	suffix.	This	figure	shows	the	ID	prefix	matched	by	every	entry	in	the	table.	It	does	not	show	the	actual
value	contained	in	this	entry—the	IP	address	of	the	next	node	to	route	to.

Figure	9.	Example	routing	table	at	the	node	with	ID	65alcx

Figure	10.	Adding	a	node	to	the	network.

Adding	a	node	to	the	overlay	works	much	like	routing	a	"locate	object	message"	to	an	object.	The	new	node	must
know	of	at	least	one	current	member.	It	asks	this	member	to	route	an	"add	node	message"	to	the	node	numerically
closest	to	the	ID	of	the	joining	node,	as	shown	in	Figure	10.	It	is	through	this	routing	process	that	the	new	node	learns
about	other	nodes	with	a	shared	prefix	and	is	able	to	begin	filling	out	its	routing	table.	Over	time,	as	additional	nodes
join	the	overlay,	existing	nodes	also	have	the	option	of	including	information	about	the	newly	joined	node	in	their
routing	tables.	They	do	this	when	the	new	node	adds	a	longer	prefix	than	they	currently	have	in	their	table.	Neighbors
in	the	leaf	sets	also	exchange	routing	tables	with	each	other,	which	means	that	over	time	routing	information
propagates	through	the	overlay.
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The	reader	may	have	noticed	that	although	structured	overlays	provide	a	probabilistic	bound	on	the	number	of	routing

hops	required	to	locate	a	given	object—the	number	of	hops	in	Pastry	is	bounded	by	log N,	where	N	is	the	number	of

nodes	in	the	overlay—each	hop	may	contribute	substantial	delay.	This	is	because	each	intermediate	node	may	be	at
a	random	location	in	the	Internet.	(In	the	worst	case,	each	node	is	on	a	different	continent!)	In	fact,	in	a	world-wide
overlay	network	using	the	algorithm	as	described	above,	the	expected	delay	of	each	hop	is	the	average	delay	among
all	pairs	of	nodes	in	the	Internet!	Fortunately,	one	can	do	much	better	in	practice.	The	idea	is	to	choose	each	routing
table	entry	such	that	it	refers	to	a	nearby	node	in	the	underlying	physical	network,	among	all	nodes	with	an	ID	prefix
that	is	appropriate	for	the	entry.	It	turns	out	that	doing	so	achieves	end-to-end	routing	delays	that	are	within	a	small
factor	of	the	delay	between	source	and	destination	node.

Finally,	the	discussion	up	to	this	point	has	focused	on	the	general	problem	of	locating	objects	in	a	peer-to-peer
network.	Given	such	a	routing	infrastructure,	it	is	possible	to	build	different	services.	For	example,	a	file	sharing
service	would	use	file	names	as	object	names.	To	locate	a	file,	you	first	hash	its	name	into	a	corresponding	object	ID
and	then	route	a	"locate	object	message"	to	this	ID.	The	system	might	also	replicate	each	file	across	multiple	nodes	to
improve	availability.	Storing	multiple	copies	on	the	leaf	set	of	the	node	to	which	a	given	file	normally	routes	would	be
one	way	of	doing	this.	Keep	in	mind	that	even	though	these	nodes	are	neighbors	in	the	ID	space,	they	are	likely	to	be
physically	distributed	across	the	Internet.	Thus,	while	a	power	outage	in	an	entire	city	might	take	down	physically
close	replicas	of	a	file	in	a	traditional	file	system,	one	or	more	replicas	would	likely	survive	such	a	failure	in	a	peer-to-
peer	network.

Services	other	than	file	sharing	can	also	be	built	on	top	of	distributed	hash	tables.	Consider	multicast	applications,	for
example.	Instead	of	constructing	a	multicast	tree	from	a	mesh,	one	could	construct	the	tree	from	edges	in	the
structured	overlay,	thereby	amortizing	the	cost	of	overlay	construction	and	maintenance	across	several	applications
and	multicast	groups.

BitTorrent

BitTorrent	is	a	peer-to-peer	file	sharing	protocol	devised	by	Bram	Cohen.	It	is	based	on	replicating	the	file	or,	rather,
replicating	segments	of	the	file,	which	are	called	pieces.	Any	particular	piece	can	usually	be	downloaded	from	multiple
peers,	even	if	only	one	peer	has	the	entire	file.	The	primary	benefit	of	BitTorrent's	replication	is	avoiding	the	bottleneck
of	having	only	one	source	for	a	file.	This	is	particularly	useful	when	you	consider	that	any	given	computer	has	a	limited
speed	at	which	it	can	serve	files	over	its	uplink	to	the	Internet,	often	quite	a	low	limit	due	to	the	asymmetric	nature	of
most	broadband	networks.	The	beauty	of	BitTorrent	is	that	replication	is	a	natural	side	effect	of	the	downloading
process:	As	soon	as	a	peer	downloads	a	particular	piece,	it	becomes	another	source	for	that	piece.	The	more	peers
downloading	pieces	of	the	file,	the	more	piece	replication	occurs,	distributing	the	load	proportionately,	and	the	more
total	bandwidth	is	available	to	share	the	file	with	others.	Pieces	are	downloaded	in	random	order	to	avoid	a	situation
where	peers	find	themselves	lacking	the	same	set	of	pieces.

Each	file	is	shared	via	its	own	independent	BitTorrent	network,	called	a	swarm.	(A	swarm	could	potentially	share	a	set
of	files,	but	we	describe	the	single	file	case	for	simplicity.)	The	lifecycle	of	a	typical	swarm	is	as	follows.	The	swarm
starts	as	a	singleton	peer	with	a	complete	copy	of	the	file.	A	node	that	wants	to	download	the	file	joins	the	swarm,
becoming	its	second	member,	and	begins	downloading	pieces	of	the	file	from	the	original	peer.	In	doing	so,	it
becomes	another	source	for	the	pieces	it	has	downloaded,	even	if	it	has	not	yet	downloaded	the	entire	file.	(In	fact,	it
is	common	for	peers	to	leave	the	swarm	once	they	have	completed	their	downloads,	although	they	are	encouraged	to
stay	longer.)	Other	nodes	join	the	swarm	and	begin	downloading	pieces	from	multiple	peers,	not	just	the	original	peer.
See	Figure	11.
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Figure	11.	Peers	in	a	BitTorrent	swarm	download	from	other	peers	that
may	not	yet	have	the	complete	file.

If	the	file	remains	in	high	demand,	with	a	stream	of	new	peers	replacing	those	who	leave	the	swarm,	the	swarm	could
remain	active	indefinitely;	if	not,	it	could	shrink	back	to	include	only	the	original	peer	until	new	peers	join	the	swarm.

Now	that	we	have	an	overview	of	BitTorrent,	we	can	ask	how	requests	are	routed	to	the	peers	that	have	a	given
piece.	To	make	requests,	a	would-be	downloader	must	first	join	the	swarm.	It	starts	by	downloading	a	file	containing
meta-information	about	the	file	and	swarm.	The	file,	which	may	be	easily	replicated,	is	typically	downloaded	from	a
web	server	and	discovered	by	following	links	from	Web	pages.	It	contains:

The	target	file's	size

The	piece	size

SHA-1	hash	values	precomputed	from	each	piece

The	URL	of	the	swarm's	tracker

A	tracker	is	a	server	that	tracks	a	swarm's	current	membership.	We'll	see	later	that	BitTorrent	can	be	extended	to
eliminate	this	point	of	centralization,	with	its	attendant	potential	for	bottleneck	or	failure.

The	would-be	downloader	then	joins	the	swarm,	becoming	a	peer,	by	sending	a	message	to	the	tracker	giving	its
network	address	and	a	peer	ID	that	it	has	generated	randomly	for	itself.	The	message	also	carries	a	SHA-1	hash	of
the	main	part	of	the	file,	which	is	used	as	a	swarm	ID.

Let's	call	the	new	peer	P.	The	tracker	replies	to	P	with	a	partial	list	of	peers	giving	their	IDs	and	network	addresses,
and	P	establishes	connections,	over	TCP,	with	some	of	these	peers.	Note	that	P	is	directly	connected	to	just	a	subset
of	the	swarm,	although	it	may	decide	to	contact	additional	peers	or	even	request	more	peers	from	the	tracker.	To
establish	a	BitTorrent	connection	with	a	particular	peer	after	their	TCP	connection	has	been	established,	P	sends	P's
own	peer	ID	and	swarm	ID,	and	the	peer	replies	with	its	peer	ID	and	swarm	ID.	If	the	swarm	IDs	don't	match,	or	the
reply	peer	ID	is	not	what	P	expects,	the	connection	is	aborted.

The	resulting	BitTorrent	connection	is	symmetric:	Each	end	can	download	from	the	other.	Each	end	begins	by	sending
the	other	a	bitmap	reporting	which	pieces	it	has,	so	each	peer	knows	the	other's	initial	state.	Whenever	a	downloader
(D)	finishes	downloading	another	piece,	it	sends	a	message	identifying	that	piece	to	each	of	its	directly	connected
peers,	so	those	peers	can	update	their	internal	representation	of	D's	state.	This,	finally,	is	the	answer	to	the	question
of	how	a	download	request	for	a	piece	is	routed	to	a	peer	that	has	the	piece,	because	it	means	that	each	peer	knows
which	directly	connected	peers	have	the	piece.	If	D	needs	a	piece	that	none	of	its	connections	has,	it	could	connect	to
more	or	different	peers	(it	can	get	more	from	the	tracker)	or	occupy	itself	with	other	pieces	in	hopes	that	some	of	its
connections	will	obtain	the	piece	from	their	connections.
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How	are	objects—in	this	case,	pieces—mapped	onto	peer	nodes?	Of	course	each	peer	eventually	obtains	all	the
pieces,	so	the	question	is	really	about	which	pieces	a	peer	has	at	a	given	time	before	it	has	all	the	pieces	or,
equivalently,	about	the	order	in	which	a	peer	downloads	pieces.	The	answer	is	that	they	download	pieces	in	random
order,	to	keep	them	from	having	a	strict	subset	or	superset	of	the	pieces	of	any	of	their	peers.

The	BitTorrent	described	so	far	utilizes	a	central	tracker	that	constitutes	a	single	point	of	failure	for	the	swarm	and
could	potentially	be	a	performance	bottleneck.	Also,	providing	a	tracker	can	be	a	nuisance	for	someone	who	would
like	to	make	a	file	available	via	BitTorrent.	Newer	versions	of	BitTorrent	additionally	support	"trackerless"	swarms	that
use	a	DHT-based	implementation.	BitTorrent	client	software	that	is	trackerless	capable	implements	not	just	a
BitTorrent	peer	but	also	what	we'll	call	a	peer	finder	(the	BitTorrent	terminology	is	simply	node),	which	the	peer	uses
to	find	peers.

Peer	finders	form	their	own	overlay	network,	using	their	own	protocol	over	UDP	to	implement	a	DHT.	Furthermore,	a
peer	finder	network	includes	peer	finders	whose	associated	peers	belong	to	different	swarms.	In	other	words,	while
each	swarm	forms	a	distinct	network	of	BitTorrent	peers,	a	peer	finder	network	instead	spans	swarms.

Peer	finders	randomly	generate	their	own	finder	IDs,	which	are	the	same	size	(160	bits)	as	swarm	IDs.	Each	finder
maintains	a	modest	table	containing	primarily	finders	(and	their	associated	peers)	whose	IDs	are	close	to	its	own,	plus
some	finders	whose	IDs	are	more	distant.	The	following	algorithm	ensures	that	finders	whose	IDs	are	close	to	a	given
swarm	ID	are	likely	to	know	of	peers	from	that	swarm;	the	algorithm	simultaneously	provides	a	way	to	look	them	up.
When	a	finder	F	needs	to	find	peers	from	a	particular	swarm,	it	sends	a	request	to	the	finders	in	its	table	whose	IDs
are	close	to	that	swarm's	ID.	If	a	contacted	finder	knows	of	any	peers	for	that	swarm,	it	replies	with	their	contact
information.	Otherwise,	it	replies	with	the	contact	information	of	the	finders	in	its	table	that	are	close	to	the	swarm,	so
that	F	can	iteratively	query	those	finders.

After	the	search	is	exhausted,	because	there	are	no	finders	closer	to	the	swarm,	F	inserts	the	contact	information	for
itself	and	its	associated	peer	into	the	finders	closest	to	the	swarm.	The	net	effect	is	that	peers	for	a	particular	swarm
get	entered	in	the	tables	of	the	finders	that	are	close	to	that	swarm.

The	above	scheme	assumes	that	F	is	already	part	of	the	finder	network,	that	it	already	knows	how	to	contact	some
other	finders.	This	assumption	is	true	for	finder	installations	that	have	run	previously,	because	they	are	supposed	to
save	information	about	other	finders,	even	across	executions.	If	a	swarm	uses	a	tracker,	its	peers	are	able	to	tell	their
finders	about	other	finders	(in	a	reversal	of	the	peer	and	finder	roles)	because	the	BitTorrent	peer	protocol	has	been
extended	to	exchange	finder	contact	information.	But,	how	can	a	newly	installed	finder	discover	other	finders?	The
files	for	trackerless	swarms	include	contact	information	for	one	or	a	few	finders,	instead	of	a	tracker	URL,	for	just	that
situation.

An	unusual	aspect	of	BitTorrent	is	that	it	deals	head-on	with	the	issue	of	fairness,	or	good	"network	citizenship."
Protocols	often	depend	on	the	good	behavior	of	individual	peers	without	being	able	to	enforce	it.	For	example,	an
unscrupulous	Ethernet	peer	could	get	better	performance	by	using	a	backoff	algorithm	that	is	more	aggressive	than
exponential	backoff,	or	an	unscrupulous	TCP	peer	could	get	better	performance	by	not	cooperating	in	congestion
control.

The	good	behavior	that	BitTorrent	depends	on	is	peers	uploading	pieces	to	other	peers.	Since	the	typical	BitTorrent
user	just	wants	to	download	the	file	as	quickly	as	possible,	there	is	a	temptation	to	implement	a	peer	that	tries	to
download	all	the	pieces	while	doing	as	little	uploading	as	possible—this	is	a	bad	peer.	To	discourage	bad	behavior,
the	BitTorrent	protocol	includes	mechanisms	that	allow	peers	to	reward	or	punish	each	other.	If	a	peer	is	misbehaving
by	not	nicely	uploading	to	another	peer,	the	second	peer	can	choke	the	bad	peer:	It	can	decide	to	stop	uploading	to
the	bad	peer,	at	least	temporarily,	and	send	it	a	message	saying	so.	There	is	also	a	message	type	for	telling	a	peer
that	it	has	been	unchoked.	The	choking	mechanism	is	also	used	by	a	peer	to	limit	the	number	of	its	active	BitTorrent
connections,	to	maintain	good	TCP	performance.	There	are	many	possible	choking	algorithms,	and	devising	a	good
one	is	an	art.
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Content	Distribution	Networks

We	have	already	seen	how	HTTP	running	over	TCP	allows	web	browsers	to	retrieve	pages	from	web	servers.
However,	anyone	who	has	waited	an	eternity	for	a	Web	page	to	return	knows	that	the	system	is	far	from	perfect.
Considering	that	the	backbone	of	the	Internet	is	now	constructed	from	40-Gbps	links,	it's	not	obvious	why	this	should
happen.	It	is	generally	agreed	that	when	it	comes	to	downloading	Web	pages	there	are	four	potential	bottlenecks	in
the	system:

The	first	mile.	The	Internet	may	have	high-capacity	links	in	it,	but	that	doesn't	help	you	download	a	Web	page	any
faster	when	you're	connected	by	a	1.5Mbps	DSL	line	or	a	poorly	performing	wireless	link.

The	last	mile.	The	link	that	connects	the	server	to	the	Internet	can	be	overloaded	by	too	many	requests,	even	if
the	aggregate	bandwidth	of	that	link	is	quite	high.

The	server	itself.	A	server	has	a	finite	amount	of	resources	(CPU,	memory,	disk	bandwidth,	etc.)	and	can	be
overloaded	by	too	many	concurrent	requests.

Peering	points.	The	handful	of	ISPs	that	collectively	implement	the	backbone	of	the	Internet	may	internally	have
high-bandwidth	pipes,	but	they	have	little	motivation	to	provide	high-capacity	connectivity	to	their	peers.	If	you	are
connected	to	ISP	A	and	the	server	is	connected	to	ISP	B,	then	the	page	you	request	may	get	dropped	at	the	point
where	A	and	B	peer	with	each	other.

There's	not	a	lot	anyone	except	you	can	do	about	the	first	problem,	but	it	is	possible	to	use	replication	to	address	the
remaining	problems.	Systems	that	do	this	are	often	called	Content	Distribution	Networks	(CDNs).	Akamai	operates
what	is	probably	the	best-known	CDN.

The	idea	of	a	CDN	is	to	geographically	distribute	a	collection	of	server	surrogates	that	cache	pages	normally
maintained	in	some	set	of	backend	servers.	Thus,	rather	than	having	millions	of	users	wait	forever	to	contact	when	a
big	news	story	breaks—such	a	situation	is	known	as	a	flash	crowd—it	is	possible	to	spread	this	load	across	many
servers.	Moreover,	rather	than	having	to	traverse	multiple	ISPs	to	reach	,	if	these	surrogate	servers	happen	to	be
spread	across	all	the	backbone	ISPs,	then	it	should	be	possible	to	reach	one	without	having	to	cross	a	peering	point.
Clearly,	maintaining	thousands	of	surrogate	servers	all	over	the	Internet	is	too	expensive	for	any	one	site	that	wants	to
provide	better	access	to	its	Web	pages.	Commercial	CDNs	provide	this	service	for	many	sites,	thereby	amortizing	the
cost	across	many	customers.

Although	we	call	them	surrogate	servers,	in	fact,	they	can	just	as	correctly	be	viewed	as	caches.	If	they	don't	have	a
page	that	has	been	requested	by	a	client,	they	ask	the	backend	server	for	it.	In	practice,	however,	the	backend
servers	proactively	replicate	their	data	across	the	surrogates	rather	than	wait	for	surrogates	to	request	it	on	demand.
It's	also	the	case	that	only	static	pages,	as	opposed	to	dynamic	content,	are	distributed	across	the	surrogates.	Clients
have	to	go	to	the	backend	server	for	any	content	that	either	changes	frequently	(e.g.,	sports	scores	and	stock	quotes)
or	is	produced	as	the	result	of	some	computation	(e.g.,	a	database	query).
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Figure	12.	Components	in	a	Content	Distribution	Network	(CDN).

Having	a	large	set	of	geographically	distributed	servers	does	not	fully	solve	the	problem.	To	complete	the	picture,
CDNs	also	need	to	provide	a	set	of	redirectors	that	forward	client	requests	to	the	most	appropriate	server,	as	shown	in
Figure	12.	The	primary	objective	of	the	redirectors	is	to	select	the	server	for	each	request	that	results	in	the	best
response	time	for	the	client.	A	secondary	objective	is	for	the	system	as	a	whole	to	process	as	many	requests	per
second	as	the	underlying	hardware	(network	links	and	web	servers)	is	able	to	support.	The	average	number	of
requests	that	can	be	satisfied	in	a	given	time	period—known	as	the	system	throughput—is	primarily	an	issue	when
the	system	is	under	heavy	load,	such	as	when	a	flash	crowd	is	accessing	a	small	set	of	pages	or	a	Distributed	Denial
of	Service	(DDoS)	attacker	is	targeting	a	particular	site,	as	happened	to	CNN,	Yahoo,	and	several	other	high-profile
sites	in	February	2000.

CDNs	use	several	factors	to	decide	how	to	distribute	client	requests.	For	example,	to	minimize	response	time,	a
redirector	might	select	a	server	based	on	its	network	proximity.	In	contrast,	to	improve	the	overall	system	throughput,
it	is	desirable	to	evenly	balance	the	load	across	a	set	of	servers.	Both	throughput	and	response	time	are	improved	if
the	distribution	mechanism	takes	locality	into	consideration;	that	is,	it	selects	a	server	that	is	likely	to	already	have	the
page	being	requested	in	its	cache.	The	exact	combination	of	factors	that	should	be	employed	by	a	CDN	is	open	to
debate.	This	section	considers	some	of	the	possibilities.

Mechanisms

As	described	so	far,	a	redirector	is	just	an	abstract	function,	although	it	sounds	like	what	something	a	router	might	be
asked	to	do	since	it	logically	forwards	a	request	message	much	like	a	router	forwards	packets.	In	fact,	there	are
several	mechanisms	that	can	be	used	to	implement	redirection.	Note	that	for	the	purpose	of	this	discussion	we
assume	that	each	redirector	knows	the	address	of	every	available	server.	(From	here	on,	we	drop	the	"surrogate"
qualifier	and	talk	simply	in	terms	of	a	set	of	servers.)	In	practice,	some	form	of	out-of-band	communication	takes	place
to	keep	this	information	up-to-date	as	servers	come	and	go.

First,	redirection	could	be	implemented	by	augmenting	DNS	to	return	different	server	addresses	to	clients.	For
example,	when	a	client	asks	to	resolve	the	name	,	the	DNS	server	could	return	the	IP	address	of	a	server	hosting
CNN's	Web	pages	that	is	known	to	have	the	lightest	load.	Alternatively,	for	a	given	set	of	servers,	it	might	just	return
addresses	in	a	round-robin	fashion.	Note	that	the	granularity	of	DNS-based	redirection	is	usually	at	the	level	of	a	site
(e.g.,	)	rather	than	a	specific	URL	(e.g.,	).	However,	when	returning	an	embedded	link,	the	server	can	rewrite	the	URL,
thereby	effectively	pointing	the	client	at	the	most	appropriate	server	for	that	specific	object.

Commercial	CDNs	essentially	use	a	combination	of	URL	rewriting	and	DNS-based	redirection.	For	scalability	reasons,
the	high-level	DNS	server	first	points	to	a	regional-level	DNS	server,	which	replies	with	the	actual	server	address.	In
order	to	respond	to	changes	quickly,	the	DNS	servers	tweak	the	TTL	of	the	resource	records	they	return	to	a	very

9.4	Overlay	Networks

430



short	period,	such	as	20	seconds.	This	is	necessary	so	clients	don't	cache	results	and	thus	fail	to	go	back	to	the	DNS
server	for	the	most	recent	URL-to-server	mapping.

Another	possibility	is	to	use	the	HTTP	redirect	feature:	The	client	sends	a	request	message	to	a	server,	which
responds	with	a	new	(better)	server	that	the	client	should	contact	for	the	page.	Unfortunately,	server-based	redirection
incurs	an	additional	round-trip	time	across	the	Internet,	and,	even	worse,	servers	can	be	vulnerable	to	being
overloaded	by	the	redirection	task	itself.	Instead,	if	there	is	a	node	close	to	the	client	(e.g.,	a	local	Web	proxy)	that	is
aware	of	the	available	servers,	then	it	can	intercept	the	request	message	and	instruct	the	client	to	instead	request	the
page	from	an	appropriate	server.	In	this	case,	either	the	redirector	would	need	to	be	on	a	choke	point	so	that	all
requests	leaving	the	site	pass	through	it,	or	the	client	would	have	to	cooperate	by	explicitly	addressing	the	proxy	(as
with	a	classical,	rather	than	transparent,	proxy).

At	this	point	you	may	be	wondering	what	CDNs	have	to	do	with	overlay	networks,	and	while	viewing	a	CDN	as	an
overlay	is	a	bit	of	a	stretch,	they	do	share	one	very	important	trait	in	common.	Like	an	overlay	node,	a	proxy-based
redirector	makes	an	application-level	routing	decision.	Rather	than	forward	a	packet	based	on	an	address	and	its
knowledge	of	the	network	topology,	it	forwards	HTTP	requests	based	on	a	URL	and	its	knowledge	of	the	location	and
load	of	a	set	of	servers.	Today's	Internet	architecture	does	not	support	redirection	directly—where	by	"directly"	we
mean	the	client	sends	the	HTTP	request	to	the	redirector,	which	forwards	to	the	destination—so	instead	redirection	is
typically	implemented	indirectly	by	having	the	redirector	return	the	appropriate	destination	address	and	the	client
contacts	the	server	itself.

Policies

We	now	consider	some	example	policies	that	redirectors	might	use	to	forward	requests.	Actually,	we	have	already
suggested	one	simple	policy—round-robin.	A	similar	scheme	would	be	to	simply	select	one	of	the	available	servers	at
random.	Both	of	these	approaches	do	a	good	job	of	spreading	the	load	evenly	across	the	CDN,	but	they	do	not	do	a
particularly	good	job	of	lowering	the	client-perceived	response	time.

It's	obvious	that	neither	of	these	two	schemes	takes	network	proximity	into	consideration,	but,	just	as	importantly,	they
also	ignore	locality.	That	is,	requests	for	the	same	URL	are	forwarded	to	different	servers,	making	it	less	likely	that	the
page	will	be	served	from	the	selected	server's	in-memory	cache.	This	forces	the	server	to	retrieve	the	page	from	its
disk,	or	possibly	even	from	the	backend	server.	How	can	a	distributed	set	of	redirectors	cause	requests	for	the	same
page	to	go	to	the	same	server	(or	small	set	of	servers)	without	global	coordination?	The	answer	is	surprisingly	simple:
All	redirectors	use	some	form	of	hashing	to	deterministically	map	URLs	into	a	small	range	of	values.	The	primary
benefit	of	this	approach	is	that	no	inter-redirector	communication	is	required	to	achieve	coordinated	operation;	no
matter	which	redirector	receives	a	URL,	the	hashing	process	produces	the	same	output.

So	what	makes	for	a	good	hashing	scheme?	The	classic	modulo	hashing	scheme—which	hashes	each	URL	modulo
the	number	of	servers—is	not	suitable	for	this	environment.	This	is	because	should	the	number	of	servers	change,	the
modulo	calculation	will	result	in	a	diminishing	fraction	of	the	pages	keeping	their	same	server	assignments.	While	we
do	not	expect	frequent	changes	in	the	set	of	servers,	the	fact	that	the	addition	of	new	servers	into	the	set	will	cause
massive	reassignment	is	undesirable.

An	alternative	is	to	use	the	same	consistent	hashing	algorithm	discussed	in	the	previous	section.	Specifically,	each
redirector	first	hashes	every	server	into	the	unit	circle.	Then,	for	each	URL	that	arrives,	the	redirector	also	hashes	the
URL	to	a	value	on	the	unit	circle,	and	the	URL	is	assigned	to	the	server	that	lies	closest	on	the	circle	to	its	hash	value.
If	a	node	fails	in	this	scheme,	its	load	shifts	to	its	neighbors	(on	the	unit	circle),	so	the	addition	or	removal	of	a	server
only	causes	local	changes	in	request	assignments.	Note	that	unlike	the	peer-to-peer	case,	where	a	message	is	routed
from	one	node	to	another	in	order	to	find	the	server	whose	ID	is	closest	to	the	objects,	each	redirector	knows	how	the
set	of	servers	map	onto	the	unit	circle,	so	they	can	each,	independently,	select	the	"nearest"	one.

This	strategy	can	easily	be	extended	to	take	server	load	into	account.	Assume	the	redirector	knows	the	current	load	of
each	of	the	available	servers.	This	information	may	not	be	perfectly	up-to-date,	but	we	can	imagine	the	redirector
simply	counting	how	many	times	it	has	forwarded	a	request	to	each	server	in	the	last	few	seconds	and	using	this
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count	as	an	estimate	of	that	server's	current	load.	Upon	receiving	a	URL,	the	redirector	hashes	the	URL	plus	each	of
the	available	servers	and	sorts	the	resulting	values.	This	sorted	list	effectively	defines	the	order	in	which	the	redirector
will	consider	the	available	servers.	The	redirector	then	walks	down	this	list	until	it	finds	a	server	whose	load	is	below
some	threshold.	The	benefit	of	this	approach	compared	to	plain	consistent	hashing	is	that	server	order	is	different	for
each	URL,	so	if	one	server	fails	its	load	is	distributed	evenly	among	the	other	machines.	This	approach	is	the	basis	for
the	Cache	Array	Routing	Protocol	(CARP)	and	is	shown	in	pseudocode	below.

SelectServer(URL,	S)
				for	each	server	s	in	server	set	S
								weight[s]	=	hash(URL,	address[s])
				sort	weight
				for	each	server	s	in	decreasing	order	of	weight
								if	Load(s)	<	threshold	then
												return	s
							return	server	with	highest	weight

As	the	load	increases,	this	scheme	changes	from	using	only	the	first	server	on	the	sorted	list	to	spreading	requests
across	several	servers.	Some	pages	normally	handled	by	busy	servers	will	also	start	being	handled	by	less	busy
servers.	Since	this	process	is	based	on	aggregate	server	load	rather	than	the	popularity	of	individual	pages,	servers
hosting	some	popular	pages	may	find	more	servers	sharing	their	load	than	servers	hosting	collectively	unpopular
pages.	In	the	process,	some	unpopular	pages	will	be	replicated	in	the	system	simply	because	they	happen	to	be
primarily	hosted	on	busy	servers.	At	the	same	time,	if	some	pages	become	extremely	popular,	it	is	conceivable	that	all
of	the	servers	in	the	system	could	be	responsible	for	serving	them.

Finally,	it	is	possible	to	introduce	network	proximity	into	the	equation	in	at	least	two	different	ways.	The	first	is	to	blur
the	distinction	between	server	load	and	network	proximity	by	monitoring	how	long	a	server	takes	to	respond	to
requests	and	using	this	measurement	as	the	"server	load"	parameter	in	the	preceding	algorithm.	This	strategy	tends
to	prefer	loaded	servers	over	distant/heavily	loaded	servers.	A	second	approach	is	to	factor	proximity	into	the	decision
at	an	earlier	stage	by	limiting	the	candidate	set	of	servers	considered	by	the	above	algorithms	(S)	to	only	those	that
are	nearby.	The	harder	problem	is	deciding	which	of	the	potentially	many	servers	are	suitably	close.	One	approach
would	be	to	select	only	those	servers	that	are	available	on	the	same	ISP	as	the	client.	A	slightly	more	sophisticated
approach	would	be	to	look	at	the	map	of	autonomous	systems	produced	by	BGP	and	select	only	those	servers	within
some	number	of	hops	from	the	client	as	candidate	servers.	Finding	the	right	balance	between	network	proximity	and
server	cache	locality	is	a	subject	of	ongoing	research.
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9.5	Broader	Perspective

The	Cloud	is	the	New	Internet

As	we	saw	at	the	end	of	Section	9.1,	there	has	been	a	migration	of	traditional	Internet	applications	like	email	and	web
servers	from	machines	running	on-premises	to	VMs	running	in	commodity	clouds.	This	corresponds	to	a	shift	in
terminology	(from	“Web	Services”	to	“Cloud	Services”)	and	in	many	of	the	underlying	technologies	being	used	(from
Virtual	Machines	to	Cloud	Native	micro-services).	But	the	Cloud’s	impact	on	how	network	applications	are
implemented	today	is	even	bigger	than	this	migration	suggests.	It	is	the	combination	of	commodity	clouds	and	overlay
networks	(similar	to	those	described	in	Section	9.4)	that	may	eventually	have	the	most	impact.

The	biggest	thing	an	overlay-based	application	needs	to	be	effective	is	a	wide	footprint,	that	is,	many	points-of-
presence	around	the	world.	IP	routers	are	widely	deployed,	so	if	you	have	permission	to	use	a	set	of	them	as	the
underlying	nodes	in	your	overlay	network,	then	you’re	good-to-go.	But	that’s	not	going	to	happen,	as	there	are	exactly
zero	network	operators	or	enterprise	administrators	that	are	willing	to	let	random	people	load	overlay	software	onto
their	routers.

Your	next	choice	might	be	to	crowdsource	hosting	sites	for	your	overlay	software.	Depending	on	the	kindness	of
strangers	works	if	you	all	share	a	common	goal,	like	downloading	free	music,	but	it’s	difficult	for	a	new	overlay
application	to	go	viral,	and	even	if	it	does,	making	sure	there	is	sufficient	capacity	at	any	given	time	to	carry	all	the
traffic	your	application	generates	is	often	problematic.	It	sometimes	works	for	free	services,	but	not	any	application
you	might	hope	to	monetize.

If	only	there	were	a	way	to	pay	someone	for	the	right	to	load	and	run	your	software	on	servers	spread	all	over	the
world.	Of	course,	that’s	exactly	what	commodity	clouds	like	Amazon	AWS,	Microsoft	Azure,	and	the	Google	Cloud
Platform	provide.	To	many,	the	cloud	offers	a	seemingly	unlimited	number	of	servers,	but	it’s	actually	just	as	important
—if	not	more	important—where	these	servers	are	located.	As	we	discussed	at	the	end	of	Chapter	4),	they	are	widely
distributed	across	150+	well-connected	sites.

Suppose,	for	example,	that	you	want	to	stream	a	collection	of	live	video	or	audio	channels	to	millions	of	users,	or	you
want	to	support	thousands	of	video	conferencing	sessions,	each	of	which	connects	a	dozen	widely	distributed
participants.	In	both	cases,	you	construct	an	overlay	multicast	tree	(one	per	video	channel	in	the	first	example,	and
one	per	conference	session	in	the	second	example),	with	the	overlay	nodes	in	the	tree	located	at	some	combination	of
those	150	cloud	sites.	Then	you	allow	the	end-users,	from	their	general-purpose	web	browsers	or	purpose-built
smartphone	apps,	connect	to	the	multicast	tree(s)	of	their	choice.	If	you	need	to	store	some	of	the	video/audio	content
to	play	at	a	later	time	(e.g.,	to	support	time	shifting)	then	you	might	also	buy	some	storage	capacity	at	some	or	all	of
those	cloud	sites,	effectively	building	your	own	Content	Distribution	Network.

Taking	the	long	view,	while	the	Internet	was	originally	conceived	as	a	pure	communication	service,	with	arbitrary
compute-and-storage	applications	allowed	to	flourish	around	the	edges,	today	application	software	is	for	all	practical
purposes	embedded	within	the	network,	and	it	is	increasingly	difficult	to	tell	where	the	Internet	stops	and	the	Cloud
starts.	This	blending	will	only	continue	to	deepen	as	the	cloud	moves	closer	and	closer	to	the	edge	(e.g.,	to	thousands
of	sites	where	access	networks	are	anchored)	and	the	economies-of-scale	drive	the	hardware	devices	used	to	build
Internet/Cloud	sites	increasingly	towards	commonality.

Broader	Perspective

To	remind	yourself	of	why	the	cloudification	of	the	Internet	is	important,	see	Feature	Velocity.
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